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Purpose: Pseudoephedrine (PSE) has rapid absorption and metabolism, which limits its pharmacologic actions. We postulated that
pseudoephedrine nanoparticles (PSE-NPs) with high bioavailability could overcome this limitation. The defensive function of PSE-
NPs nanoparticles against adriamycin-induced reproductive toxicity in mice was studied.
Methods: We encapsulated PSE in polylactide-polyglycolide nanoparticles (PLGA-NPs) and verified their protective activity against
testicular injury in vivo and in vitro.
Results:We report a promising delivery system that loads PSE into PLGA-NPs and finally assembles it into a nanocomposite particle.
In vitro, PSE-NPs reduced the adriamycin-induced apoptosis of GC-1 cells significantly, improved mitochondrial energy metabolism
and promoted expression of the proteins related to the gonadotropin-releasing hormone (GnRh) receptor signaling pathway. In vivo,
evaluation of sperm indices and histology showed that adriamycin could induce testicular toxicity. PSE-NPs significantly increased the
sperm motility of mice, reduced the percent apoptosis and oxidative stress of testes, increased serum levels of GnRh, activated the
GnRhR signaling pathway in testes and promoted expression of meiosis-related factors.
Conclusion: In view of their safety and efficiency, these PSE-NPs have potential applications in alleviating adriamycin-induced
reproductive toxicity.
Keywords: pseudoephedrine nanoparticles, adriamycin, reproductive toxicity, GnRhR signaling pathway, sperm meiosis

Introduction
Testicular dysfunction and male infertility are the main late outcomes of anti-cancer treatment during childhood cancer.1

Several studies have shown that different anti-cancer treatments, including chemotherapy and radiotherapy, can disrupt
spermatogenesis in the testes of adolescents and preadolescent.2 Cytotoxic treatment is aimed at rapidly dividing cells.
Therefore, after cancer treatment, sperm generation can be weakened or even inhibited.3 With the worldwide increase in
cancer incidence, the use of cytotoxic drugs is increasing.4 Although these drugs have potent side-effects, their use has
become the cornerstone of treating and reducing the burden of cancer complications.5

Adriamycin is first-line treatment for several types of cancer in adults and children (breast, ovary, bladder, thyroid gland,
leukemia).6 Several authors have reported the harmful effects of adriamycin on the gonadal epithelial cells of cells. It damages
testicular function for a long time by inducing chromosome aberration of spermatogonia, inhibits DNA synthesis and,
eventually, leads to testicular atrophy.7 Therefore, studying preventive and therapeutic drugs for reproductive toxicity is
important.

Pseudoephedrine (PSE) is a nasal decongestant to treat the common cold. Recently, PSE has been reported to treat
ejaculation disorders.8,9 However, studies on PSE in reducing reproductive toxicity have rarely been reported. We
wondered if PSE can improve adriamycin-induced reproductive toxicity. The low bioavailability and high clearance
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rate of PSE limit its application.10 Therefore, we investigated the attenuation effect of pseudoephedrine nanoparticles
(PSE-NPs) on adriamycin-induced reproductive toxicity in vitro and in vivo.

Materials and Methods
Chemicals
We obtained PSE from the National Institutes for Food And Drug Control (Beijing, China). Poly (ethylene glycol) methyl
ether-poly(lactide-co-glycolide) (mPEG-PLGA; molecular weight (MW) = 18 kDa; LA/GA = 50:50; PEG MW = 2 kDa)
was purchased from Jinan Daigang Biomaterials (Jinan, China). Poly (vinyl alcohol) (PVA; MW = 30–70 kDa; HD,
80%) and adriamycin were obtained from Sigma–Aldrich (Saint Louis, MO, USA). All other chemicals and reagents
used were of analytical grade.
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Preparation of PSE NPs
Briefly, the PSE aqueous solution (2 mg/mL) was mixed with PLGA dichloromethane (DCM) solution (50 mg/mL) with
the volume ratio of 1:8 (v/v). After sonicating for 2 min, the mixture was dispersed into 1% PVA aqueous (containing 1%
NaCl) with the volume ratio of 1:5 and sonicated for 2 min. The emulsion was stirred for 8h to obtain the stable double
emulsion. DCM was volatilized to obtain a suspension of PSE-NPs. Large particles were removed by centrifugation at
2500× g for 2 min at room temperature, and then centrifuged at 2500× g for 5 min to obtain PSE-NPs. The precipitate
was washed twice with deionized water, and unencapsulated drugs and impurities were removed. The precipitate was
dispersed in 0.9% saline and stored at 4°C.

Characterization Studies of PSE NPs
Nano-ZS ZEN 3600 measured the polydispersion (PDI), mean size, and size distribution of PSE NPs using the dynamic
light scattering technique. The tested samples were diluted 10 times for measurements. Each sample was measured three
times in parallel. We examined the morphology of the PSE NPs by using SEM. We then viewed SEM images of PSE NPs
by a Scanning Electron Microscope.11

Evaluation of PSE NPs Encapsulation Efficiency
We determined the nanoformulation encapsulation efficiency as the percent of PSE trapped in the nanoparticles. We then
dissolved 25 mg of PSE NPs with 1 mL of 90% methanol, further subjected to sonication for 5 mins in order to cause
disruption of the nanoparticles and release encapsulated PSE. The resulting solution at 10,000x g was centrifugated and
we then gathered the supernatant. Supernatant absorption was read to quantify PSE at 425nm in a spectrophotometer
(Thermo, MA, USA).12

