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Abstract: To better understand patterns of drug use trajectories over time, it is essential to have 

standard measures of change. Our goal here is to introduce measures we developed to quantify 

change in drug use behaviors. A secondary goal is to provide effective visualizations of these 

trajectories for applied use. We analyzed data from a sample of 92 older drug users (ages 45 to 

65) to identify transition patterns in drug use trajectories across the life course. Data were col-

lected for every year since birth using a mixed methods design. The community-drawn sample 

of active and former users were 40% female, 50% African American, and 60% reporting some 

college or greater. Their life histories provided retrospective longitudinal data on the diversity 

of paths taken throughout the life course and changes in drug use patterns that occurred over 

time. Bayesian analysis was used to model drug trajectories displayed by innovative computer 

graphics. The mathematical techniques and visualizations presented here provide the foundation 

for future models using Bayesian analysis. In this paper we introduce the concepts of transition 

counts, transition rates and relapse/remission rates, and we describe how these measures can help 

us better understand drug use trajectories. Depicted through these visual tools, measurements of 

discontinuous patterns provide a succinct view of individual drug use trajectories. The measures 

we use on drug use data will be further developed to incorporate contextual influences on the 

drug trajectory and build predictive models that inform rehabilitation efforts for drug users. 

Although the measures developed here were conceived to better examine drug use trajectories, 

the applications of these measures can be used with other longitudinal datasets.

Keywords: drug use, trajectory patterns, mixed methods, older adults

Introduction
In this paper we introduce and discuss several measures designed to evaluate the dis-

continuous patterns of drug use trajectories over the life course of older drug users. 

A trajectory is defined as “a pathway or line of development over the life span”.1(p227) 

A better conceptualization of the discontinuities of drug use patterns across the life 

course is considered essential to understanding drug use trajectories and consequences 

over time.2 For example, analysts may want to detect patterns and trends in the use 

trajectory or compare the drug use trajectories across different drugs. Clinicians might 

like to identify patterns in an individual drug user’s trajectory in order to develop a 

hypothesis regarding the influences on these patterns. Here we describe the develop-

ment of the measures that gauge the discontinuous aspects of drug use trajectories. 

Often a classification stems from an underlying characteristic that can be measured 

and subsequently used to study the phenomena. It is this characteristic that we will 

attempt to capture in a measure of discontinuity.
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Much existing research aimed at analyzing drug use 

trajectories pinpoint groups of trajectories and the possible 

causal characteristics of these.3–7 Most of these differentiate 

trajectories on the basis of their growth characteristics, that 

is, the evolution of drug use frequency over time, usually 

assessed on the basis of types of drug use level growth 

patterns.8–10 We will introduce measures to assess trajectory 

heterogeneity on the basis of the discontinuity the trajec-

tories exhibit. In contrast with growth models, here we are 

interested in significant changes of drug use in itself, not 

particularly if the change is part of a decreasing, persistent, or 

increasing trend, or belonging to a particular growth  pattern. 

We use the term discontinuity defined as a descriptive change 

in manifest behavior over the life course.2

We propose that the measures we introduce here can be 

effectively used to gauge trajectory discontinuity and that 

identifying discontinuous patterns has important implica-

tions for future research and applications. This proposition 

is supported by earlier work on continuity11 as well as more 

recent literature on substance use trajectories finding that “the 

dialectics of continuity and discontinuity still represent the 

core of development” across the life course.2(p430) A significant 

change in drug use may sometimes reflect important turning 

points in a life course; therefore the discontinuity of drug 

use trajectories may be an informative indicator in itself.12 

For example, incarceration might influence the cessation 

of certain illegal drugs, and re-entering society from prison 

might be related to using again. A more subtle transition in 

drug use might occur when a user begins a relationship with 

someone who does not use drugs, and is motivated to cease 

using. There are a myriad of influential factors on drug use 

trajectories, and having a measure of trajectory discontinu-

ity that locates transition in use helps to identify contextual 

influence by exact periods of time. As suggested by others, 

challenges in existing trajectory analyses include distinguish-

ing temporary from long-term transitions and deciding on 

the optimal time interval to capture sequences over time.2 

Although the measures developed here were conceived 

with drug use in mind, the applications of these techniques 

are not restricted to drug use alone. These measures can be 

used with other longitudinal datasets with binary variables 

representing a trajectory. How they are used depends on the 

data characteristics. Here we describe the measures using 

the characteristics of drug use trajectories.

Our goal was to evaluate the discontinuous characteristics 

of trajectories and to develop measures that can be used to 

acquire insight and/or compare the discontinuity of drug use 

of certain users and/or typical use dynamics of certain drugs. 

We gauged drug use on a 2-point scale: active (used at least 

once in a given year) and non-active (never used in a given 

year). Transitions from non-active to active, or from active 

to non-active, are notable events in such binary trajectories. 

It is the dynamics of these transitions that we aim to capture 

in the measures developed herein.

We begin by simply counting the number of transitions 

in a trajectory, which we call a transition count, and examine 

what basic properties this number expresses in the sense of 

what this particular measure tells us about the characteristics 

of the trajectory. Next, incorporating time since first use into 

the raw transition count, we define a measure of transition 

rate. These two measures are basic and are not, as is, good 

candidates for inferential extensions. On the other hand, 

they are useful tools to describe and diagnose drug use data, 

pinpoint outliers, detect patterns, and possibly percolate 

interesting hypotheses. Hypotheses are not included in this 

paper on the development of measures, but we discuss how 

they can be generated using these measures. Transition rates 

lead up to what we call relapse and remission rates, which 

measure distinct transitions from non-active to active use and 

from active use to non-active. These latter measures not only 

provide another perspective on the data, but are also more apt 

for the development of inferential statistics and, therefore, 

of generalizations and extensions.

