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Purpose: Heat shock proteins (HSPs) play important roles in oncogenesis and malignant progression. HSPB11 is highly expressed in
many malignant tumors, but research on its role in hepatocellular carcinoma (HCC) is insufficient.
Patients and Methods: A comprehensive analysis of HSPB11 in HCC was performed based on data of patients with HCC and those
from online public databases.
Results: HSPB11 was overexpressed in HCC, with a high discrimination ability between tumor and normal tissues (area under the
curve =0.923). HSPB11 overexpression correlated with advanced tumor stage, poorer tumor differentiation, and worse prognosis and
was an independent risk factor for HCC prognosis. The nomogram and calibration models composed of HSPB11, T stage, and M stage
had good abilities to predict the 1-, 3-, and 5-year survival rates of patients. HSPB11 was determined to be involved in multiple
oncogenic processes, including cell cycle checkpoints, the G2M checkpoint, E2F targets, Rho GTPases, and KRAS signaling. HSPB11
expression was related to immune cell infiltration, especially that of Th2 cells and dendritic cells.
Conclusion: HSPB11 is involved in oncogenesis and immune regulation in HCC and is a potential prognostic biomarker and
therapeutic target.
Keywords: heat shock protein B11, biomarker, immune cell infiltration, Th2 cell, dendritic cell

Introduction
Hepatocellular carcinoma (HCC) is characterized by high morbidity and mortality, making it the sixth most
common cancer and one of the most common causes of cancer-related death.1,2 Patients with early-stage HCC can
be effectively treated with surgical resection, radiofrequency ablation, or liver transplantation, but most patients
are not diagnosed until advanced disease stages, resulting in a poor prognosis.3,4 Systemic drug therapies, such as
sorafenib, lenvatinib, regorafenib, and cabozantinib, are recommended for advanced-stage HCC.5–8 However, the
mortality of patients with advanced HCC remains very high.9 Therefore, researchers have been exploring valuable
prognostic biomarkers and more effective treatment methods.10

Heat shock proteins (HSPs) are a family of highly conserved proteins that are expressed at low basal levels
under normal physiological conditions, but their expression is upregulated upon exposure to heat stress and
tumorigenic environments.11–14 Several members of the HSP family, such as HSP27, HSP70, and HSP90, play
important roles in the oncogenesis, therapeutic resistance, invasion, and metastasis of HCC.15–20 Various inhibi-
tors of HSPs have been proposed as possible treatment strategies for HCC, which could be used alone or in
combination with other treatment approaches.21 HSPB11 has been investigated in many animal models, such as
fish and birds.22,23 Its expression is closely related to several diseases, such as tumors and degenerative lesions of
the nervous system.15,24–29 For example, HSPB11 is overexpressed in high-grade gliomas, and its expression level
correlates with the degree of malignancy and prognosis.27,29,30 In esophageal cancer, the expression level of
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HSPB11 is closely related to the survival and prognosis of patients. Combined with other biomarkers, it can be
used to predict the response to neoadjuvant radiochemotherapy in patients with esophageal cancer.28,31 Norouzinia
et al found that the expression of HSPB11 in gastric cancer tissues of patients infected with Helicobacter pylori is
lower than that in tissues of individuals not infected with H. pylori, suggesting that it plays a role in the
mechanism of H. pylori infection.32 Yang et al reported that HSPB11 is highly expressed in HCC, but its roles
in oncogenesis and immune regulation are still not clear.15 Thus, we comprehensively analyzed the role of
HSPB11 in HCC, including its diagnostic and prognostic values, biological functions, and association with the
immune microenvironment.

Materials and Methods
Comparison of HSPB11 Expression Using Data from Online Public Databases
The expression level of HSPB11 was investigated in 17 common tumors using data from The Cancer Genome
Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Additionally, 225 liver tumor tissues and 220
non-tumor tissues from GSE14520, as well as 81 tumor tissues and 10 non-tumor tissues from GSE62232 were
retrieved to evaluate the expression level of HSPB11. The receiver operating characteristic (ROC) curve was
created to explore the diagnostic value of HSPB11 in HCC.