Drug-Release Kinetics in vitro
Phosphate-buffered saline (PBS) supplemented with PSE-NPs was agitated in a constant-temperature shaker at 37°C in
the dark. At 0.5, 1, 2, 4, 6, 9, 12, 24, 36, 48, 60 and 72 h after agitation, the solution was centrifuged at 2500× g to collect
the supernatant, and the amount of PSE released in the supernatant was determined. Finally, the PSE concentration in the
supernatant was determined using a ultraviolet spectrophotometer, after which the in vitro release profile was drawn.13

Cell Culture
A spermatogonia cell line from mice (GC-1) was obtained from American Type Culture Collection (Manassas, VA,
USA). Cells were cultured in high-glucose Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum, 1%
l-glutamine and a 1% penicillin–streptomycin mixture. Cells were set at 37°C in humidified air in an atmosphere of 5%
carbon dioxide.

Determination of Apoptosis and Cell Viability
GC-1 cells were inoculated uniformly at 2×104/mL in 96-well plates or 4×104/mL in 6-well plates. The normal group
underwent standard culture, whereas cells in the model group and other groups were damaged by 0.25 μM adriamycin for
24h. The PSE group was given PSE (0.5 μM). PSE-PLGA group was given PSE-NPs (PSE concentration 0.5μM). PLGA
group was given the empty nanoparticles. Apoptosis was determined by staining (annexin V/propidium iodide) using the
respective kit (BD Biosciences, Franklin Lakes, NJ, USA) and IDEAS 6.2 (Merck Millipore Biosciences, Waltham, MA,
USA) was employed to calculate percent apoptosis. Cell viability was detected using the Cell Counting Kit (CCK)-8
assay (Abcam, Cambridge, UK) and absorbance was measured at 450 nm.

Determination of Mitochondrial Stress and Glycolysis Rate
GC-1 cells were plated onto XF-24 cell culture plates (American Seahorse Bioscience, North Billerica, MA, USA) and allowed
to adhere overnight. Cells were divided into five groups. The normal group underwent standard culture, whereas cells in the
M group and other groups were damaged by 0.25 μM adriamycin for 24h. The PSE group was given PSE (0.5 μM). PSE-PLGA
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group (PSE concentration 0.5μM), PLGA group was given the empty nanoparticles. After 24 h, the oxygen-consumption rate
(OCR) and extracellular acidification rate (ECAR) were measured by a flux analyzer (XF-96, Hippocampus Bioscience, MA,
USA) using a Seahorse XF Cell Mito Stress Test Kit (Agilent Technologies, Texas, USA) and glycolysis rate kit (Agilent
Technologies, Texas, USA), respectively.14

Detection of the GnRhR Signaling Pathway in GC-1 Cells by a High-Connotation
Imaging System
GC-1 cells were inoculated uniformly at 2×104/mL in 96-well plates (E190236X; PerkinElmer, Waltham, MA, USA).
The normal group underwent standard culture, whereas cells in the M group and other groups were damaged by 0.25 μM
adriamycin for 24h. The PSE group was given PSE (0.5 μM). PSE-PLGA group (PSE concentration 0.5μM), PLGA
group was given the empty nanoparticles. After treatment with NPs, cells were washed with PBS, fixed with 4%
paraformaldehyde for 20 min, permeabilized with 0.1% Triton for 20 min, and washed five times with PBS. Treated cells
were blocked with 5% goat serum for 1.5 h at room temperature, incubated at 4°C overnight with primary antibody, then
incubated with secondary antibody (Cy3 Goat Anti-Rabbit IgG; catalog number, AS007; ABclonal, Woburn, MA, USA)
for 1 h at room temperature. Nuclei were counterstained with 4′,6-diamidino-2-phenylindole for 5 min. A high-
connotation imaging system (Opera Phenix®; PerkinElmer) was used for scanning. The relative protein expression
was normalized against control group using Harmony 4.8 (PerkinElmer).15

Establishment of an Animal Model
Fifty Kunming mice (25±2 g) (animal number: SCXK Beijing 2016–0006) were purchased from Beijing Victoria
Experimental Animal Center (Beijing, China). The protocol for animal experiments was approved by the Animal Care
and Use Committee of Henan University of Traditional Chinese Medicine (Zhengzhou, China). Experiments were carried
out according to the guidelines and regulations of the Animal Care and Use Committee of the National Organization
Engineering Center (Zhengzhou, China).

Mice were divided randomly into five groups of 10: control (Con), adriamycin-induced injury (Model), PSE, PLGA
and PSE-PLGA. Mice in the CON group and Model group were administered normal saline (10 g/0.1 mL, i.v.). Mice in
the PSE group and PSE-PLGA group were treated for 15 days before adriamycin-induced injury, once every 3 days. Each
time, mice were injected (i.v.) with PSE (1.4 mg/kg), PSE-PLGAs (53.8 mg/kg) or PLGAs (53.8 mg/kg). NPs were
prepared fresh every day based on the bodyweight of mice and were used immediately. Two days after the final
administration, adriamycin (30 mg/kg, i.p.) was administered.16,17 Two days later, all mice were killed. Sperm motility
was detected, and tissues and blood were sampled. The tissues of mice in each group were stored at −80°C.