Methods
The measures we describe in this paper were conceived as 

we attempted to analyze data we collected from older drug 

users. The goal of that research was to identify transitions 

in drug use trajectories and risk behaviors throughout the 

lives of the older adults. Existing measures of transitions 

did not fit our purposes. Here we describe the methods used 

in this study on older adult drug users to explain where and 

how the data employed to illustrate our new measures were 

derived. A sample of 92 older drug users provided the data 

analyzed to identify transition patterns in drug trajectories 

across the life course.

Sample and data collection
The data collection included both qualitative and quantita-

tive methods and analysis using a retrospective longitudinal 

design. Data were collected between August 2009 and October 

2010. To be eligible, respondents had to be at least 45 years 

old at the time of the interview and either active or former 

users of heroin, cocaine/crack or methamphetamine. These 

drugs were chosen because they represent the three major 

drugs of use associated with the most severe consequences.3,9 
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Polydrug use was the norm among our sample, as is found 

in some contemporary studies.13,14 Active use was defined as 

having used one of these drugs in the past year. Former use 

was defined as having used at least one of these drugs in the 

past ten years, for at least six consecutive months, but not 

used any of these drugs in the past year or longer. We chose 

ten years as the period within which cessation occurred in 

order to have both those who ceased use for many years as 

well as those who ceased use more recently. One year is 

chosen as the time period of no drug use since it incorporates 

the relapse period identified in a review of relapse literature.15 

Transition in drug use from active and non-active was mea-

sured in one-year time periods, which we identified to be 

the smallest period of time with a reliable amount of recall 

accuracy over the entire life course.

The study sample was recruited from the metropolitan 

area of a large southeastern city in the USA. We employed a 

combination of ethnographic mapping, snowball and targeted 

sampling methods, including field observation, community 

consultants, fliers, and referrals.16,17 These methods have 

proven effective in recruiting respondents from hidden and 

hard-to-reach populations, such as noninstitutionalized drug 

users.18–20 Guided by theoretical sampling,21 the final sample 

is diverse in terms of age, race, and years of use. About half of 

our sample identified as active users. Ages range from 45 to 

65 years old. About half of the sample is African  American, 

four identified as “other” (American Indian or Latino), and 

the remainder white. A little over 40% of the sample is 

female. About a quarter have a high school education or 

its equivalency, with almost 60% reporting some college 

experience or more. For this paper, the sample characteristics 

are not important in the development of the transition and 

discontinuity measures other than its diversity in terms of 

drug use trajectory heterogeneity, which is why an older user 

sample with a long drug history was advantageous.

We developed an innovative combination of quantitative 

and qualitative strategies to collect life history interviews. 

The life history interview is a research tool designed to 

provide data with distinguishable transitions throughout 

the life course.22,23 The life histories of older adults provide 

rich retrospective longitudinal data on the diversity of paths 

taken throughout the life course and changes that occur over 

time.1,24–27 The data provided self-reported histories of drug 

use, risk behaviors and social contextual variables.

A well-developed body of research shows that the valid-

ity of self-reported data is increased when a number of 

proven methods are employed.28–32 For example, providing 

interviewers and respondents with a form of self-checking,33 

establishing rapport,34 and using cues, such as a historical 

event timeline, helps ensure reliable data is collected on 

substance use and abuse.35 Challenges to the reliability and 

validity of longitudinal data include two forms of biases: 

recall accuracy and social desirability.36 While self-reports 

in cross-sectional and prospective longitudinal designs have 

fewer recall challenges than those collected in retrospective 

designs, they are influenced by social desirability biases 

that limit reporting of stigmatized or illegal behaviors.23,37 

 Retrospective data is less prone to this kind of social 

desirability effect and has the advantage of being cheaper 

to gather, as opposed to prospective longitudinal designs.38 

Additionally, using a mixed methods design has been shown 

to be particularly important to avoid the problems associated 

with social desirability.37,39 Our retrospective longitudinal and 

mixed method design incorporated all of these strategies to 

provide reliable and valid data.

Potential respondents were screened to ensure compli-

ance with the eligibility criteria. Interviews were conducted 

face-to-face in a private setting which would make the 

respondent feel at ease. Two well-trained interviewers 

were present with each respondent during the interview and 

continually cross-checked the data as it was collected. The 

entire interview process lasted between three and five hours. 

Respondents were offered food and given $40 at the end 

of the interview. Reimbursement for respondents has been 

shown to be ethical and effective when collecting research on 

stigmatized behaviors such as drug use.40,41 The Institutional 

Review Board at the investigators’ university approved the 

interview protocol.

Both quantitative and qualitative data were collected 

concurrently using a computer assisted personal interview 

(CAPI) and audio-recorded in-depth interview. Interviews 

began with the in-depth narrative interview wherein the 

respondents were free to discuss their life story with 

minimal guidance by the interviewer. Interviewers wrote 

important events, social roles, and behaviors on a paper 

life history matrix that allowed them to organize and keep 

track of time-specific facts and events in the life of the 

respondents. The matrix and notes informed and guided 

the interviewers as they collected the data on the  computer 

survey. Inconsistencies and gaps in the respondent’s 

stories could be quickly and easily caught and clarified 

by interviewers, enhancing the reliability of the survey 

data. Additionally, a timeline with important historical 

events was provided to the respondents to help give them 

memory cues and historical context in which to place events 

in their lives. For example, respondents were reminded 
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that “this was the year Kennedy was shot” as data were 

 collected for 1963. Diverse timelines were developed to 

be culturally sensitive.

