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Abstract: The respiratory epithelium constitutes the physical barrier between the human body and the environment, thus providing
functional and immunological protection. It is often exposed to allergens, microbial substances, pathogens, pollutants, and environ-
mental toxins, which lead to dysregulation of the epithelial barrier and result in the chronic inflammation seen in allergic diseases and
asthma. This epithelial barrier dysfunction results from the disturbed tight junction formation, which are multi-protein subunits that
promote cell–cell adhesion and barrier integrity. The increasing interest and evidence of the role of impaired epithelial barrier function
in allergy and asthma highlight the need for innovative approaches that can provide new knowledge in this area. Here, we review and
discuss the current role and mechanism of epithelial barrier dysfunction in developing allergic diseases and the effect of current allergy
therapies on epithelial barrier restoration.
Keywords: bronchial epithelial cells, asthma, allergy, tight junction, inflammation

Introduction
The human respiratory system consists of the nasal cavity, trachea, respiratory bronchioles, and distal alveoli, and it is
linked together with the cardiovascular system to accomplish gas exchange.1,2 The integral component in maintaining
this process is a continuous layer of epithelial cells, which has a central role in defending the lungs against inhaled
environmental factors. Airway epithelial cells are continuously exposed to several environmental factors and allergens,
which are then cleared by the immune system. Mucociliary clearance is mediated by the actions of diverse conducting
airway and secretory cells, such as goblet cells, and the mucous and serous cells in the submucosal glands. They secrete
fluids, electrolytes, antimicrobial and anti-inflammatory proteins, and mucus onto airway surfaces and therefore play
a critical role in protecting the lungs during an acute injury.3 The continuous exposure of bronchial epithelium to external
and internal factors causes structural, protein and genetic changes, which contribute to the development of allergy and
asthma. Several treatments for asthma and allergy symptoms are currently available for patients but there are also novel
possible therapies and studies, that are aimed at improving the impaired epithelial barrier.

Structure of Bronchial Epithelial Cells
The airway epithelium is pseudostratified in the large airways and becomes columnar and cuboidal in the small airways.
It consists of the predominant ciliated epithelial cells, mucous-secreting goblet cells, club cells, airway basal, suprabasal
cells and rare cell types such as neuroendocrine cells, ionocytes, Hillock cells, and tuft cells (Figure 1, Table 1).4–6

Epithelial cells form a barrier between neighboring cells via junctional complexes which consist of apical tight junctions
(TJs), adherens junctions (AJs), and desmosomes (Figure 2).7,8 TJs form a border between the apical and basolateral
plasma-membrane domains, which controls cell polarization, transcription, growth, and differentiation. They are critical
regulators of paracellular permeability and limit the transport of macromolecules.9–11 Approximately 40 different
proteins have been identified as TJ components, and these include the main transmembrane proteins belonging to the
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claudin family (26 members in humans and 27 in mice) and the three junctional MARVEL (MAL and related proteins for
vesicle trafficking and membrane link) domain proteins: occludin, tricellulin and MARVELD3 that regulate the recruit-
ment of signaling complex proteins to TJs.8,12–14 Other transmembrane TJs include junctional adhesion molecules
(JAMs), coxsackievirus and adenovirus receptor and angulins (also known as lipolysis-stimulated lipoprotein
receptors).8,15,16 The zonula occludens (ZO)-1, ZO-2, and ZO-3 cytoplasmic molecules bind directly to occludin and
claudin on one end while also linking to actin fibers on the other end, which is essential for the epithelial barrier function.
Several other proteins are located in the cytoplasm, such as multi-PDZ domain protein-1 (MUPP1), cell polarity
molecules ASIP/PAR-3, PAR-6, PALS-1, and PALS-1-associated tight junction (PATJ); and non-PDZ proteins, cingulin,
symplekin, ZONAB, GEF-H1, aPKC, PP2A, Rab3b, Rab13, PTEN, and 7H6.17,18 Multiple protein interactions couple
the extra- and intracellular signaling that allows the complexity and plasticity of TJ function.13,19

AJs are cadherin-catenin adhesion complexes located below TJs and have an important role in tissue homeostasis,
stabilization, and transcriptional and intracellular signaling.20 Cadherin adhesion molecules are core AJ components.21

The cytoplasmic tail of classic cadherin binds to the catenins, which allows for links to cytoskeletal networks as well as
to the exocytotic and endocytic machinery. Crosstalk between cadherin–catenin clusters and actin regulators controls AJ
assembly from initial cell–cell contacts.20 Gap junction proteins (GJs), connexins, which are expressed in different types
of cells in the lung tissue, coordinate ciliary beat frequency, enable the direct flow of signaling molecules and metabolites
between cells, and regulate inflammation.22 Desmosomes are specialized adhesive protein complexes responsible for
maintaining the mechanical integrity of tissues.24 They may also act as signaling centers, regulating the availability of
signaling molecules and participating in fundamental processes such as cell proliferation, differentiation, and
morphogenesis.25 Desmosome composition and size vary depending on tissue-specific expression and differentiation
state. Their constituent proteins are highly regulated by post-translational modifications that control their function in the
desmosome itself and regulate many desmosome-independent functions.26