Histological Assessment
Testes taken for histopathological examination were placed in 10% buffered formalin solution and fixed for 48 hr. The
samples were then subjected to routine procedures and embedded in paraffin blocks. The fixed testis samples were
embedded in paraffin, 6 µm thick testes histological sections were cut and stained with hematoxylin-eosin to detect
morphological alterations by a light microscope (Olympus BX53, Japan).18

Effects of PSE NPs on Sperm Parameters
The sperm motility (%), sperm density (million/mL), and the rates of dead sperm (%) were investigated in this study.
The testis and epididymis were collected after mice were sacrificed, and immediately placed in the centrifuge tube with
37°C preheated physiological saline and cut up, put into 37°C water-bath, then incubated for 8 min; sperm motility and
the rates of dead sperm was detected visually by sperm quality analyzer (Huazhong Medical Supplies Co., Ltd.,
Shijiazhuang, China) at 37°C. A total of 200 sperms per sample were evaluated. The percentage of sperms with
forward and progressive activity was counted to assess sperm motility. Semen were collected, pretreated at 5%
NaHCO3 for 10 min, added as a suspension to the hemocytometer, and sperm count observed with light microscope
(200×).19
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Enzyme-Linked Immunosorbent Assay (ELISA)
Levels of GnRh, luteinizing hormone (LH), and testosterone in serum were measured using ELISA kits (Elabscience
Biotechnology, Beijing, China) for GnRh (E-EL-0071c), LH (E-EL-M3053), and testosterone (E-EL-0155c), respec-
tively. Levels of tumor necrosis factor (TNF)-α (E-EL-M0049c) and interleukin (IL)-1β (E-EL-M0037c) in testes were
also measured, following the manufacturers’ instructions.20

Measurement of Superoxide Dismutase (SOD) and Malondialdehyde (MDA) in
Testicular Tissue
We determined the level of SOD and MDA in testicular tissue with the help of the respective test kits (Jiancheng,
Nanjing, China). The steps were based on the manufacturers’ protocol. All assays were performed in triplicate.21

Immunofluorescence
Levels of the testicular tissue-related proteins gonadotropin-releasing hormone receptor (GnRhR) and synaptonemal
complex protein (SCP)3 were detected using antibodies against them (19950-1-AP and 23024-1-AP; Proteintech,
Chicago, IL, USA). Fluorescent Cy3-coupled secondary antibodies were employed for detection.22

Western Blotting
The expression of GnRhR, GNAS, PKA, cAMP, p-CREB/CREB, SCP3, REC8, Bcl-2 and BAX was assayed by Western
blotting. Testicular protein was extracted by a total protein extraction kit (BC3710; Beijing Solarbio Science &
Technology, Beijing, China). Protein quantification was undertaken using a bicinchoninic acid kit (PC0020; Beijing
Solarbio Science & Technology). A sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) gel
preparation kit (64136301; Bio-Rad Laboratories, Hercules, CA, USA) was used for gel preparation. Protein (50 μg)
in each well was subjected to SDS–PAGE in 10% gels and transferred to 0.22 μm polyvinylidene difluoride (PVDF)
membranes (Pall, Gelman Laboratory, USA). After membranes were blocked with 5% BSA in buffer for 2 h, primary
antibodies against GnRhR (1:500 dilution; 19950-1-AP; Proteintech), guanine nucleotide binding protein (GNAS;
1:1000; ab283266; Abcam), protein kinase A (PKA; 1:1000; 12232-1-AP, Proteintech), phosphorylated-cyclic adenosine
monophosphate (cAMP)-response element binding protein (p-CREB; 1:1000; 9198; Cell Signaling Technology, Danvers,
MA, USA), CREB (1:1000; 12208-1-AP; Proteintech), SCP3 (small C-terminal domain phosphatase 3, 1:1000; 23024-
1-AP; Proteintech), REC8 meiotic recombination protein (REC8; 1:1000; ab192241; Proteintech), cAMP (Cyclic
Adenosine monophosphate, 1:1000; ab134901; Abcam), Caspase 3 (1:1000; ab32351, Abcam), Bax (BCL2-Associated
X, 1:1000; 60267-1-Ig, Proteintech), Bcl-2 (B cell lymphoma-2, 1:1000; 60178-1-Ig, Proteintech) or β-Actin (1:5000;
66009-1-Ig; Proteintech) were added and incubation allowed to occur overnight at 4°C. After washing five times with
Tris-buffered saline and Tween 20 (TBST), secondary antibody (1:20,000, C80911-11 and C80816-16, LI-COR) was
added, and incubation allowed for 1 h at room temperature. Then, blots were washed thrice with PBS and Tween 20
(PBST) before Western blotting. The Odyssey two-color infrared fluorescence imaging system (Invitrogen, Carlsbad,
CA, USA) was used for imaging. Western blot values were expressed after normalization to that of β-actin expression by
Image Studio (LI-COR Biosciences, Lincoln, NE, USA).15,22