Validation of HSPB11 Expression in Clinical Samples
Thirty tumor tissues and their adjacent normal tissues were collected from HCC patients in the Second Hospital of
Dalian Medical University. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was per-
formed using the ThermoScript RT-PCR system (Invitrogen, Carlsbad, CA, USA) and StepOnePlus apparatus
(Applied Biosystems, Foster City, CA, USA). The amplification primers used were as follows: HSPB11 forward,
TGATGGCTCCGCTACTTACTT and reverse, GCAGAAACGCTATGCACAGAT; glyceraldehyde-3-phosphate
dehydrogenase (GADPH, the internal reference gene) forward, CAGCCTCAAGATCATCAGCAAT and reverse,
ATGAGTCCTTCCACGATACCAAA. Three technical replicates were performed for each sample. The Ethics
Committee of Second Hospital of Dalian Medical University approved this research (no. 0202159). Written
informed consent was obtained from all patients before specimen collection.

Association Between HSPB11 and Cancer Stage and Prognosis
Correlation analyses were performed using the R ggplot2 package based on data derived from TCGA to
investigate the association between HSPB11 expression and tumor size (T stage), pathological stage, tumor
differentiation (histological grade), and adjacent hepatic tissue inflammation. Kaplan–Meier plots and univariate
and multivariate Cox proportional hazards models were created using the survival package to evaluate the effect
of HSPB11 on the prognosis of HCC and to identify risk factors for HCC based on data available in TCGA
database. Another online database (Kaplan–Meier Plotter, https://kmplot.com/analysis/) was also used to evaluate
the effect of HSPB11 on the prognosis of patients with HCC.

Establishment of Prognostic Models for HCC
The time-dependent survival ROC curve was created using the R timeROC package to evaluate the predictive ability of
HSPB11 for the prognosis of patients with HCC. By integrating risk factors identified in the aforementioned Cox
regression model, the nomogram and calibration models were built using the R rms and survival packages to predict the
survival probabilities.

Enrichment of HSPB11-Associated Genes in HCC
Patients with HCC from TCGA were divided into HSPB11-high and HSPB11-low groups, and the differentially
expressed genes and their corresponding logFC values were screened using R with the DESeq2 package. The gene
set enrichment analysis (GSEA) was performed using the clusterProfiler package based on MSigDB Collections
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(https://www.gsea-msigdb.org/). A false discovery rate <0.25 and adjusted P-value <0.05 were used as criteria for
statistical significance. h.all.v7.2.symbols.gmt Hallmarks and c2.cp.v7.2.symbols.gmt Curated were used as the
reference gene sets.

Correlation Analyses of HSPB11 and Immune Cell Infiltration
The ssGSEA analysis was performed using the R GSVA package to demonstrate the association between HSPB11 and the
level of infiltration of 24 types of immune cells. Spearman correlation and Wilcoxon rank-sum tests were applied to
investigate the relationship between HSPB11 expression and the immune cell infiltration level.

Statistical Analyses
R (v.3.6.3) and RStudio software were used for the statistical analyses, and P < 0.05 was set as the criterion for statistical
significance.

Figure 1 Expression level of HSPB11 in pan-cancers and hepatocellular carcinoma (HCC). (A) HSPB11 expression in pan-cancers compared with that in normal tissues in
The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. (B–E) Expression levels of HSPB11 in HCC in several online public databases. (F)
Receiver operating characteristic curve to test the value of HSPB11 to identify HCC tissues. (G) The quantitative polymerase chain reaction of clinical HCC samples
confirmed that the mRNA level of HSPB11 in tumor tissues was higher than that in the adjacent normal liver tissue. **p < 0.01, ***p < 0.001, ns, no significance.
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Results
Expression Level of HSPB11 in Pan-Cancers and HCC
HSPB11 was more highly expressed in 13 types of tumors (breast infiltrating carcinoma, bladder urothelial
carcinoma, cholangiocarcinoma, colon adenocarcinoma, esophageal carcinoma, pleomorphic glioma, renal clear
cell carcinoma, renal papillary cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, lung squamous
cell carcinoma, prostate cancer, and gastric cancer) than in their adjacent normal tissues (Figure 1A). The
hyperexpression of HSPB11 was observed in HCC tissues in both unmatched (Figure 1B) and paired (Figure 1C)
comparative studies based on TCGA database. Furthermore, in the ROC curve, the area under the curve (AUC) was
0.923, indicating a high ability of HSPB11 to differentiate tumor and normal tissues (Figure 1D). The comparative
analysis of public databases of GSE14520 (Figure 1E) and GSE62232 (Figure 1F), accompanied by the qRT-PCR
analysis of clinical samples from our hospital (Figure 1G), all confirmed higher HSPB11 mRNA expression in HCC
than in the adjacent normal liver tissues.