Variables
The survey consisted of questions about residence, family, 

work, relationships, health, education, and criminal justice 

involvement and drug use for every year. Questions used 

for this paper regard yearly use and non-use of each of the 

following drugs: tobacco (TOB); marijuana (MAR); alcohol 

(ALC); hallucinogens (HAL); cocaine (COC); crack cocaine 

(CRK); heroin (HER); amphetamine (AMP); methamphet-

amine (MET) and prescription pill misuse (PRP). Prescrip-

tion pills were reported as active use only when they were 

obtained illegally or when a prescription was being misused. 

Other drug use variables (eg, route of administration, addic-

tion severity) were collected but not used in the analysis for 

this paper.

Drug use frequency, recorded on an 8-point scale, was 

re-coded to a 2-point scale so that drug use of a given user at 

a given age (year) is expressed by one of two values:

0: Non-active (never used drug X that year)

1: Active (used drug X at least once that year)

A binary measure has several advantages: 1) it enables 

a more parsimonious description and discussion of the 

 measures we developed; 2) it attends to issues regarding 

the validity of self-reported data (ie, recall of use and  non-use 

each year over many years is plausibly more valid than recall 

of frequency of use for every year over the life course); 

3) the transitions between use and non-use are probably more 

noteworthy than any other transition between two drug use 

levels and probably reflect a major change in the user’s drug 

career; 4) analyzing such binary trajectories complements 

the existing growth models perspective since the latter 

 cannot really be applied to binary trajectories as they stand, 

 without adapting the usual definitions and interpretations 

(for example, what would a “steadily increasing” drug use 

trajectory be if use were to only be captured by a binary 

variable?); 5) the difference between growth aspects and 

discontinuity aspects of trajectories is not so clear when 

looking at multiple use levels of drug use trajectories.

Descriptive statistics for trajectory 
discontinuity
In the following we describe how and why the measures and 

visualizations we used were developed, based on analysis 

of our study data. For the sake of brevity, we first use hypo-

thetical examples to explain the foundational development 

and  progression of the measures. We follow this with 

 visualizations of actual users selected from our study sample 

that illustrate the measures and their potential applied use.

Drug use trajectory
The (binary) trajectory of a user for a specific drug is fully 

described by a sequence, T, of 0s and 1s specifying the drug 

use of a respondent for each age of the life of a user (starting 

at age 0 and ending at the age the user was at the time of the 

interview). The left-most digit corresponds to 0 years old and 

digits are grouped by groups of five to facilitate readability. 

For example, consider the following hypothetical trajectory 

for tobacco:

 T = 00000 00000 01111 11111 10000 00000 111.

This trajectory describes a user who took tobacco for 

the first time at 11 years old. The user then continuously 

(meaning “at least once a year”) used tobacco until 21 years 

old when she stopped, only to start again at 30 years of age 

and remain active until 32 years of age, at the time she was 

interviewed.

Trajectory discontinuity
The discontinuous patterns of all drug trajectories are visual-

ized in the following graphs that include both drug use and 

selected risk behavior variables, based on two individual 

users drawn from our study. The images in Figure 1 exhibit 

the trajectories of two actual users for each of the 10 drugs 

in the survey. A row represents a trajectory for a given drug 

over the life of the individual. A black shaded cell for a given 

age (x-axis) and drug (y-axis) represents active use (1) and 

a non-shaded cell non-active (0).

As shown, both respondents depict long stretches of 

active use of tobacco and both have used a diversity of 

drugs in their lives. While respondent 113 has had longer 

periods of using heroin and crack that reveal a discontinu-

ous pattern of active and non-active years, respondent 026 

has a more discontinuous pattern of using prescription pills 

and drinking alcohol. Recall that prescription pills are 

included only when they are misused or obtained illegally. 

Although 113 reports many years of self-reported problem-

atic drug use, as seen in the row labeled “problematic”, 

alcohol does not appear to be a problematic substance in 

his life. We can easily see that this respondent has had over 

20 years of continuous treatment and is non-active for all 

drugs in the past three years. Contrast this with respondent 

026 who, although he is in treatment the year he was 

interviewed, has had few continuous years of treatment 

and has not stopped his illegal use of prescription drugs. 
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Both respondents have hepatitis C and have spent time in 

prison or jail. The graphs present a parsimonious descrip-

tion for the variables of interest over an entire life course. 

Later in this paper, we return to these two respondents 

to show how measures of discontinuity can be used to 

estimate the probability that a user will remain active or 

non-active in the next year for specific drugs based on 

their trajectories.

The graphs are presented here to better visualize the mea-

sures of discontinuous trajectory patterns that we explain in 

the next section in more detail. The risk variables are shown 

here only to illustrate future applications of the model and 

are not further explored in this paper. We also do not address 

the numerous causal influences on transitions in drug use, 

since it is beyond the scope of this paper. As mentioned 

previously, many aspects of a life course will affect and be 

affected by drug use. For example, loss of employment or 

divorce may result in a relapse and conversely, acquiring 

a new job or spouse may influence cessation of use. We 

leave causal influences on drug use for a future application 

of the techniques we describe here. In this paper, our aim 

is to describe the development of measures that gauge the 

discontinuous aspects of drug use trajectories. Firstly we will 

introduce several descriptive statistics based on the number 

of transitions that appear in drug use trajectories. We will 

discuss what particular aspects of a trajectory these measures 

convey and illustrate this using the trajectory visualizations 

from our older drug user study.