Real-Time RT-qPCR
According to manufacturer instructions, total RNAwas extracted from testicular tissue or cells with a RNA extraction kit
(Beijing Solarbio Science & Technology). The cDNAwas synthesized from total RNA 5 mg using a reverse transcription
kit (D7168M; Beijing Applygen Technologies, Beijing, China). Quantitative real-time RT-PCR was used to quantify the
expression levels of different genes, using GAPDH mRNA as the normalization standard. The probes for genes,
including GnRhR, LHR, AR, GNAS, ADCY1, PKA, DDX4, DAZ1, CYCLIN-1, STAR, SCP3, REC8, SMC1B,
Miwi, TNF-α, IL-1β and Caspase 3 were designed by the manufacturer and purchased from were designed and
synthesized by Beijing Genomics Institute (BGI). Amplification was performed under the following conditions: 1 min
at 95°C; 5s at 95°C; 30s at 60°C with for 40 cycles, Melt Curve 65°C to 95°C. qRTPCR of mRNAs was performed using
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SYBR™ qPCR Master Mix kit (Vazyme Biotech, Nanjing, China), and real-time PCR experiments were carried on the
Thermo system (Quant studio 5). The sequences for the primers used in our study are listed in Table 1. Gene expression
levels were calculated as a ratio to the expression of the reference gene, and data were analyzed using the 2−ΔΔCt

method.21

Statistical Analyses
Data are the mean ± SD. Data were analyzed with SPSS 19.0 (IBM, Armonk, NY, USA). Significant differences between
groups were determined by one-way ANOVA. P < 0.05 was considered significant.

Results
Characterization of PSE-NPs
The maximum loading capacity and loading efficiency of PSE-NPs was 2.61±0.23% and 60.37±1.21%, respectively. The
morphology and distribution of PSE-NPs was determined by scanning electron microscopy and photodynamics. PSE-
NPs were revealed to be small and compact spheres (Figure 1A). The particle size distribution of PSE-NPs is primarily
distributed between 295 and 615 nm, which is in line with the normal distribution characteristics.

The Polydispersity Index of PSE-NPs suspensions was <0.2. Figure 1 shows the quantity of the released drug against time
for PSE-NPs. The average release rate of a drug up to 24 h was 71.52%, with rapid release of 34.28% in 5 h. Thereafter, the
percentage release over 24 h increased steadily. These results indicated that PSE-NPs had good stability and monodispersity in
distilled water.

Table 1 Primer Sequences

Target Forward Primer (5′–3′) Reverse Primer (5′–3′) Accession Number Product Size

GnRhR TGCTCGGCCATCAACAACA GGCAGTAGAGAGTAGGAAAAGGA NM_001310653.1 114

LHR CTCGCCCGACTATCTCTCAC ACGACCTCATTAAGTCCCCTG NM_001364898.1 77

AR TGCCCGAATGCAAAGGTCTT TTGGCGTAACCTCCCTTGAAA NM_013476.4 94

GNAS CAGAGCCTCCATTGGGGTC GCTTCTCGCTCAACTGGGG NM_001310085.1 141

ADCY1 TTGGCAAGTTCGATGAGTTAGC GGCGTGATCCGTCTTAGGC NM_009622.2 110

PKA AGGGCAGGACATGGACATTG CGCCTTATTGTAACCCTTGCTG NM_001164199.1 80

DDX4 CGGATGATGCAGAGAGAGTACC AATGATGGGCCTGAAAAAGAGTT NM_001145885.1 157

DAZ1 ATACCTCCGGCTTATACAACTGT GACTTCTTTTGCGGGCCATTT NM_010021.5 128

CYCLIN-1 CAGTTTCCCCAATGCTGGTTG CCTCTGCATACTCCGTTACGTTA NM_001305221.1 99

STAR GCCGGACCTCATGGAATTTGA TCACTTCATGTGCAGAGATGATG NM_009292.2 95

SCP3 AGCCAGTAACCAGAAAATTGAGC CCACTGCTGCAACACATTCATA NM_011517.2 106

REC8 GGTCATCACCTTACAGGAGGC TCTGCGATCAGCAGTTCTAAGT NM_001360390.1 105

SMC1B CATGAGGGAAAACGTCAGCAG TGACACAGATCAAGCAGTCTTC NM_080470.1 98

Miwi AGACCTCATTGGAAGGTGTCA TGTTCCCCATTCCGAGTCTGA NM_021311.3 108

TNF-α CTGAACTTCGGGGTGATCGG GGCTTGTCACTCGAATTTTGAGA NM_013693.3 122

IL-1β GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG NM_008361.4 116

Caspase 3 TGGTGATGAAGGGGTCATTTATG TTCGGCTTTCCAGTCAGACTC NM_009810.3 105

GAPDH TGTGTCCGTCGTGGATCTGA TTGCTGTTGAAGTCGCAGGAG NM_008084.3 150
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Effect of PSE-NPs on the Survival and Percent Apoptosis of GC-1 Cells Damaged by
Adriamycin
Adriamycin significantly increased the percentage of GC-1 cells that underwent apoptosis and reduced the percentage of
cells that survived, whereas PSE-NPs significantly increased the percentage of GC-1 cells that survived and
decreased percent apoptosis (Figure 2A and B). PSE and PSE-NPs could significantly reduce expression of the apoptosis-
related proteins BAX and caspase 3, and increase expression of Bcl-2 (Figure 2C). When compared with free-PSE treated
group, the effect of PSE-NPs was enhanced. These results confirmed that PSE-NPs can efficiently inhibit the apoptosis of
GC-1 cells, the application of NPs significantly improved the effect.

Effect of PSE-NPs on Mitochondrial Energy Metabolism and Glycolysis Rate of GC-1
Cells Damaged by Adriamycin
To investigate how NPs rescue mitochondrial function, we measured the OCR and ECAR of GC-1 cells by analyzing
extracellular flux. Compared with the CON group, the cellular metabolism of the Model group was lower (Figure 3).
However, inhibition of the OCR was rescued by PSE-NPs treatment, including basal respiration, adenosine triphosphate
(ATP) production, and maximal respiration. Adriamycin was shown to reduce basic glycolysis and compensatory
glycolysis: PSE-NPs could increase both significantly. At the same concentration, the effect of PSE-NPs better than free-
PSE treated group. Taken together, these results suggested that the application of PSE-NPs significantly increased the
mitochondrial energy metabolism and glycolysis rate of GC-1 cells.