All these components of airway epithelium, besides their specific functions, closely interact with each other to form and
maintain the epithelial cells’ polarity from the apical and basolateral sides.19 It was shown that TJs proteins like ZO-1, which
are distributed in AJs and GJs, interact with their proteins like E-cadherin (AJs) and certain connexins (GJs) Such
interactions are important for transmitting signals between intracellular junctions and inner cells.19,27–29 Furthermore, the
association between a cadherin and plakoglobin, the only known component of desmosomes and AJs, is essential for
desmosomes formations.30 The flexibility of cadherin molecules was shown to have an impact on desmosomes plasticity on
strong calcium-independent hyper adhesion in adult tissues and on weaker calcium-dependent adhesion in wounds.31 The
proper function and homeostasis of airway epithelial cells works through the cooperation of junctional complex molecules.

What Causes Epithelial Barrier Damage?
Airway epithelial cells are an essential part of the innate immune system in the lung. They are susceptible to damage due
to exposure to allergens with complex proteolytic activity like house dust mite (HDM) (Der p 1, Der p 3, Der p 6, Der
p 9), pollen (Ragweed pollen, Amb a, Birch pollen, Bet v), fungi (Aspergillus fumigatus and Aspergillus oryzae, Asp f 5,
Asp f 6, Asp f 11), cockroaches (Bla g) and also animal dander and pathogens.32–34 Allergens with a protease activity

Goblet cell Tuft cellCiliated cells
Club cell

Basal cells IonocyteNeuroendocrine cell

Epithelial cells repertoire

Suprabasal cells

Figure 1 Bronchial epithelial cells repertoire. Common cell types: basal cells, suprabasal cells, goblet cells, club cells (Clara cells) and ciliated cells. Rare cell types:
neuroendocrine cells, ionocytes, Hillock cells and Tuft cells (brush cells). Created with affinity.serif.com.
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Table 1 Types of Bronchial Epithelial Cells

Cell Type Localization Function Reference

Basal cells Exist as a separate layer of cells covering
most of the airway basal lamina.

Progenitor cells in regeneration and repair.
Attachment of columnar epithelium with the

basement membrane.

Basal cells are more susceptible to RV
infection than suprabasal cells

Evans et al188

Hewitt and Lloyd189

Yang et al190

Morrisey191

Jakiela et al192

Suprabasal cells Intermediate between basal and club cells. Connected to the tight junctions to form an
impermeable barrier.

Adhesion is mediated by E-cadherin.

Hewitt and Lloyd189

Bukowy-Bieryllo193

Goblet cells Line multiple mucosal surfaces, tightly packed

mucin granules and surfactant proteins.

Secretion of mucus, antimicrobial proteins,

chemokines and cytokines.

Knoop and Newberry194

Rogers195,196

Jackson197

Yang et al198

Club cells (Clara
cells)

Cells of the small airways, differentiated from

basal cells in Notch-dependent manner.

Secretion of KL-6 protein, glycoproteins, and

lipids.

Chemical and physical protection.
Able to self-renew and generate ciliated cells

after injury thus, repopulating damaged

airway tissue.

Rokicki et al199

Broeckaert et al200

Wang et al201

Pilon202

Tata et al203

Ciliated cells Major cell type within the airways.

Terminally differentiated and originate from
club cells and/or airway basal cells regulated

by Notch signaling.

Clearance of mucus and cleansing the airways

of inhaled particles and pathogens.
Ciliary dysfunction and ultrastructural

abnormalities are closely related to asthma

severity.

Hellings and Steelant5

Morimoto et al204

Guseh et al205

Whitsett3

Thomas et al206

Tilley et al207

Rare cell types

Neuroendocrine
cells

Occur either as isolated cells or are

organized in small clusters called
neuroendocrine bodies, distributed

throughout the conducting airways.

Sense airborne allergens and relay signals to

stimulate immune cells and induce tissue/
organ-wide responses.

Increased secretory products in the

regenerating airway epithelium may
contribute to the development of the

pathologic alterations in lung structure seen

in bronchopulmonary dysplasia.
Amplify allergic asthma responses.

Van Lommel et al208

Noguchi et al209

Kobayashi and Tata210

Johnson and Gergieff211

Sui et al212

Ionocytes Tracheal epithelial cells. Ion transport, fluid and pH regulation.
Contains a C-terminal interaction domain

that regulates TJ assembly and epithelial

differentiation.
Suggested role in pathology of cystic fibrosis

by enrichment of the proton-secreting

V-ATPases, important in regulating luminal pH
and mucus viscosity.

Hewitt and Lloyd189

Goldfarbmuren et al213

Montoro et al214

Plasschaert et al215

Ruan et al216

Shah et al217

(Continued)
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were shown to injure the airway epithelial cells and help with initiation of allergen uptake by mucosal dendritic cells
(DC) and antigen presentation with major histocompatibility class II to naïve T cells.33,35 In mice, the intraepithelial DC
expressing TJs claudin-1, claudin-7 and ZO-2, and the interaction with E-cadherin expressed by epithelial cells is used to
uptake allergens by dendritic extensions between epithelial cells.32,35 Infection of human bronchial epithelial cells
(HBECs) with human rhinovirus increased their permeability and altered their TJs expression.36 Whereas, respiratory

Table 1 (Continued).