HIV
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Risky sex partners

Risky condom use

Prison

Treatment

Problematic

MET

AMP

HER

CRK

COC

PRP

HAL

MAR

ALC

TOB
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Risky sex partners

Risky condom use
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MET

AMP
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ALC

TOB

5 10 15 20 25 30 35 40 45 55 6050

Age

5 10 15 20 25 30 35 40 45 5550
Age

Respondent 113: Male African American. Education: Some college

Respondent 026: Male white. Education: High school diploma/GED

Figure 1 Drug use trajectories of all drugs and selected risk variables for two respondents.
Note: Black shaded cell represents active use.
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Transition count
We start with a straightforward measure that we will refer to 

as transition count (TC). The TC of a trajectory T is defined 

to be the number of sequential transitions from 0 (non-active) 

to 1 (active) or from 1 (active) to 0 (non-active). For example, 

consider the following hypothetical trajectory for alcohol:

    T = 00000 00111 10000 1111.

The transition count of T is TC(T) = 3. Indeed, our hypo-

thetical user started (as all users do) with a sequence of 0s 

and had his first alcoholic drink at age 7. This is the first 

transition (from non-active to active). The transition count for 

our hypothetical case is incremented by one. The user drank 

at least once a year until age 10, but did not drink when he 

was 11 years old. This is the second transition (from active 

to non-active), so the transition count is incremented again. 

Nothing changed until age 15 when the user drank again, 

and the transition count is incremented once more. Since our 

hypothetical user continued drinking until age 19, the age he 

was when he was interviewed, his transition count is 3, shown 

by the three bolded numerals indicating a transition.

Transition count aspects are fundamental in the analysis 

of drug use trajectories. They provide a single descriptive 

statistic that captures several characteristics and can therefore 

be a useful statistic to diagnose the data, such as identifying 

outliers and uncovering biases. For example, the transition 

count encodes several noteworthy properties of trajectories: 

1) if the TC is 0, it means that the individual never used that 

particular drug; 2) a TC of 1 means that the individual started 

and never stopped the drug (at the level of year-by-year 

observations); 3) a TC of 2 means that the individual used 

the drug at some point, but then stopped indefinitely (that is, 

until the time of the interview); 4) an even TC means that 

the individual is NOT currently (at the time of the interview) 

using the drug; and 5) an odd TC means that the individual 

is currently using the particular drug.

Transition counts can also be used to compile descriptive 

tables to compare the dynamics of specific drugs. Table 1 

displays the range of TCs (0–12) found in our sample of 

older drug users, as well as the frequency distribution of 

respondents that fell into each TC bracket for every drug 

for all 920 trajectories (92 respondents for 10 drugs). The 

range of TCs shows the large variation among users. For 

example, some respondents reported that they never used 

marijuana (TC = 0), while one respondent reported transition-

ing 12 times before discontinuing marijuana. Table 2 shows 

the frequency distribution of trajectories as percentages for 

each TC count for every drug. Viewing the data in frequency 

tables allows us to compare the trajectories for each drug 

and identify interesting trends in our data. For example, 

Table 2 indicates that the majority of respondents (56.5%) 

never quit using tobacco once they begin while the majority 

of respondents who had used hallucinogens (42.4%) discon-

tinued use and never took this drug again.

However, the transition count has some shortcomings in 

emulating how one might commonly compare the disconti-

nuity of several trajectories. One critical inadequacy is that 

transition count alone does not take into account the amount 

of time the user has had to accrue these transitions, and this 

could be misleading. For example, consider the following 

two hypothetical trajectories in Figure 2.

If we base our judgment on the transition count, respon-

dent Y has a more discontinuous use pattern than respondent X. 

To make the matter of comparing the discontinuity of a trajec-

tory more pertinent to the dynamics of a user once he/she is 

exposed to the given drug, we suggest it is more appropriate 

to only consider dynamics during the period since the first use 

of the drug. If we extrapolate the drug use of respondent X to 

the same span of use as that of respondent Y, then respondent 

X displays much more discontinuity. To capture this we need 

a measure evaluating the tendency of a user to transition rather 

than the number of transitions itself.

Transition rate
One straightforward way of integrating the duration of the 

respondent’s career with a drug into a transition count is to 

divide the latter by the number of years since the year of first 

use. We thus define the transition rate (TR) of a trajectory 

only for trajectories with non-null transition counts (null 

meaning the participant never used this drug) as follows:

TR = (TC-1)/number of years since first use.

The transition rate gives us a sense of how often transi-

tions occur during the respondent’s career with this drug.

In our hypothetical example above, respondent X has 

a TR of (5 − 1)/9 = 0.4444 and respondent Y has a TR of 

(7 − 1)/45 = 0.1333, thereby conveying that respondent X’s 

drug use is considerably more discontinuous than respon-

dent Y’s drug use. Transition rates are comprised between 

0 (corresponding to a respondent that uses every year since 

the onset) and 1 (corresponding to a trajectory that toggles 

from active to non-active every year).

Transition rates let us see the duration of the career with the 

number of transitions for each individual. So for example, if 

someone has a TC of 4 but started 20 years ago and still uses, 

this is not such a discontinuous career as someone with a TC 

of 4 who started only 4 years ago. Unlike TCs, the TRs range 

over many unique values. To better compare these ranges, 
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Table 1 TC frequency count

Drugs

TOB ALC MAR HAL PRP COC CRK HER AMP MET

TC frequency count
0 9 6 4 37 37 11 18 32 50 54
1 52 22 12 1 6 6 17 8 1 3
2 8 24 36 39 21 34 23 17 32 17
3 15 11 13 0 4 4 9 5 0 8
4 3 10 16 12 11 22 13 16 7 7
5 3 7 2 0 6 3 6 3 0 1
6 0 3 4 3 2 8 3 7 1 2
7 2 5 1 0 3 0 1 2 0 0
8 0 1 1 0 2 3 1 2 0 0
9 0 1 1 0 0 0 1 0 0 0
10 0 1 1 0 0 1 0 0 1 0
11 0 1 0 0 0 0 0 0 0 0
12 0 0 1 0 0 0 0 0 0 0

Abbreviations: TOB, tobacco; ALC, alcohol; MAR, marijuana; hAL, hallucinogens; PRP, prescription pill misuse; COC, cocaine; CRK, crack cocaine; heR, heroin;  
AMP, amphetamine; MeT, methamphetamine; TC, transition count.