Figure 1 Characterization of PSE-NPs: (A) SEM micrographs of the PSE NPs. (B) Dynamic light scattering of pseudoephedrine nanoparticles (PSE-NPs) and (C) in vitro
release of PSE-NPs.
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Effect of PSE-NPs on the GnRhR Signaling Pathway and Expression of Meiosis-Related
Proteins SCP3 of GC-1 Cells Damaged by Adriamycin
The effect of PSE-NPs on the GnRhR signaling pathway of GC-1 cells damaged by adriamycin was detected by a high-
connotation imaging system. Compared with the CON group, protein expression of the GnRhR signaling pathway and
sperm meiosis (hereafter termed “meiosis”)-related protein SCP3 in the Model group was decreased significantly, and
that in the PSE group and PSE-NPs group increased significantly, and the effect of PSE-NPs was more robust than that
observed in the PSE group (Figure 4).

Effects of PSE-NPs on Bodyweight, Testicular Indices, Testes Histology, and Sperm
Motility of Adriamycin-Treated Mice
Deaths or abnormal clinical signs were not observed in mice of any group. There was no significant difference in
bodyweight between the five groups (Table 2). The testicular structure and spermatogenic cells of mice in the CON group
were normal. Mice in the Model group and PLGA group had cell shedding, and a decrease in the spermatogenic-cell
layer. Compared with the Model group, the PSE group and PSE-PLGA group had significantly increased number of germ

Figure 2 Effect of pseudoephedrine nanoparticles (PSE-NPs) on percent apoptosis of GC-1 cells and expression of apoptosis-related proteins: (A and B) Effect of PSE-NPs
on percent apoptosis and survival of GC-1 cells in each group. (C) Effect of PSE-NPs on expression of apoptosis-related proteins of each group, scale bar 50 μm.
Notes: Data are the mean ± SD (n = 6). **P < 0.01 vs the CON group. #P < 0.05 and ##P < 0.01 vs the Model group. &P < 0.05 and &&P < 0.01 vs the PSE group.
Abbreviations: CON, control group underwent standard culture; M, model group; PLGA, empty nanoparticles; PSE, 0.5μM pseudoephedrine; PSE-PLGA, 0.25 μM
pseudoephedrine-loaded PLGA nanoparticles; Bax, BCL2-Associated X; Bcl-2, B cell lymphoma-2.
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cell layers and improved cell shedding (Figure 5). The effects of treatment on the Testes Index and Epididymis Index
(Ratio of Testes weight or Epididymis weight to body weight) of mice are shown in Table 2. The Epididymis Index in the
Model group decreased significantly, whereas the Epididymis Index in the PSE-NPs group increased significantly,
compared with Model group. Compared with the CON group, the number of sperm and sperm motility in the Model
group were decreased significantly, and the number of dead sperm was increased significantly; PSE-NPs could increase
the number of sperm and sperm motility significantly, and reduce the number of dead sperm significantly, and the effect
of PSE-NPs was more obvious than that free-PSE group.

Effect of PSE-NPs on Oxidative Stress
Lipid peroxidation was evaluated by measuring levels of SOD and MDA. Adriamycin treatment reduced the SOD level
markedly but increased the level of MDA (P < 0.01) (Figure 6B and C). PSE-NPs could restore the SOD level and reduce
the MDA level (P<0.01). Our findings suggested that PSE-NPs could reduce oxidative stress in adriamycin-treated mice.

Effect of PSE-NPs on Percent Apoptosis and Expression of Apoptosis-Related Proteins
in the Testicular Cells of Adriamycin-Treated Mice
Apoptosis in testicular cells was detected by flow cytometry. Adriamycin increased the percent apoptosis of testicular cells
significantly (P < 0.01), and PSE-NPs treatment could reduce the percentage of apoptotic cells significantly (P < 0.01)
(Figure 6A). ADM increased the MDA level significantly and decreased the SOD level significantly, and PSE-NPs could

Figure 3 Effects of pseudoephedrine nanoparticles (PSE-NPs) on the mitochondrial functions and glycolysis rate of GC-1 cells: (A–C) Effects of PSE-NPs on basal
respiration, ATP production, and maximal respiration in each group. (D and E) Effects of PSE-NPs on basal glycolysis and compensatory glycolysis in each group.
Notes: Data are the mean ± SD (n = 6). **P < 0.01 vs the CON group. ##P < 0.01 vs the Model group. &P < 0.05 vs the PSE group.
Abbreviations: CON, control group underwent standard culture; M, model group; PLGA, empty nanoparticles; PSE, 0.5μM pseudoephedrine; PSE-PLGA, 0.25 μM
pseudoephedrine-loaded PLGA nanoparticles.
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reverse these effects (P < 0.01) (Figure 6B and C). We measured expression of Bax and Bcl-2 by western blotting.
Adriamycin increased Bax expression significantly and decreased Bcl-2 expression significantly (P < 0.01) but PSE-NPs
could reverse these effects (P < 0.01) (Figure 6D). RT-qPCR revealed that adriamycin could upregulate mRNA expression of
TNF-α, IL-1β and caspase-3 (P < 0.01), whereas PSE-NPs could inhibit their expression significantly (P < 0.01).