Cell Type Localization Function Reference

Hillock cells Intermediate population between basal stem

cells and differentiated luminal secretory

cells.
Do not contain luminal ciliated cells.

Play role in squamosus barrier function and

immunomodulation.

Contain a particularly high number of cycling
cells and expressed markers of cellular

adhesion and epithelial differentiation as well

as genes associated with barrier function and
immunomodulation.

Montoro et al214

Plasschaert et al215

Vieira Braga et al218

Deprez et al219

Hewitt and Lloyd189

Tuft cells (brush
cells)

Chemosensory epithelial cells, bottle shaped
with apical microvilli, and are expressed in

a range of organs, including the gut and

airway as well as in the nose, trachea and
proximal airways and exist in close contact

with nerve fibers.

Coordinate interactions with the external
environment.

Mediate communication between neuronal

and immune pathways.
scRNAseq has now identified two terminally

differentiated Trpm5+ tuft cell populations;

one is positive for Gng13 and is likely to be
responsible for “taste” sensing, and the other

is positive for Alox5ap, suggesting that it

contributes to leukotriene synthesis.
Source of IL-25 in patients with chronic

rhinosinusitis with nasal polyps.

Hewitt and Lloyd189

Schneider et al220

Plasschaert et al215

Montoro et al214

Krasteva et al221

O’Leary et al222

Kohanski et al223

Patel et al224

Figure 2 The junctional complex of bronchial epithelial cells. Tight junctions, adherens junction, gap junctions and desmosomes are intracellular junctions which regulate the
transport of ions, water and macromolecules between tissue and lumen. TJs consist of claudins, occludin, tricellulin, and JAMs, located directly between neighboring
bronchial epithelial cells. They directly interact with cytoplasmic TJs such as cingulin, MUPP1, MAGIs, non-PDZ proteins, and ZO-1, ZO-2, ZO-3 which bind directly to
occludin and claudin on one end while also linking to actin fibers on the other end. Created with affinity.serif.com.
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syncytial virus infection in mice was seen only in lung parenchyma with decreased mRNA expression of claudin-1 and
occludin observed in whole lungs. This observation was not seen in asthmatic HBECs.37

Increasing numbers of diseases with epithelial barrier damage are caused by lifestyle changes due to urbanization and
modernization, and as a result more environmental toxins such as air pollutants, cigarette smoke and ozone are released,
which affect more than one billion people worldwide.38–45 The cadmium present in air pollutants and cigarette smoke
disrupts epithelial integrity in in vitro human air-liquid interface (ALI) cultures through both occludin hyperphosphorylation
via kinase activation and by direct disruption of the junction-interacting complex.46 Recent studies have also revealed that
nanoparticles, macroparticles, and toxins contained in laundry, dishwashing, and household cleaning agents can cause
epithelial barrier disturbance in human keratinocytes and human bronchial epithelial cells.47–50 Disturbance to the homeo-
static balance in the epithelium including loss of differentiation, impairment of junctional complexes or insufficient innate
immune response define the epithelial barrier dysfunction.51 The disruption of the basic functions of the epithelium
manifested in inability to rebuild causes the penetration of inflammatory cells.5 This leads to chronic inflammatory airway
diseases like asthma and chronic rhinosinusitis, which are heterogeneous diseases with complex etiology.52 It was shown
that the airway epithelium in asthmatic patients and in vitro ALI cultures is less differentiated, has elevated numbers of
basal cells, and has increased phosphorylation of p38 mitogen-activated protein kinase.53 The epithelial permeability was
higher in asthma, specifically severe asthma, compared to mild asthma, and in biopsy specimens from patients with chronic
rhinosinusitis with nasal polyps.53–57 This decreased integrity of epithelial barrier was associated with decreased expression
of the TJs molecules occludin and ZO-1. In in vitro study of asthma and HDM-induced allergic rhinitis, claudin-18 was
shown in epithelial brushings in asthma patients and healthy controls. AJ like E-cadherin and β-catenin in patients with
atopic asthma, were also shown to contribute to the disease development.56,58–61 E-cadherin plays an important role in the
epithelial-to-mesenchymal transition, a cellular process where epithelial cells acquire mesenchymal phenotypes and
behavior following the downregulation of epithelial features. The epithelial cells lose their cell polarity and cell–cell
adhesion, then display fibroblast-like morphology and cytoarchitecture, and gain migratory and invasive properties.62,63 The
Wnt/β-catenin pathway was shown to be involved in the remodeling process of fibrosis and allergic inflammation in
a genetically modified mouse model.64 Blocking of β-catenin pathway could be a promising therapeutic target in asthma
because it can reduce allergic airway inflammation in mouse models.65,66

Disruption of the complex lung epithelium structure by the external components of the environment initiates the
immune response, which could enhance the disease development and lead to a chronic stage.