Table 2 TC frequency distribution

Drugs

TOB ALC MAR HAL PRP COC CRK HER AMP MET

TC frequency distribution (in %)
0 9.8 6.5 4.3 40.2 40.2 12.0 19.6 34.8 54.4 58.7
1 56.5 23.9 13.0 1.1 6.5 6.5 18.5 8.7 1.1 3.3
2 8.7 26.1 39.1 42.4 22.8 37.0 25.0 18.5 34.8 18.5
3 16.3 12.0 14.1 0.0 4.3 4.3 9.8 5.4 0.0 8.7
4 3.3 10.9 17.4 13.0 12.0 23.9 14.1 17.4 7.6 7.6
5 3.3 7.6 2.2 0.0 6.5 3.3 6.5 3.3 0.0 1.1
6 0.0 3.3 4.3 3.3 2.2 8.7 3.3 7.6 1.1 2.2
7 2.2 5.4 1.1 0.0 3.3 0.0 1.1 2.2 0.0 0.0
8 0.0 1.1 1.1 0.0 2.2 3.3 1.1 2.2 0.0 0.0
9 0.0 1.1 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0
10 0.0 1.1 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0
11 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Abbreviations: TOB, tobacco; ALC, alcohol; MAR, marijuana; hAL, hallucinogens; PRP, prescription pill misuse; COC, cocaine; CRK, crack cocaine; heR, heroin;  
AMP, amphetamine; MeT, methamphetamine; TC, transition count.

5

Respondent X, TC = 5

10 15 20 25 30 35 40 45 5550

5

Respondent Y, TC = 7

10 15 20 25 30 35 40 45 5550

Figure 2 Transition count trajectories.
Notes: Line represents age trajectory in years. Black shaded area represents active use for given years
Abbreviation: TC, transition count.
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we computed the frequencies over 11 defined categories 

(brackets), which encompass a percentile range of values. To 

compute these values we performed a number of statistical 

calculations including: 1) normalizing the TRs within a same 

drug using z-scores; 2) taking the mean of these z-scores to 

describe an average discontinuity of a respondent over all drugs; 

3) taking the z-score of this mean to see where this general 

discontinuity lies compared to other respondents.

Tables 3 and 4 show the bracketed TRs calculated from the 

z-score of the mean of the z-scores of the TRs, as described 

above. These cumulative frequency percentages help us to com-

pare the distribution of the TRs for one drug with the general 

TR distribution for all drugs. The first bracket contains those 

TRs equal to 0 (started and never stopped use of the drug), 

since a good number of trajectories fall under this category. The 

subsequent 10 brackets are defined by the deciles of the TRs for 

all respondents and all drugs. These deciles are 0.0250, 0.0286, 

0.0323, 0.0435, 0.0625, 0.0769, 0.0932, 0.1197, 0.1613.

Table 3 shows the range of TRs found in our sample, 

as well as the frequency count of respondents that fell into 

each TR bracket for every drug. Unlike the 0 in the TC, 

a TR equal to 0 means that, at the time of the interview, the 

respondent has continued to use a particular drug every year 

since initiating use and never stopped. Table 4 displays the 

frequency distribution of trajectories as percentages for each 

TR bracket for every drug. As with the TC tables (Tables 1 

and 2), these tabular representations help us compare the TRs 

for each drug to clarify trends in our sample.

We include these tables to illustrate how the measures 

and statistics depicted can be used to generate hypotheses 

regarding trends, patterns, and comparisons between the 

trajectories of different drugs. For example, Table 4 shows 

that 27% of CRK users or former users fall in the last “TR 

greater or equal to 0.1613” bracket. This is the highest percent 

in this bracket for all drugs. This value of 0.1613 is the 90th 

percentile of TRs over all drugs, meaning that 90% of all 

defined TRs are smaller than this value. The fact that 27% of 

CRK users have this transition rate level speaks again of the 

highly discontinuous behavior of CRK use, compared to the 

behavior with other drugs in our sample. Further examination 

of these tables is beyond the scope of this paper. Instead we 

move to the next step in our development of measures to 

gauge trajectory discontinuity.

The transition rate exhibits the tendency to transition 

from one drug use state to another, but it does not indicate 

whether the transitions are from active use to non-active or 

vice versa. Consider the following hypothetical trajectories 

shown in Figure 3.

Remission rate and relapse rate
Respondents V and W both have same transition rate and 

transition count, yet there is a noteworthy difference between 

them. Respondent V was active most of his life, with the 

exception of a few short remissions into non-use; whereas, 

by contrast, respondent W was non-active most of her life 

with the exception of a few short relapses into use. The 

transition count and rate aggregate remissions and relapses, 

without taking into account the respective durations of the 

periods they initiate.