Effect of PSE-NPs on Sex-Hormone Levels in Mice Treated with Adriamycin
Testicular levels of testosterone are regulated in part by the levels of GnRh and LH. GnRh and LH are involved in the
synthesis and regulation of testosterone in the testes. After intraperitoneal injection of adriamycin, compared with that in
control group, the levels of GnRh, LH and testosterone in the serum of mice were decreased significantly (P < 0.01), and
PSE-NPs treatment could increase the levels of GnRh, LH and testosterone significantly compared with that free-PSE
group (P < 0.01 or P < 0.05).

Effects of PSE-NPs on the GnRhR Signaling Pathway and Meiosis-Related Indices in the
Testes of Adriamycin-Treated Mice
We measured expression of GnRhR signaling pathway-related proteins in the testes of mice in each group by western
blotting. Compared with control group, expression of GnRhR, GNAS, PKA, cAMP and p-CREB in the model group was

Figure 4 Effect of PSE-NPs on the GnRhR signaling pathway and expression of meiosis-related proteins SCP3 of GC-1 cells damaged by adriamycin: (A–E) Protein
expression of GnRhR, GNAS, p-CREB and SCP3 in GC-1 cells, scale bar 50 μm.
Notes: Data are the mean ± SD (n = 6). *P < 0.05 and **P < 0.01 vs the CON group. ##P < 0.01 vs the Model group. &&P < 0.01 vs the PSE group.
Abbreviations: CON, control group underwent standard culture; M, model group; PLGA, empty nanoparticles; PSE, 0.5μM pseudoephedrine; PSE-PLGA, 0.25 μM
pseudoephedrine-loaded PLGA nanoparticles; GnRhR, gonadotropin-releasing hormone receptor; CREB, cyclic adenosine monophosphate (cAMP)-response element
binding protein; GNAS, guanine nucleotide binding protein; SCP3, small C-terminal domain phosphatase 3.
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decreased significantly. PSE-NPs treatment could increase expression of these proteins significantly. We used RT-qPCR
to measure gene expression of GnRhR signaling pathway-related proteins. Expression of the genes for GnRhR,
luteinizing hormone receptor (LHR), androgen receptor (AR), GNAS, PKA and adenylate cyclase 1 (ADCY1) in the
Model group was reduced significantly compared with that in control group. PSE-NPs treatment could reverse these
effects.

SCP3 and REC8 have key roles in meiosis. We measured protein and gene expression by western blotting and RT-
qPCR. Expression of SCP3 and REC8 in the model group decreased significantly compared with that in control group
and PSE-NPs treatment could increase expression of SCP3 and REC8 significantly. We also measured expression of the
genes closely related to SCP3: deleted in azoospermia protein (Daz)1, DDX4, cyclin-1, StAR-related lipid transfer
protein 8 (STAR), structural maintenance of chromosomes protein 1B (SMC1B) and murine piwi (Miwi). Expression of
these genes in the model group decreased significantly compared with that in control group and PSE-NPs treatment could

Figure 5 Effect of PSE-NPs on testicular histology in mice. The CON group showed a normal organizational structure. The Model group and PLGA group showed cell
shedding and a decrease in the spermatogenic-cell layer. Compared with the Model group, the PSE group and PSE-PLGA group had significantly improved histology, and the
PSE-PLGA group had the best effect. Black arrows mark showing spermatogenic cell layers.
Abbreviations: CON, Control group; M, Model group with 30 mg/kg adriamycin, i.p.; PSE, 1.4 mg/kg PSE, i.v.; PLGA, 53.8 mg/kg PLGAs, i.v.; PSE-PLGA, 53.8 mg/kg PSE-
PLGAs, i.v.

Table 2 Effects of PSE-NPs on Bodyweight, Testicular Indices, and Sperm Motility in Mice Treated with Adriamycin

CON Model PLGA PSE PSE-PLGA

Weight, g 36.5±2.0 35.0±2.9 35.0±2.3 35.5±2.1 35.3±1.5

Testes Index 6.60±0.36 4.59±0.43** 4.48±0.46 5.14±0.22 5.89±0.68##&

Epididymis index 1.39±0.20 0.86±0.14** 0.68±0.09 1.22±0.07# 1.49±0.24##

Motility, % 69.4±7.6 20.4±7.3** 26.5±9.0 49.4±8.6## 62.2±10.3##&&

Density, ×106 190.0±40.6 88.3±27.2** 83.2±12.0 101.1±22.0 132.0±15.5##&

Dead sperm, % 17.3±3.8 65.1±4.9** 59.9±8.8 43.6±14.1## 31.1±12.1##&&

Notes: Data are the mean ± SD (n = 8). **P < 0.01 vs the CON group. #P < 0.05 and ##P < 0.01 vs the Model group. &P < 0.05 and &&P < 0.01 vs the PSE group.
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increase expression significantly. Further, we detected GnRHR and SCP3 levels again by immunofluorescence, which
was consistent with the results of WB and RT-qPCR (Figure 7).