Epithelial Cell Response to Danger
The response of bronchial epithelium to danger is manifested by elevated serum IgE, increased smooth muscle mass,
subepithelial fibrosis, epithelial desquamation, eosinophilic airway inflammation, and goblet cell hyperplasia.67 The
airway epithelium acts as a chemical barrier against environmental insults by secreting, for example, antimicrobial
peptides, anti-proteases, and antioxidants.52 The epithelial cells recognize pathogen-associated molecular patterns on
inhaled microbes, parasites, and allergens as well as alarmins/damage-associated molecular patterns released from dying
or damaged cells by expressing pattern recognition receptors like toll-like receptors, retinoic acid-inducible gene like
receptors, nucleotide-binding oligomerization domain like receptors, C-type lectin receptors, protease activated receptor
2 and purinergic receptors.68,69 Upon activation, epithelial cells produce and release chemokines, growth factors, lipid
mediators, pro-inflammatory cytokines such as interleukin (IL)-6, IL-8, IL-25, IL-33, CCL20, CCL17, thymic stromal
lymphopoietin (TSLP), and granulocyte-macrophage colony-stimulating factor (GM-CSF) which then attract and activate
cells from the innate and adaptive immune system (Figure 3).70,71 It has been shown that epithelial expression of the
neutrophil chemoattractant IL-8 and macrophage inflammatory protein 1 alpha is increased in the biopsies from severe
asthma patients. Their presence correlates with increased epidermal growth factor receptor (EGFR) expression as
a marker of epithelial damage.72 Human and mouse studies have revealed another molecule secreted by the respiratory
epithelial cells which is nitric oxide that plays a role in ion transport, modulation of inflammation, and wound repair
processes after injury.73–75 Impairment of epithelial barrier induces deposition of extracellular matrix components and
release of vascular endothelial growth factor (VEGF), which cause an increase in the size of airway wall vessels and
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promotes angiogenesis.76,77 The airway epithelium maintains an active physical and functional barrier, and responds to
the danger with secretion of cytokines, chemokines and mediators therefore activating innate and adaptive immune cells.

The Influence of Cytokines on Epithelial Barrier Disorders
The main players driving the allergic disease pathology are T helper 2 (Th2) cells and their cytokines IL-4, IL-5 and IL-
13.78 During allergic airway inflammation, Wu et al observed elevated levels of IL-5 in mice in bronchial epithelial
cells, which can impact the microenvironment of the lung by modifying pathologic and protective immune responses in
the airways.79 We have shown that Th2 cell numbers and the level of their cytokines, IL-4 and IL-13, decreased barrier
integrity in ALI cultures of HBECs from control subjects. The HBECs from asthmatic patients had an initial low trans-
epithelial resistance and reduced expression of ZO-1 and occludin, and the treatment with Th2 cells and cytokines IL-4
and IL-13 did not show any further changes. These cytokines induced a physical separation of the TJs of adjacent cells
as seen in the immunofluorescence staining of the TJ molecules occludin and ZO-1.55 Th2 cells and their cytokines (IL-
4, IL-5, IL-13, IL-9) are necessary to initiate and propagate the inflammation associated with allergy. They induce class
switching of B-cells to produce allergen-specific IgE, recruit mast cells (IL-9) and eosinophils (IL-5) to sites of allergic
inflammation and induce goblet cell metaplasia (IL-4, IL-13).80,81 Type 2 innate lymphoid cells (ILC2) through IL-13
were also linked to asthma pathogenesis by reducing human and mice epithelial barrier integrity.82 Similar results were
observed in the analysis of TJs in bronchial biopsies from asthmatic subjects and in vitro cultures.56 Mouse studies
demonstrated decreased expression of ZO-1, ZO-2, occludin, and claudin-5-8-18 and −23 in three chronic HDM models
of eosinophilic, neutrophilic and mixed granulocyte asthma.83 In addition, prolonged interferon (IFN) production
impairs lung epithelial regeneration during influenza recovery in mice.84 IFNγ and tumor necrosis factor alpha
(TNFα) synergistically or singly disrupt barrier function in ALI cultures associated with reduced ZO-1 and JAM
expression.54,85,86 Zabner et al showed that histamine, which is a crucial agonist released during the immediate
response to an inhaled allergen, increases paracellular airway permeability and increases the susceptibility of airway
epithelial cells to infection by adenovirus by interrupting E-cadherin adhesion (Figure 3).87,88 During the acute
inflammatory response to pathogens or tissue injury, respiratory epithelium produces and releases eicosanoids together