HSPB11 Correlates with HCC Stage and Prognosis
The clinical data used to identify the relationship between HSPB11 and the cancer stage and prognosis of HCC were
retrieved from TCGA database, and the baseline characteristics of the 374 HCC patients are presented in Table S1. The
expression level of HSPB11 was positively correlated with tumor size, pathological stage, and histological grade,
indicating that patients with advanced stage and poorer tumor differentiation tend to express higher level of HSPB11.

Figure 2 Relationship between the expression level of HSPB11 and stage of hepatocellular carcinoma. The expression level of HSPB11 was highly correlated with (A) T
stage, (B) pathological stage, (C) histological grade, and (D) adjacent hepatic tissue inflammation. *p < 0.05, ***p < 0.001.
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(Figure 2A–C). Higher HSPB11 expression was also observed in HCC patients with adjacent hepatic tissue inflammation
(Figure 2D).

The association between theHSPB11 level and the prognosis ofHCCwas evaluated.According to theKaplan–Meier survival
curves based onTCGA,HCCpatientswith higher HSPB11 expression showed a lower overall survival (OS) (hazard ratio (HR) =
2.09, 95%confidence interval (CI) = 1.45–2.99, p < 0.001), poorer disease-specific survival (DSS;HR= 2.19, CI = 1.38–3.48, p =
0.001), and a worse progression-free interval (PFI; HR = 1.70, CI = 1.25–2.32, p = 0.001) (Figure 3A–C). An analysis of the
Kaplan–Meier Plotter database confirmed the poorer prognosis of HCC patients with high HSPB11 expression (Figure 3D–F).
ThemultivariateCoxmodels showed that tumor size, distantmetastasis, and the expression level ofHSPB11were all independent
risk factors for the prognosis of HCC (Table 1).

Establishment of Prognostic Models for HCC
The AUC values of the time-dependent survival ROC curve for 1-, 3-, and 5-year survival were all greater than 0.6
(Figure 4A). By integrating risk factors for prognosis identified in the Cox regression models, including tumor size,
distant metastasis, and the expression level of HSPB11, nomogram and calibration models were built to predict the
survival probabilities at 1, 3, and 5 years. The prediction models showed good prediction ability; the dotted line predicted
by the model was close to the ideal line (Figure 4B and C).

Figure 3 Prognostic value of the mRNA level of HSPB11 in patients with hepatocellular carcinoma (HCC). (A) Overall survival (OS), (B) disease-specific survival (DSS), and
(C) progression-free interval (PFI) survival curves comparing patients with high (red) and low (blue) HSPB11 expression based on TCGA database. Analysis of the Kaplan–
Meier Plotter database confirmed the poorer prognosis of HCC patients with a high HSPB11 expression level (D–F). HSPB11 expression in HCC was plotted at the
threshold of p < 0.05.

International Journal of General Medicine 2022:15 https://doi.org/10.2147/IJGM.S363679

DovePress
4021

Dovepress Liu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Enrichment Analysis of HSPB11 and Associated Genes in HCC
The GSEA between the HSPB11-high and HSPB11-low patients was performed to explore HSPB11-associated
pathways. The GSEA, based on h.all.v7.2.symbols.gmt, revealed that the G2M checkpoint, E2F targets, mitotic
spindle, and KRAS signaling were significantly enriched. Cell cycle checkpoints, the G2M checkpoint, mitotic
prometaphase, and signaling via Rho GTPases were significantly enriched based on the c2.cp.v7.2.symbols.gmt
database (Figure 5).