Discussion
Adriamycin is used to treat a wide variety of cancer types. However, adriamycin treatment can lead to testicular
injury.23,24 Studies have shown that PSE can improve sperm motility9,25 and NPs can help to promote repair of testicular
tissue.26,27 PSE is metabolized readily and has a short half-life in vivo,10 so we constructed PSE-NPs. PLGA has good
biocompatibility, safety and stability. It is a biodegradable polymer material. Its degradation products and metabolites are
non-toxic and will not remain in the body.28,29 Therefore, PLGA has been approved by the US Food and Drug
Administration (FDA) as a pharmaceutical excipient. The PLGA controlled release system can maintain effective
blood drug concentration, reduce the number of administrations, reduce the dosage, improve the curative effect and
improve the body compliance.30 Compared to other metallic materials, no reports of reproductive toxicity were found.
However, ordinary nanoparticles are easily recognized by phagocytic cell lines and rapidly cleared in the human body.
Polyethylene glycol (PEG) modified PLGA block copolymers are amphiphilic.31 The outer layer of the nanoparticles is
a hydrophilic PEG shell, which can escape the clearance of macrophages, which can further improve the efficacy of the
loaded drug. Therefore, PEG-PLGA was selected for drug loading. The final nanoparticles with a diameter of about 396
nm, displayed a good PDI, encapsulation efficiency, and drug loading. The latter can be released slowly in vivo, which
contributes to their efficacy.

Figure 6 Effects of PSE-NPs on percent apoptosis, oxidative stress, and expression of apoptosis-related proteins in mouse testicular cells: (A) Percent apoptosis in the
testicular tissue of mice in each group. (B) mRNA expression of IL-1β, caspase 3 and TNF-α in the testicular tissue of mice each group measured by RT-qPCR. (C) Protein
expression of Bax and Bcl-2 in the testicular tissue of mice in each group measured by Western blotting. (D) Levels of SOD and MDA in the testicular tissue of mice in each
group.
Notes: Data are the mean ± SD (n = 6). **P < 0.01 vs the CON group. #P < 0.05 and ##P < 0.01 vs the Model group. &&P < 0.01 vs the PSE group.
Abbreviations: CON, Control group; M, Model group with 30 mg/kg adriamycin, i.p.; PSE, 1.4 mg/kg PSE, i.v.; PLGA, 53.8 mg/kg PLGAs, i.v.; PSE-PLGA, 53.8 mg/kg PSE-
PLGAs, i.v.; 7-AAD, 7-amino-actinomycin D; PE, Phycoerythrin; TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β; Bax, BCL2-Associated X; Bcl-2, B cell lymphoma-2;
SOD, Superoxide dismutase; MDA, Mobile device assistant.
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BCl2 and Caspase family proteins play a key role in controlling apoptosis. Bcl2 is an inhibitor of apoptosis protein,
Bax and Caspase 3 are pro-apoptotic proteins.32,33 We evaluated the protective effect of PSE-NPs by detecting the
apoptosis-related proteins Bax, Bcl-2 and Caspase 3. We showed that, in vitro, PSE-NPs could increase the survival of
GC-1 cells significantly, reduce the percent apoptosis of GC-1 cells, regulate expression of Bax and Bcl-2, and
significantly reduce the level of caspase 3. In recent years, scholars have shown that sperm generation is closely related
to mitochondrial energy metabolism.34 The efficiency of glycolysis and maintenance of spermatogenesis are very
important.35 Increasing glycolysis cascades and ATP production help to improve the damage to testicular cells.36

Hence, we measured the level of mitochondrial energy metabolism: PSE-NPs could significantly increase the level of
mitochondrial energy metabolism. In the present study, we used a high-connotation imaging system for detection of
expression of proteins related to the GnRhR signaling pathway and meiosis. We found that PSE-NPs could significantly
activate expression of GnRhR signaling pathway-related proteins and increase expression of the meiosis-related protein
SCP3. These results confirmed that PSE can efficiently inhibit the apoptosis and activate GnRhR signaling pathway, the

Figure 7 Continued.

International Journal of Nanomedicine 2022:17 https://doi.org/10.2147/IJN.S348673

DovePress
1561

Dovepress Fu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


application of PLGA-NPs significantly improved the effect of PSE. After preliminary determination of the role of PSE-
NPs, we conducted in vivo experiments in mice.

Weight is a key indicator to evaluate the side-effects of drugs.21,37 In vivo studies showed that PSE-NPs had no effect
on the bodyweight of mice in the present study. Adriamycin could reduce sperm motility significantly and increase the
number of dead sperm in mice. PSE-NPs treatment significantly increased the total number of sperm and sperm motility,
and decreased the proportion of dead sperm. We calculated the apoptosis level of testis by flow cytometry. PSE and PSE-
NPs could reduce the percent apoptosis of testicular cells and improve the level of living cells, while PSE-NPs had better
effect. Generally, oxidative stress has been considered to be an initiating event of reproductive toxicity. It occurs when
the production of potentially destructive reactive oxygen species (ROS) exceeds the body’s own natural antioxidant
defenses. Therefore, MDA as a marker of lipid peroxidation, accumulates, while SOD as a major scavenger of ROS is
depleted.38 Previous reports have linked testosterone reduction to the pro-apoptotic caspase 3 activity and apoptosis of
the germ cell line.24,39 TNFα mediates doxorubicin apoptosis via activation of caspase 3 and IL-1.23,40 We also examined
the activation of apoptotic pathways in the testes using BAX as the proapoptotic protein and Bcl-2 as the anti-apoptotic
protein. ADM could give rise to obvious apoptosis and oxidative stress in GC-1 cells, up-regulated expression of
apoptosis-related proteins (Bax, TNF-α, IL-1β, MDA, caspase 3) and downregulated expression of SOD and Bcl-2. PSE-
NPs could significantly increase expression of antioxidant-associated proteins and reduce an excessive increase in
expression of apoptosis-related proteins.