Figure 3 Mechanisms involved in a bronchial epithelial cell response to environmental factors and allergens. Airway epithelial cells are susceptible to damage as a result of
exposure to allergens (house dust mite, pollen, and animal dander), pathogens (viruses, bacteria), and environmental toxins (air pollutants, cigarette smoke, ozone,
detergents). Disruption of bronchial epithelium, indicated by red cell junctions, decreases the barrier integrity as evidenced by lower expression of TJs (occludin, ZO-1,
E-cadherin, β-catenin, JAM and EGFR). Consequently, epithelial cells respond by secretion of cytokines IL-25, IL-33, and TSLP, which then attract other inflammatory cells
like Th2 (IL-4, IL-5, IL-13), ILC2 (IL-13, IL-5), B cells, and dendritic cells (DC). Additional manifestations of respiratory disease occur in response to lipid mediators. Epithelial
cells can also produce PAF and eicosanoids which have been shown to be chemotactic for neutrophils (neu), basophils (baso) and macrophages (mØ), activate eosinophils
(eos) and macrophages, and alter vascular and epithelial permeability. Chronic inflammation also causes epigenetic changes in the bronchial epithelial cells by increasing DNA
methylation and activating HDACs. Created with affinity.serif.com.
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with cytokines and chemokines, and mediators such as histamine (Figure 3).89 They induce the recruitment of
neutrophils and other immune cells into the tissue to engulf and kill invading pathogens. The two classes of
eicosanoids, leukotrienes and prostaglandins, were shown to be increased in the airways of asthmatic patients and
could be involved in asthma pathogenesis.90 They are metabolites of the cyclooxygenase (COX) and 5-lipoxygenase
(5-LOX) pathways. Several studies have reported increased levels of COX pathway products, prostaglandin D (PGD2),
prostaglandin F2 alpha and thromboxane B2 in the bronchoalveolar lavage fluid of allergic asthmatic.91,92 Specifically,
PGD2 activities might contribute to asthma pathogenesis by vasodilation, increased capillary permeability, mucus
production by lung epithelial cells, bronchoconstriction, and eosinophil recruitment.93 PGD2 has also been implicated
in the trafficking of T cells in allergic inflammation.94 In addition, leukotriene B4 (LTB4) and the cysteinyl leukotrienes
(Cys-LTs), products of the 5-LOX pathway, have been shown to be higher in exhaled breath condensate from asthmatic
patients.95 Cys-LTs were also reported to be higher in the induced sputum of asthmatic patients and their level
correlated with disease severity.96 LTB4 has also been shown to induce chemotaxis of effector T cells to the airways
of mice immediately after exposure to an allergen.97,98 In addition to eicosanoids, platelet- activating factor (PAF),
a phospholipid mediator, is prevalent in asthmatic airways. It is produced by various cells, including neutrophils,
eosinophils, mast cells, fibroblasts, epithelial cells, and endothelial cells.99 In the airways, PAF acts as a potent
chemoattractant for neutrophils and eosinophils, promotes vascular permeability and edema and causes bronchocon-
striction via acting on airway smooth muscle.100

During the resolution phase in the lungs, specialized pro-resolving mediators (SPMs) are produced by leukocytes,
platelets, bronchial epithelial cells, alveolar epithelial type II cells as well as alveolar macrophages.101 Their actions
include participation in epithelial cell restoring, inhibition neutrophils’ influx and activation, efferocytosis and phagocy-
tosis of microorganisms, allergens and debris by macrophages as well as lymphocyte differentiation to effector cells that
produce healing cytokines such as TGFβ.102,103

Severe asthma is resistant to current therapies and is marked by decreased lipoxin production in the airways due to the
aberrant metabolism of AA.104–106 Reduced levels of lipoxins, specifically lipoxin A4 (LXA4), have been linked to more
severe airway inflammation and a higher degree of airway obstruction.106 In contrast, LXA4 inhalation by asthmatic
patients has been shown to affect airway response by attenuating the leukotriene C4-triggered airway obstruction and
improved lung function in asthmatic children.107,108 Infiltrating eosinophils during asthma pathogenesis are producing
not only pro-inflammatory cytokines like IFNγ109 but also LXA4 which has been shown to suppress chemotaxis towards
chemoattractants and inhibit the GM-CSF triggered secretion of IL-13 and eotaxin in vitro.110 Eosinophils from severe
asthmatic patients expressed lower levels of ALX the receptor for LXA4, compared to healthy humans.111 Activation of
ALX by LXA4 has protective benefits in the lung airway by promoting the proliferation and wound repair of human
airway epithelial cells.112 The activation of this receptor on natural killer cells from asthma patients also increased their
triggered apoptosis of eosinophils.113 Various studies reported the beneficial and pro-resolution effects of resolvin E1 in
murine models of allergic airway inflammation, where it was shown to decrease eosinophil influx, airway hyperrespon-
siveness, and the secretion of IL-23, IL-17 and IL-6 in the lung while also increasing the production of LXA4.114,115

Resolvin D1 has also been shown to decrease allergic lung inflammation by stimulating the macrophages clearance of
allergens.116 Protectin D1 treatment after an allergen challenge in mouse lungs was associated with a faster resolution of
airway inflammation.117 Classically regarded as a pro-inflammatory mediator, PGE2 (prostaglandin E2) can promote
resolution.118 PGE2 by inhibiting the proliferation, activation, and secretion of cytokines by ILC2.119 Studies in
asthmatic patients reported an inverse correlation between the sputum levels of PGE2 and eosinophil numbers, thus
suggesting it can play a role in reducing airway eosinophilia.96,120 Additionally, inhaled PGE2 was shown to have
antiallergic effects by reducing the early and late bronchoconstrictor response to an allergen in asthmatic individuals.121