The transition rate is in fact an estimate of the underlying 

probability to transition from one state to another. We will 

define the remission and relapse rates so as to be estimates 

of the underlying probability to transition from non-active 

to active and from active to non-active, respectively. This 

Table 3 TR frequency count of respondents in each percentile bracket

Sample size Drugs

TOB ALC MAR HAL PRP COC CRK HER AMP MET

83 86 88 55 55 81 74 60 42 38

TR frequency count
TR = 0 52 22 12 1 6 6 17 8 1 3

0.0000 , TR , 0.0250 4 9 9 6 2 4 0 1 6 0

0.0250 ,=TR , 0.0286 2 3 11 16 4 9 0 4 13 3

0.0286 ,= TR , 0.0323 0 9 12 8 8 2 0 2 5 2

0.0323 ,= TR , 0.0435 2 3 4 8 2 18 9 3 8 0

0.0435 ,= TR , 0.0625 13 9 11 1 3 2 3 5 0 8

0.0625 ,= TR , 0.0769 1 5 10 4 4 4 5 4 2 5

0.0769 ,= TR , 0.0932 4 6 5 8 8 11 5 10 4 3

0.0932 ,= TR , 0.1197 3 6 4 1 9 10 5 8 1 6

0.1197 ,= TR , 0.1613 2 9 5 2 4 8 10 9 1 3

0.1613 ,= TR 0 5 5 0 5 7 20 6 1 5

Abbreviations: TOB, tobacco; ALC, alcohol; MAR, marijuana; hAL, hallucinogens; PRP, prescription pill misuse; COC, cocaine; CRK, crack cocaine; heR, heroin;  
AMP, amphetamine; MeT, methamphetamine; TR, transition rate.
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type of model of a sequence of states is typically known as 

a “Markov Model” or “Markov Chain” and is defined as a 

sequence of states having the property that the next state 

depends only on the current state.

A Markov Chain specifies the probability of the next state 

of the sequence conditional on the current state. In our case 

we have two states (0 and 1), so four transition probabili-

ties need to be specified, namely Prob(0→0), Prob(0→1), 

Prob(1→0), and Prob(1→1). In Markov Chain terminology, 

not only 0→1 and 1→0, but also 0→0 and 1→1 are called 

“transitions”. That is, respondents can take 1 of 4 states in 

any given year: no transition from nonuse, transitioning from 

nonuse to use, transition from use to nonuse, and no transi-

tion from use. Let us take the trajectory of respondent V as 

an example. As in the case of the transition rate discussed 

above, we will only consider the sub-trajectory  corresponding 

to the interval between the onset of drug use (first year that 

this drug was used) and the year of the interview. In the 

case of respondent V, we consider therefore the following 

trajectory:

10111 11111 10001 11111 11111 11111 00000.

To estimate the probabilities of each possible type of 

transition, we count the number of 0 s and 1 s and the number 

of sequential pairs 00, 01, 10, and 11:

• #0: Number of 0 s = 8

• #00: Number of 00 s = 6

• #01: Number of 01 s = 2

• #1: Number of 1 s = 26

• #10: Number of 10 s = 3

• #11: Number of 11 s = 23

From this information, we can estimate the probabilities 

of every possible sequential pair:

• Prob(0→0) ∼ #00/#0 = #00/(#00 + #01) = 6/(6 + 2) = 0.75

• Prob(0→1) ∼ #01/#0 = #01/(#00 + #01) = 2/(6 + 2) = 0.25

Table 4 TR frequency percentage in each percentile bracket

Sample size Drugs

TOB ALC MAR HAL PRP COC CRK HER AMP MET

83 86 88 55 55 81 74 60 42 38
TR frequency percentage
TR = 0 62.7 25.6 13.6 1.8 10.9 7.4 23.0 13.3 2.4 7.9

0.0000 , TR , 0.0250 4.8 10.5 10.2 10.9 3.6 4.9 0.0 1.7 14.3 0.0

0.0250 ,= TR , 0.0286 2.4 3.5 12.5 29.1 7.3 11.1 0.0 6.7 31.0 7.9

0.0286 ,= TR , 0.0323 0.0 10.5 13.6 14.6 14.6 2.5 0.0 3.3 11.9 5.3

0.0323 ,= TR , 0.0435 2.4 3.5 4.5 14.6 3.6 22.2 12.2 5.0 19.1 0.0

0.0435 ,= TR , 0.0625 15.7 10.5 12.5 1.8 5.5 2.5 4.1 8.3 0.0 21.1

0.0625 ,= TR , 0.0769 1.2 5.8 11.4 7.3 7.3 4.9 6.8 6.7 4.8 13.2

0.0769 ,= TR , 0.0932 4.8 7.0 5.7 14.6 14.6 13.6 6.8 16.7 9.5 7.9

0.0932 ,= TR , 0.1197 3.6 7.0 4.5 1.8 16.4 12.4 6.8 13.3 2.4 15.8

0.1197 ,= TR , 0.1613 2.4 10.5 5.7 3.6 7.3 9.9 13.5 15.0 2.4 7.9

0.1613 ,= TR 0.0 5.8 5.7 0.0 9.1 8.6 27.0 10.0 2.4 13.2

Abbreviations: TOB, tobacco; ALC, alcohol; MAR, marijuana; hAL, hallucinogens; PRP, prescription pill misuse; COC, cocaine; CRK, crack cocaine; heR, heroin;  
AMP, amphetamine; MeT, methamphetamine; TR, transition rate.

5

Respondent V: TC = 6, TR = 5/34 = 0.1471

10 15 20 25 30 35 40 45 5550

5 10 15 20 25 30 35 40 45 5550

Respondent W: TC = 6, TR = 5/34 = 0.1471

Figure 3 Transition rate trajectories.
Notes: Line represents age trajectory in years. Black shaded area represents active use for given years.
Abbreviations: TC, transition count; TR, transition rate.
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• Prob(1→0) ∼ #10/#1 = #10/(#10 + #11) = 3/(3 + 23) = 0.12

• Prob(1→1) ∼ #11/#1 = #11/(#10 + #11) = 23/

(3 + 23) = 0.88

This transition probability specification is commonly 

represented as a directed graph or “digraph”.42 The directed 

graphs and transition matrices shown in Figure 4 were gen-

erated for hypothetical respondents V and W. Once again, 

1 represents active use in a given year and 0 non-active 

use of the drug in a given year. The percentages next to 

the directional arrows indicate the likelihood of remaining 

active (or non-active) in the next year or transitioning from 

active to non-active and vice-versa.