Association Between HSPB11 Expression and Immune Cell Infiltration
As shown in Figure 6A, the expression level of HSPB11 was correlated with several immune cells including NK cells,
neutrophils, mast cells, T cells, B cells, and macrophages. Significantly, the expression of HSPB11 was positively
correlated with the abundance of Th2 cells (R = 0.426, P < 0.001) and negatively associated with the abundance of DCs
(R = −0.222, P < 0.001). HCC with high HSPB11 expression presented higher infiltration levels of Th2 cells and lower
infiltration levels of DCs (Figure 6B–E).

Discussion
As molecular chaperones, HSPs can protect cells to ensure survival under stress conditions, and increased expression of
HSPs is observed in pathophysiological processes of cancer.33 Studies have found that HSPs can enhance the survival
and aggressiveness of cancer cells under stress conditions,34 and specific inhibitors of HSPs or combined treatment with
chemotherapy drugs can improve the prognosis of HCC.21 In recent years, few studies have reported that HSPB11 is
overexpressed in a variety of malignant tumors.15,27–29,35 However, research on HSPB11 in HCC is insufficient. Based on
data from public databases and those of clinical samples, we confirmed that HSPB11 is highly expressed in HCC, which
is consistent with the findings of a previous study,15 and the expression level had a high diagnostic value. The expression
level of HSPB11 was significantly correlated with a more advanced tumor stage and worse prognosis. In multivariate
Cox survival analysis models, the expression level of HSPB11 was an independent risk factor for the prognosis of

Table 1 Univariate and Multivariate Survival Analysis (Overall Survival) of Prognostic Covariates in Patients with Hepatocellular
Carcinoma

Characteristic Total (N) Univariate Analysis Multivariate Analysis

HR (95% CI) P HR (95% CI) P

Age (>60 vs ≤60) 373 1.205 (0.850–1.708) 0.295

Sex (Male vs Female) 373 1.261 (0.885–1.796) 0.200

T stage (T2& T3&T4 vs T1) 370 2.126 (1.481–3.052) <0.001 2.255 (1.419–3.583) <0.001

N stage (N1 vs N0) 258 2.029 (0.497–8.281) 0.324

M stage (M1vs.M0) 272 4.077 (1.281–12.973) 0.017 4.105 (1.229–13.707) 0.022

Histological grade (G4&G3 vs G1&G2) 368 1.091 (0.761–1.564) 0.636

Vascular invasion (Yes vs No) 317 1.344 (0.887–2.035) 0.163

Albumin (g/dl) (≥3.5 vs.<3.5) 299 0.897 (0.549–1.464) 0.662

AFP (ng/mL) (>400 vs ≤400) 279 1.075 (0.658–1.759) 0.772

Child-Pugh grade (B&C vs A) 240 1.643 (0.811–3.330) 0.168

Adjacent hepatic tissue inflammation (Yes vs No) 236 1.194 (0.734–1.942) 0.475

Prothrombin time (>4 vs ≤4) 296 1.335 (0.881–2.023) 0.174

HSPB11 (High vs Low) 373 1.799 (1.269–2.550) <0.001 1.848 (1.179–2.897) 0.007
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Figure 4 Establishment of prediction models to evaluate the probability of 1-, 3-, and 5-year overall survival (OS) of hepatocellular carcinoma patients. (A) Time-
dependent survival receiver operating characteristic curve to evaluate the expression of HSPB11 for 1-, 3-, and 5-year OS. (B) Nomogram for estimating the
probability of 1-, 3-, and 5-year OS. (C) Calibration plots of the nomogram for evaluating the probability of OS at 1, 3, and 5 years.

Figure 5 Plots from gene set enrichment analyses based on (A) h.all.v7.2symbols.gmt and (B) cp. v7.2. symbols.gmt. HSPB11 is involved in multiple oncogenic processes
including the G2M checkpoint, mitotic spindle, E2F targets, KRAS signaling, cell cycle checkpoints, mitotic prometaphase, and signaling via Rho GTPase. NES, normalized
enrichment score; p. adj, adjusted P value; FDR, false discovery rate.
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patients with HCC. By combining the expression levels of HSPB11 with T stage and M stage, we established a
nomogram and calibration models that could be used to predict the 1-, 3-, and 5-year survival probabilities of patients.
The results showed that HSPB11 has good prediction ability, and the predicted dotted line was close to the ideal line.
These results indicate that HSPB11 might be a useful prognostic and diagnostic marker for HCC.