PGI2 (prostacyclin) has been mostly studied in mice models of asthma where it was involved in decreasing allergic
inflammation by signaling through its receptor IP, as well as reducing lung fibrosis and remodelling.122–124

Systemic inflammation coordinated by a large number of factors such as cytokines, chemokines and mediators
produced by immune cells, interact with each other and consequently cause changes in the bronchial epithelium. Long-
term changes in the TJs protein expression, which are important for the maintenance and proper function of epithelial
cells, can have an impact on the chronic stage of diseases.
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Genetic and Epigenetic Changes in Bronchial Epithelium
Under the influence of external factors and immune cell responses, bronchial epithelial cells undergo many changes in
their DNA structure and post-translational genetic modifications. Several epithelial-derived genes have been identified in
genome-wide association studies, such as metalloprotease 33 (ADAM33)125 and protocadherin-1 (PCDH1),126,127 which
are associated with epithelial barrier function, differentiation, and homeostasis. Cadherin-related family member 3
(CDHR3) as a receptor for rhinovirus C was associated with childhood asthma with severe exacerbations.128,129

β2-adrenergic receptor haplotype pair (2/4) was shown to be associated with severe asthma,130 while serine peptidase
inhibitor, Kazal type 5 (SPINK5), and TSLP were associated with childhood asthma.131 A large study involving more
than a hundred centers worldwide identified genes associated with asthma on chromosomes 2 (IL1RL1/IL18R1), 6 (HLA-
DQ), 9 (IL33), 15 (SMAD3), 17 (ORMDL3/GSDMB), and 22 (IL2RB).132 IL1RL1 encodes the ST2 receptor (ST2L) for
IL-33, which promotes type 2 inflammation in some asthma patients. Soluble isoform, IL-1RL1-a or sST2, acts as
a decoy receptor by sequestering IL-33, thereby inhibiting IL1RL1-b/IL-33 signaling, which could be used as
a biomarker or target for pharmacological intervention.133,134 Orosomucoid- like 3 (ORMDL3), was shown to play an
important role in regulating epithelial barrier function in allergic asthma,135–137 rhinovirus infection138,139 and by
inducing the p-ERK/MMP-9 pathway to promote pathological airway remodeling in patients with asthma.140 SMAD3
is an essential signal transducer in TGF-β signaling, which is elevated in airway epithelial cells of some asthmatics141,142

and is involved in the response of bronchial epithelial cells to viral infection.143,144 Deletion of P2Y13 in human airway
epithelial cells and in a mouse model protects against asthma exacerbations.145 A study in Der f 1 stimulated peripheral
blood mononuclear cells from dust mite sensitized patients showed upregulation of IL9, IL5, and proteoglycan 2 (PRG2)
expression with evidence for an interaction of IL9 polymorphisms with dust mite in childhood asthma.146

Changes in bronchial epithelial cells also lead to epigenetic changes like DNA methylation, histone modification, and
microRNA modifications, defined as heritable changes in gene activity without an alteration in the DNA sequence.147–149

Recent studies in epigenome-wide association studies have shown an association between epigenetic signatures and allergic
diseases, including pediatric asthma.150–152 We showed a higher methylation level in bronchial epithelial cells from asthma
donors following the changes in genes associated with cell growth, ion transport, and cytoskeletal remodeling. Additionally,
higher methylation was observed in genes involved in the regulation of bronchial barrier integrity, eg, TJ family members:
AMOTL1, CLDN11, CLDN18, MAGI1, TJP2, JAM3, actin protein: ACTB, a component of the cytoskeleton: TUBA1C,
ROCK2, LLGL1. Interestingly ten-eleven translocation enzyme (TET1), which can reverse CpG methylation, was methy-
lated in asthmatic HBEC.153 Vermeulen et al reported differentially methylated regions between persistent asthma,
remission, and healthy controls associated with ciliated epithelium genes.154 Also, short-term exposure of bronchial
epithelial cells to diesel exhaust, a significant contributor to air pollution, alters DNA methylation and could be implicated
in pulmonary pathologies.155 DNA-methyltransferases (Dnmts) play a crucial role in the methylation process. Qin et al
showed that the bronchial epithelial Dnmt3b impairs the host defense during Pseudomonas-induced pneumonia, at least in
part, by dampening the mucosal responses to flagellin.156 Additionally, Dnmt1 deficiency disrupts epithelial-mesenchymal
crosstalk and leads to an early-branching defect. It also causes a loss of epithelial polarity and proximal endodermal cell
differentiation.157 We showed that the inhibition of Dnmts restores leakiness in the bronchial epithelium in asthma.153

Bronchial epithelium can also be influenced by histone acetyltransferases (HATs) and histone deacetylases (HDACs), that
antagonistically control the overall balance of post-translational modification of DNA core histone proteins (Figure 3). They
play a crucial role in cell signaling, cell cycle control, and epigenetic gene transcription regulation. HDAC inhibitors can
inhibit these enzymes, resulting in the increased acetylation of histones, thereby affecting gene expression.158 The HDAC
family consists of 11 members of HDACs and 7 silent information regulator genes. We have shown that human bronchial
epithelial cells from asthma patients showed higher HDAC activity with higher expression of HDAC1 and HDAC9. Most
HDACs were significantly upregulated in control subjects and asthmatic patients upon IL-4 and IL-13 stimulation.55