We see that respondent V tends to remain a user from year 

to year, with only a 12% chance of having a remission. Once 

a non-user again, he has a 75% chance of remaining so every 

year, but a non-negligible 25% chance of relapsing into use. In 

contrast, respondent W, when in an active use year, has a 50% 

chance of a remission the next year. Once a non-user again, she 

tends to remain so, only relapsing into use with a 7% chance.

Note that the 0→0 and 1→1 can be deduced from the 

0→1 and 1→0 probabilities, respectively. Indeed, these are 

inverse probabilities of each other. Hence the Markov chain 

transition probabilities are fully specified from the 0→1 and 

1→0 transition probabilities only. These rates are calculated 

only from the first year of use onward. This brings us to the 

following definitions:

The relapse rate is the ratio of non-using years that were 

followed by a relapse into a using year. That is, the relapse 

rate is the number of 01s divided by the number of 0s (or 

equivalently, the sum of 01s and the 00s).

The remission rate is the ratio of using years that were 

followed by a remission into a non-using year. That is, the 

relapse rate is the number of 10s divided by the number of 1s 

(or equivalently, the sum of 11s and the 10s).

Technically, relapse and remission rates can be seen as 

estimating the corresponding probabilities of an underlying 

Markov Chain model. In this model, each state is given a prob-

ability to be in that state the following year, given the state of 

the current year. Since drug use is measured here with a binary 

variable, the model is fully specified by two probabilities: the 

relapse probability (that the non-using respondent will use the 

following year) and the remission probability (that the using 

respondent will not use the following year). The probability that 

the non-using respondent will remain non-active the following 

year is one minus the relapse probability. The probability that 

the using respondent will remain active the following year 

is one minus the remission probability. To specify a Markov 

Chain completely, one should also specify a probability for the 

initial state of the sequence. Since we are considering trajec-

tories and computing our rates only from the first year of use 

onward, our initial state will always be 1 (active user).

We combine both the transition count trajectory with the 

Markov Chain model depicted in the diagraph into one graph 

to provide a more complete view of the user’s drug trajec-

tory and probability for remission and relapse. Figures 5–8 

illustrate the drug trajectories and digraphs for the two actual 

respondents we discussed previously. We use alcohol and 

heroin trajectories for the purpose of comparison.

Comparing the trajectories and digraphs of two respon-

dents’ life use of alcohol and heroin, we see the trajectories 

reveal different patterns of discontinuity for each drug. 

Recall that the trajectory represents every year of life. The 

black shaded cells indicate active use that year (at least 

once) and the non-shaded cells indicate non-active. In this 

1

Respondent V

88%

0

75%

25%12%

1

Respondent W

50%

0

93%

7%50%

Figure 4 Directed graphs.
Notes: 0 represents non-active use in a given year. 1 represents active use in a 
given year.

0 10 20 30 40 50 60

73%

Resp #026 -- Drug: ALC

Age

14% 27%

86%

Figure 5
Notes: Trajectory line represents every year of life. Black shaded cell represents 
active use in a given year.
Abbreviation: ALC, alcohol.
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hand, 026 is an active drinker in the year he was interviewed 

and, with a more discontinuous pattern of drinking and long 

periods of active use, he has an 86% probability of remaining 

active next year. These probabilities are almost completely 

reversed when looking at their heroin trajectories.

While both respondents show discontinuous patterns of 

heroin use, they are quite different. We see that 026 started 

using heroin at age 13, and he stopped and started again in a few 

years’ span before remaining non-active for almost 30 years. He 

was active for two years in his late forties and them remained 

non-active until the time of the interview. Instead, 113 started 

heroin later in life, at age 19, used for a few years, stopped 

one year and then remained active for almost twenty years. 

He stopped using heroin for another 9 years  followed by a 

period of continuous active use for a 9-year span. While both 

are non-active at the time they were interviewed, the digraphs 

show that 113 has a 15% probability of relapsing the next year 

while 026 has only a 5% probability.

Space does not permit us to present the trajectory and 

digraph for all drugs used by 026 and 113, and a fuller 

description is beyond the scope of this paper. Yet, the trajec-

tories for all drugs can be seen in the earlier graphs shown in 

Figure 1, and a brief discussion on this provides insight on 

the usefulness of these measures. Taking into consideration 

the drugs used each year shown in the graph for 026, he 

appears to have switched from using heroin to prescription 

pills. The qualitative interview (not presented here) revealed 

these are pain pills, which can act as a substitute for heroin. 

In addition, he has not stopped his drinking. By some treat-

ment standards, 026 would not be viewed as rehabilitated or 

0 10 20 30 40 50 60

Resp #113 -- Drug: ALC

Age

97%

50% 3%

50%

Figure 6
Notes: Trajectory line represents every year of life. Black shaded cell represents 
active use in a given year.
Abbreviation: ALC, alcohol.

0 10 20 30 40 50 60

95%

Resp #026 -- Drug: HER

Age

50% 5%

50%

Figure 7
Abbreviation: heR, heroin.

0 10 20 30 40 50 60

Resp #113 -- Drug: HER

Age

85%

10% 15%

90%

Figure 8
Notes: Trajectory line represents every year of life. Black shaded cell represents 
active use in a given year.
Abbreviation: heR, heroin.

graph, the grey shaded area starts the year after the age the 

respondent was interviewed: 026 was interviewed at age 

56 and 113 at age 61. The digraphs based on their trajectories 

show quite different probabilities for remission and relapse 

depending on the drug.