A GSEA using data from patients with HSPB11-high and HSPB11-low tumors was performed to explore HSPB11-
associated functions and pathways. The results revealed that HSPB11 is involved in multiple oncogenic processes,
including cell cycle checkpoints, the G2M checkpoint, E2F targets, Rho GTPase signaling, and KRAS signaling.
Inactivation of cell cycle checkpoints has been reported to correlate with the progression of multiple malignancies.36,37

Figure 6 Expression level of HSPB11 is related to immune cell infiltration. (A) Association between the expression level of HSPB11 and relative abundance of 24 immune
cell types. The size of dots reflects the absolute values of Spearman R. (B–E) Correlation diagrams and scatter plots indicate the differentiation of T helper (Th)2 and
dendritic cell (DC) infiltration levels between HSPB11-high and HSPB11-low groups. ***p < 0.001.
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The G2/M checkpoint can inhibit cells with genomic DNA damage from entering the M phase, thereby facilitating the
DNA damage repair process, which is critical for protection against malignant transformation.38,39 The E2F family is
critical in regulating the cell cycle, proliferation, apoptosis, DNA damage signaling, and tumorigenesis. E2F1 is a proto-
oncogenic gene that could induce both cell proliferation and tumor suppression by promoting apoptosis in the liver.40

Rho GTPases are involved in regulating cell proliferation, differentiation, and apoptosis, and are closely related to the
infiltration and distant metastasis of liver cancer.41–46 KRAS participates in the RAS/RAF/MEK/ERK signaling pathway
and is an important regulator of cell growth. Studies have confirmed KRAS mutations and activation of the Ras signaling
pathway in HCC.47–49 Our GSEA revealed that HSPB11 might be involved in these signaling pathways and functions in
HCC, but further studies are needed to confirm the specific mechanism.

HCC is an inflammation-induced cancer, and the immune microenvironment plays a central role in regulation of the
anti-tumor immune response.50,51 In the current study, we found that the hyperexpression of HSPB11 is related to the
infiltration level of immune cells in HCC. More specifically, HSPB11 was positively correlated with the abundance of
Th2 cells and negatively associated with the abundance of DCs. Th2 cells secrete interleukin-4 and 10, promoting tumor
growth and inducing metastasis via immunosuppression.52–55 A Th1/Th2 imbalance has been observed in HCC patients
with elevated Th2-released cytokines.56 The dysfunction of DCs will result in the suppression of CD8+ T cell responses,
leading to immune tolerance and cancer immunosurveillance failure.57,58 DC-based vaccines have emerged as potential
cancer immunotherapeutics.59,60 Considering the significant correlations among HSPB11, Th2 cells, and DCs, we believe
that HSPB11 could be involved in the immune regulation of HCC through its interaction with tumor immune cells.

The clinical data used in this study were mainly retrieved from public databases, and thus, some limitations are
unavoidable. First, large clinical trials are needed to validate its diagnostic and prognostic values. Second, the mechanism
through which HSPB11 affects oncogenesis and immune regulation in HCC should be confirmed through further basic
molecular and animal experiments.

Conclusion
In this study, we comprehensively analyzed the role of HSPB11 in HCC. The value of HSPB11 in the diagnosis and
prediction of HCC prognosis was confirmed. HSPB11 may not only be involved in the development but also in the
immune regulation of HCC. However, cell line-based experiments and clinical studies are still needed to validate the
potential diagnostic and prognostic value in HCC.

Abbreviations
HSPB11, heat shock protein B11; HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; GTEx, Genotype-
Tissue Expression (GTEx); OS, overall survival; DSS, disease-specific survival; PFI, progression-free interval; HR,
hazard ratio; AUC, area under the curve; GSEA, Gene Set Enrichment Analysis; DCs, dendritic cells.
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