Similarly, Steelant et al159 observed increased HDACs activity in allergic rhinitis patients with high expression of HDAC5
and HDAC11 and decreased HDAC2 was reported in patients with chronic obstructive pulmonary disease.160 In a mouse
model of ovalbumin (OVA)-induced asthma, HDAC4 was upregulated in the lung tissue.161 We and others have also shown
that inhibition of endogenous HDAC activity reconstitutes the defective barrier by increasing TJ expression.55,159,161–163
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Genetic and epigenetic changes in the bronchial epithelial cells are an important part of the complex changes observed upon
epithelium injury and therefore could be a possible approach to improving the epithelial barrier.

The Effect of Treatment of Asthma and Allergy on Epithelial Barrier and
Airway Remodeling
Epithelial barrier disruption, as a feature of airway remodeling which represents structural changes in bronchial wall
encompassing wall thickening, basal membrane thickening, overgrowth of smooth muscle cell layer and enhanced
angiogenesis, is observed in asthma patients. The effect of long-term asthma treatment on epithelial barrier and airway
remodeling has been intensively studied (Table 2). Inhaled corticosteroids and β2-adrenoreceptor agonists are the first-
line medications used in asthma treatment and are effective in most patients. Several data indicate that glucocorticoids
(GCs) inhalation therapy, including budesonide, can improve epithelial barrier integrity and might contribute to the
therapeutic effects of GCs for treating asthma164,165 or chronic rhinosinusitis with nasal polyps.166 Similarly, other GCs,
including mometasone and fluticasone, were shown to be effective in restoring nasal epithelial barrier dysfunction in
allergic rhinitis.167 In animal models, budesonide was also proved to inhibit airway remodeling in the early stage of
allergen-induced airway hyperresponsiveness (AHR), however it did not reverse established AHR.168,169 Interestingly,
neither formoterol nor Montelukast, were shown to promote barrier integrity,165 suggesting that β2-adrenoreceptor
agonists and anti-leukotrienes themselves might not have any positive effect on epithelial barrier restoration. In severe
asthma patients, the long-term oral corticosteroid (CS) therapy is associated with serious side effects.170 Therefore,
currently, several biologicals are used in severe asthma treatment as an alternative for systemic CS. Currently, they
encompass omalizumab (anti-IgE), mepolizumab (anti-IL-5), benralizumab (anti-IL5R), dupilumab (anti-IL4/13R) and
reslizumab (anti-IL-5) approved by the Food and Drug Administration.171 The question is posed whether they may affect
epithelial barrier disruption and related bronchial remodeling in asthma patients. As omalizumab has been used for more
than 15 years, there are some data indicating that it may decrease unfavorable structural airway changes in allergic
asthmatics, with respect to the fibronectin deposit, the increased thickness of the basal lamina and the bronchial wall
thickness.172–174 Treatment with mepolizumab significantly reduced the expression of three extracellular matrix proteins:
tenascin, lumican and procollagen III in the reticular basement membrane.171 Benralizumab caused the consequent 29%
relative reduction of airways smooth muscle mass and number of tissues myofibroblasts.175 As IL-13 and IL-4 partly
share the same receptor and signaling pathways and both are deeply involved in mucus secretion and airways remodeling
dupilumab might exert a positive effect on airway remodelling.176 Additionally, Anti-VEGF and TNF inhibition therapy
was shown to be an effective treatment for remodeling in asthma with the significant restoration of the epithelial
barrier.177

Allergen-specific immunotherapy (AIT) represents the only curative treatment in which an allergic patient is
incrementally exposed to increasing quantities of a specific antigen, such as pollen, fungi, HDM, or food allergens.152

Successful AIT induces the reinstatement of tolerance toward allergens and represents a disease-modifying treatment.178

Long-term efficacy with allergen immunotherapy is associated with decreases in IgE-dependent activation of mast cells,
tissue eosinophilia, regulatory T cells induction and local and systemic IgG, IgG4, and IgA antibodies.179,180 In the mouse
model of allergen specific immunotherapy (SIT), the restoration of the airway epithelial integrity was observed.
Additionally, the use of 4-PBA, an inhibitor of endoplasmic reticulum (ER) stress, suppressed IL-25 induced airway
epithelial ER stress and apoptosis triggered by Dermatophagoides farinae (Der f).181 SIT has also been shown to affect
HDM-induced activation of lung structural cells including airway epithelium.182 Sublingual Immunotherapy was also
shown to have a beneficial impact on airway wall thickness and remodeling in allergic asthma.183

Novel anti-inflammatory mediator, secretoglobin1A1, was shown as a long-term allergen-specific therapeutic inter-
vention that can suppress pro-inflammatory epithelial gene expression.184 Several recent studies have studied novel
molecules which could be used as a new potential treatment for allergy and asthma. We have shown that the oral gavage
of polyamines spermine or spermidine can modulate HDM-induced cell infiltration, cytokine secretion, and epithelial cell
tight junction expression in murine models.185 Additionally, a redox-sensitive transcription factor Nuclear erythroid
2-related factor 2 (Nrf2), a key regulator of oxidative and environmental stress, enhanced epithelial barrier function and
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Table 2 Summary of Current and Novel Biological Therapies to Treat Asthma and Allergic Diseases