First we see that the respondents started alcohol at dif-

ferent ages (026 at age 13 and 113 at age 19). However, 

the trajectory of 026 shows a more discontinuous pattern, 

while 113 shows only a few years of active drinking around 

his twenties. Moreover, 113 has not had an alcoholic drink 

for almost 40 years, while 026 is drinking in the year of the 

interview. The digraphs reveal that 113 has a 97% probabil-

ity to remain non-active in regards to alcohol. On the other 
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“in recovery”. By contrast, 113 ceased all drugs and alcohol 

use for the last three years. Most treatment providers would 

consider 113 rehabilitated or at least in long term recovery. 

However, as shown above in the heroin digraph, while 113 

has a considerable probability to remain in remission, he 

also has a greater probability for relapse than does 026 for 

heroin use. This outcome is the result of taking into account 

the discontinuity measures found in their life trajectories.

Based on our measures of transition counts and transition 

rates, the relapse and remission rates we compute from a 

trajectory can be used as estimates of the underlying relapse 

and remission probabilities of a given user for a given drug. 

Our objective in this article to develop measures that gauge 

the discontinuous patterns of a drug use trajectory are sub-

sumed in these simple discontinuity statistics. Moreover our 

secondary goal to develop graphic models that describe the 

data visually is achieved through the trajectory graphs and 

digraphs presented here.

Conclusion
In this paper we responded to a number of methodological 

challenges to the identification of discontinuity in drug use 

trajectories.2 Framed in a life course perspective that includes 

both intra-individual change and inter-individual differences 

in trajectories across the life course, we distinguished tem-

porary perturbations from long-term change.1 Using person-

period data from life history interviews with older drug 

users, we suggested the “year” as an optimal time interval. 

Furthermore, to better assess a trajectory, we proposed to 

collect yearly data from birth. We identified discontinuity 

in the yearly trajectory of drug use by analyzing the transi-

tions from active to non-active (and vice-versa). Counting 

the total number of transitions, as measured by the transi-

tion count, was shown to be a useful subsuming measure 

of several fundamental types of trajectories. Incorporating 

the number of years since drug use onset, the transition 

rate gives us a more appropriate measure of discontinuity 

since it provides a sense of how often a user transitions. The 

relapse and remission rates take this further by exhibiting 

the contributions of transition from non-active to active use, 

and active to non-active, respectively. The new measures and 

statistics depicted in these tables and graphs can be used to 

identify trends and patterns, and compare the trajectories 

of different drugs or different groups of drug users. They 

provide a succinct way to model large event-history data 

sets that make it easier for researchers and practitioners to 

generate hypotheses and further their exploration on respec-

tive research questions.

In this paper, we developed measures to assess the dis-

continuity of drug use trajectories; however the measures 

can be employed with any sequence of binary variables. 

Here we applied them to drug use data in order to describe 

the development of the measures and to illustrate how they 

can be used. The developments of these measures and 

illustrative graphs have a number of potential applications for 

drug research and treatment. For example, the discontinuity 

measures presented here respond to the call for different 

approaches to address risk behaviors and the risk environment 

of drug users.43,44 By expanding on the measures shown 

here, we can develop inferential statistics to assess the risk 

of relapse and remission. Inferential statistics will also 

allow us to make better estimates of the underlying prob-

abilities involved, thereby generating better estimates of the 

underlying activity and discontinuity of any risk behavior 

trajectory for which we have valid data.

Limitations
The assertions made here about the characteristics of the 

users and the drugs are purely descriptive of the sample, being 

only intended to articulate certain aspects that our measures 

exhibited. Used alone, these measures do not illustrate the 

whole picture. However, they can be used for comparing 

similarities and differences in the drug user trajectory across 

different drugs and for individual drug users. These measures 

and graphic visualizations provide a useful tool to gauge tra-

jectory discontinuity. Hypotheses can be generated from the 

visualizations shown here, but validating such hypotheses will 

require developing inferential statistics based on these descrip-

tive statistics. Inferential statistics provide tools to extend 

beyond the data itself and assess the validity of assertions 

about a more general context. We provided some indications 

on how such inferential statistics may be developed, but the 

development and discussion of these inferential statistics and 

their application will be left to future articles.

Future research and applied use
In this methodological paper we proposed new measures 

that provide tools to analyze discontinuous trajectories and 

support hypotheses generated by the graphic illustrations 

of these measures applied to data. Measuring and concep-

tualizing discontinuous patterns in individualized drug use 

has important implications for future research on drug use 

trajectories and potentially for predicting turning points in 

risk behaviors. Aggregated transition counts and transition 

rates may be used to compare trends in drug use patterns, 

across specific drugs, and across the life course of individual 
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users. In addition, the visualization models presented here 

provide a parsimonious understanding of an individual user’s 

life history of drug use and its association with selected 

variables. These measures can be modified and extended 

to predict risk of relapse, measured with the precision to 

individual differences and specific socio-contextual associa-

tions. Drug rehabilitation practitioners have identified a gap 

in research for individualized treatment approaches.45,46 The 

relapse and remission rates provide predictive value based 

on the user’s life history and individualized trajectory, visu-

ally depicted in the digraphs. Our development of trajectory 

discontinuity measures is not finished. In future papers we 

will explore many more aspects of the trajectory, differences 

between types of drug users, active and inactive users, and 

other characteristics of the sample, as well as inferential 

statistical applications that incorporate the influence of 

social-contextual events over the life course. We envision 

eventual application of these models for drug treatment and 

rehabilitation purposes, as well as the development of health-

care intervention, prevention programs, and policy.
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