Figure 7 Continued.
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Studies have shown that problems in male reproductive health are often accompanied by dysregulation of sex-
hormone levels. Hormones play a key part in development of the reproductive system.41,42 Regulation of GnRh
secretion in the body can enhance sexual function and maintain sperm quality and gonadal function.43,44 GnRh is
associated with sperm generation and smooth progression of meiosis.45,46 Therefore, we measured the levels of
GnRh, LH and testosterone. We found that PSE-NPs could increase the level of GnRh, LH and testosterone
significantly. It also could significantly increase the mRNA levels of LHR and AR in testes. Studies have shown
that expression of the proteins associated with the cAMP signaling pathway is inhibited significantly in testicular
injury, including cAMP, PKA, CREB, and p-CREB.47,48 ADCY1 is a member of the ADCY superfamily and is
responsible for catalyzing ATP to cAMP.49 If testicular injury occurs, GnRhR expression decreases
significantly,50 which can lead to inhibition of the GnRhR signaling pathway. Our results showed that adriamycin
could inhibit the GnRhR signaling pathway significantly, PSE could up-regulate GnRH pathway with certain
extent. Compared with PSE group, we found that PSE-NPs significantly increased the level of the GnRh/cAMP

Figure 7 Effects of PSE-NPs on sex-hormone levels, GnRh signaling pathway-related proteins in testes, and indices of meiosis in mice: (A) Levels of GnRh, LH and
testosterone in the serum of mice in each group. (B) mRNA expression of GnRh signaling pathway-related proteins and meiosis-associated genes in the testicular tissue of
mice in each group was measured by RT-qPCR. (C) Protein expression of GnRh signaling pathway and meiosis-associated proteins in the testicular tissue of mice in each
group was measured by western blotting. (D) The protein expression of GnRhR and SCP3 in the testicular tissue of mice in each group was measured by
Immunofluorescence, scale bar 50 μm.
Notes: Data are the mean ± SD (n = 6). *P < 0.05 and **P < 0.01 vs the CON group. #P < 0.05 and ##P < 0.01 vs the Model group. &P < 0.05 and &&P < 0.01 vs the PSE group.
Abbreviations: CON, Control group; M, Model group with 30 mg/kg adriamycin, i.p.; PSE, 1.4 mg/kg PSE, i.v.; PLGA, 53.8 mg/kg PLGAs, i.v.; PSE-PLGA, 53.8 mg/kg PSE-
PLGAs, i.v.; GnRh, gonadotropin-releasing hormone; LH, luteinizing hormone; GnRHR, gonadotropin-releasing hormone receptor; LHR, luteinising hormone receptor; AR,
androgen receptor; GNAS, guanine nucleotide-binding proteins; ADCY1, adenylate cyclase type 1; PKA, protein kinase A; DAZ1, deleted in azoospermia protein 1; DDX4,
Dead box polypeptide 4; STAR, StAR-related lipid transfer protein 8; SCP3, synaptonemal complex protein 3; REC8, meiotic recombination protein; SMC1B, structural
maintenance of chromosomes protein 1B; Miwi, murine piwi gene; cAMP, Cyclic Adenosine monophosphate.
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signaling pathway according to western blotting, RT-qPCR and immunofluorescence studies, as well as expres-
sion of its downstream signaling proteins, such as GnRhR, GNAS, ADCY1, cAMP, PKA and p-CREB/CREB.

The GnRhR signaling pathway is related to meiosis. If the GnRhR signaling pathway is inhibited, then expression of
genes related to meiosis is also inhibited, thereby which reduces sperm production.45,51 SCP3 is a key factor in meiosis,
expressed mainly in primary spermatocytes.52 SCP3-knockout homozygous male mice are infertile, with a significant
decrease in the Testes Index and many apoptotic sperm cells.53 REC8 protein enables the separation of homologous
chromosomes during the meiosis of sperm cells, avoids the premature separation of sister chromatids, and guarantees the
formation of mature haploid sperm.54 We measured the levels of proteins associated with meiosis of sperm, SCP3 and
REC8, and related genes, including DAZ1, DDX4, CYCLIN-1, STAR, SMC1B and Miwi.55–60 Our results showed that
adriamycin significantly inhibited the ability of mice to carry out meiosis of sperm, PSE could promote expression of the
proteins and genes related to meiosis. Compared with PSE group, PSE-NPs significantly promoted expression of the
proteins and genes related to meiosis. The in vivo and in vitro results are consistent, further demonstrating that the PSE
alleviate adriamycin-induced reproductive toxicity through the GnRhR signaling pathway and the effect can be enhanced
after encapsulated with PLGA-NPs.

PSE-NPs not only show a helpful impact, but also appear to have no obvious biological toxicity, which show that they
have colossal potential as a candidate treatment for reducing adriamycin-induced reproductive toxicity. The results of this
study indicate that PSE-NPs incorporate a certain defensive impact on adriamycin-induced reproductive toxicity, and its
preliminary mechanism may be related to activation of the GnRhR signaling pathway, which promotes expression of
meiosis-related factors. This study provides preliminary proof for the PSE-NPs’ alleviation of adriamycin-induced
reproductive toxicity. Be that as it may, further research is required to determine the underlying mechanism and
bioactivity.

Conclusions
Our results suggest that PSE-NPs reduce adriamycin-induced reproductive toxicity. This action may be associated with
activation of the GnRhR signaling pathway, which promotes expression of meiosis-related factors. The clinical applica-
tion of PSE-NPs merits further research.
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