Class Drug Target/Mechanism Publications

Current drugs for asthma and allergy

Inhaled glucocorticoids Budesonide Anti-inflammatory actions Sekiyama et al164

Rimmer et al165

Ma et al166

Mometasone Doulaptsi et al167

Fluticasone Doulaptsi et al167

Beclometasone

Ciclesonide

Monoclonal antibodies Omalizumab Anti-IgE Kardas et al171

Riccio et.al172

Zastrzezynska et al173

Hoshino et al174

Mepolizumab Anti-IL-5 Kardas et al171

Benralizumab Anti-IL5R, ADCC (Antibody-dependant

cytotoxicity)

Kardas et al171

Laviolette et al175

Dupilumab Anti-IL4/13R Kardas et al171

Bagnasco et al176

Reslizumab Anti-IL-5 Kardas et al171

Allergen-specific
immunotherapy (AIT)

Allergen/antigen Immune tolerance: decreases IgE-dependent
activation of mast cells, tissue eosinophilia,

regulatory T cells induction and local and

systemic IgG, IgG4, and IgA antibodies

Globinska et al178

Shamji et al179

Akdis et al180

Yuan et al181

Hesse et al182

Hoshino et al183

Zissler et al184

Other strategies tested as treatment for asthma and allergy

Receptor blocker Etanercept Anti-TNF-α Turkeli et al177

Monoclonal antibody Bevacizumab Anti-VEGF Turkeli et al177

Polyamines Spermine or spermidine Anti-inflammatory actions Wawrzyniak et al185

HDAC inhibitors JNJ-26481585; sodium

butyrate; siRNAs,

tubastatin A HCl; PCI-
34051; givinostat

Blocking histone deacetylases activity Wawrzyniak et al55

Steelant et al159

Ren et al162

Wang et al163

Sekiyama et al164

DNMT inhibitor SGI-1027 Blocking CpG methylation Wawrzyniak et al153

Cannibinoids WIN55212-2 CB1 agonist; anti-inflammatory actions Angelina et al187

Abbreviations: AJs, adherens junctions; ALI, air-liquid interface; AIT, allergen specific immunotherapy; COX, cyclooxygenase; DC, dendritic cells; DNMTs, DNA-
methyltransferases; ER, endoplasmic reticulum; EGFR, epidermal growth factor receptor; GCs, glucocorticoids; GJs, gap junctions; GM-CSF, granulocyte-macrophage colony-
stimulating factor; HATs, histone acetyltransferases; HDACs, histone deacetylases; HDM, house dust mite; HBECs, human bronchial epithelial cells; IFN, interferon; IL,
interleukin; JAMs, junctional adhesion molecules; LXA4, lipoxin A4; ALX, lipoxin A4 receptor; MARVEL, MAL and related proteins for vesicle trafficking and membrane link;
ADAM33, metalloprotease 33; MUPP1, multi-PDZ domain protein-1; NRF2, nuclear erythroid 2-related factor 2; OVA, ovalbumin; PATJ, PALS-1-associated tight junction;
PTEN, phosphatase and tensin homolog; PGE2, prostaglandin E2; PGI2, prostacyclin; PKC, protein kinase C; PP2A, protein phosphatase 2; PRG2, proteoglycan 2 expression;
PCDH1, protocadherin-1; SIT, allergen specific immunotherapy; SPINK5, serine protease inhibitor Kazal-type 5; SPMs, specialized pro-resolving mediators; Th2, T helper 2;
TET1, ten-eleven translocation enzyme; TSLP, thymic stromal lymphopoietin; TJs, tight junctions; TGF-β, transforming growth factor beta; TNFα, tumour necrosis factor
alpha; ILC2, type 2 innate lymphoid cells; VEGF, vascular endothelial growth factor; ZO, zonula occludens.
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increased localization of ZO-1 to the cell surface.186 Furthermore, a study using the cannabinoid WIN55212-2 illustrated
an essential role of this chemical in restoring airway epithelial barrier during rhinovirus infection and in suppressing
T cell-mediated inflammation in human tonsil cells.187

Conclusion
The influence of external factors and immune cell responses, cytokines and mediators associated with allergic airway
inflammation can disrupt the epithelial barrier by interfering with junctional complex assembly. Understanding all the
changes occurring in the bronchial epithelium during injury is very important for developing future possible treatments
for asthma and allergy diseases. It is still unclear whether, the increased airway epithelial permeability that enables
transport of allergens, pathogens and other damaging factors is constant and predisposes to disease development.
However, the changes in structure and function in bronchial epithelium asthma and allergic diseases are well documented
and there are important indications that restoring the epithelial barrier could be a potential target for new treatments.
Nevertheless, data on the effects of particular biological therapies on epithelial barrier and airway remodeling in allergy
and asthma are currently incomplete and thus require further studies.
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