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Introduction: This work was aimed to develop a Curcuma oil-based self-nanoemulsifying drug delivery system (SNEDDS) 3D-
printed polypills containing glimepiride (GMD) and rosuvastatin (RSV) for treatment of dyslipidemia in patients with diabetes as
a model for metabolic syndrome (MS).
Methods: Compartmentalized 3D printed polypills were prepared and studied in streptozotocin/poloxamer induced diabetic/dyslipi-
demic rats. The pharmacokinetic parameters of GMD and RSV in the prepared polypills were evaluated. Blood glucose level, lipid
profile, antioxidant, and biochemical markers activities were investigated. Also, histopathological examination of the liver and
pancreas was carried out. The atherosclerotic index, the area of islets of Langerhans, and liver steatosis lesion scores were calculated.
Results: The developed SNEDDS-loaded GMD/RSV polypills showed acceptable quality control characteristics with a high relative
bioavailability of 217.16% and 224.28% for GMD and RSV, respectively, when compared with the corresponding non-SNEDDS pills.
The prepared polypills showed dramatic lowering in blood glucose levels and substantial improvement in lipid profile and hepatic
serum biomarkers as well as remarkable decrease in serum antioxidants in response to Poloxamer 407 intoxication. The prepared
polypills decreased the risk of atherosclerosis and coronary disease by boosting the level of high-density lipoprotein and lowering both
triglyceride and low-density lipoprotein. Microscopic examination showed normal hepatic sinusoids and high protection level with less
detectable steatosis in the examined hepatocytes. Normal size pancreatic islets with apparently normal exocrine acini and pancreatic
duct were also noticed.
Conclusion: This formulation strategy clearly shows the potential of the developed polypills in personalized medicine for treatment
of patients with MS.
Keywords: 3D-printed tablets, Curcuma oil, glimepiride, metabolic syndrome, rosuvastatin, SNEDDS, nanotechnology

Introduction
Metabolic syndrome (MS) is a collection of cardiometabolic risk factors that involve insulin resistance, abdominal obesity,
hypertension, hyperglycemia, and dyslipidemia. MS increases the risks of cardiovascular disease (CVD), type 2 diabetes
mellitus (T2DM), and all-cause mortality in the general population.1,2 The overall prevalence of MS ranges from 20% to 25%
in adults2,3 and 0% to 19.2% in children,4 but it can reach almost 80% in type 2 diabetes patients.5,6 The most frequently
observed component of MS was found to be low levels of high-density lipoprotein (HDL), followed by abdominal obesity.
The incidence ofMS often parallels the incidence of obesity and the incidence of type 2 diabetes (one of the outcomes ofMS).7
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According to the National Cholesterol Education Program – Third Adult Treatment Panel (NCEPATP III), a patient must have
at least three of the five cardiovascular risk factors at the same time to be diagnosed with the syndrome. These risk factors
include waist circumference; high triglyceride; lower HDL cholesterol; high blood pressure or previously diagnosed
hypertension; high fasting plasma glucose (≥100mg/dl) or previous diagnosis of type 2 diabetes.2,8 According to the
National Diabetes Statistics Report, a periodic publication of the Centers for Disease Control and Prevention (CDC) published
in 2020, about 34.2 million people of all ages (10.5% of the US population) had diabetes. About 34.1 million adults aged 18
years or older (or 13.0% of all US adults) had diabetes. About 7.3 million adults aged 18 years or older who met laboratory
criteria for diabetes were undiagnosed diabetes. This indicates that the percentage of adults with diabetes increased with age,
reaching 26.8% among those aged 65 years or older. Also, the prevalence of prediabetes was about three times more. So, about
one-third of US adults have MS.9 Furthermore, the severity of MS is associated with a concomitant reduction in the risk of
further T2DM and CVD.10 Also, it is reported that nearly one-fourth of the type 1 diabetes patients were affected byMS.11 To
help in the management and treatment of MS, the development of multicompartmental pills with different technology
approaches is urgently needed.

Development of a novel drug-loaded delivery system and implementing nanotechnology in drug delivery are useful
in controlling and maintaining an adequate drug concentration in the target tissue. A plurality of examples implement-
ing drug-loaded nanomaterials as efficient drug delivery systems is known in the art. For example, the use of
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nanomaterials in personalized medicine is known to allow the tailoring of drug products to treat an individual patient or
a group of related patients suffering a particular disease. Also, organic, and inorganic materials have been investigated
as potential drug carriers in many medical applications. The interaction of inorganic minerals with amino acids,
peptides, and proteins has made significant biological progress.12 The potential actions of drug loaded inorganic
nanoparticles have outperformed traditional chemotherapy medications, particularly in the treatment of cancer.13–15

Furthermore, inorganic nanoparticles may have the potential to enhance neurodegenerative disorders and other
diseases.16 Organic materials’ outstanding function in medicine continues to be one of the most important factors in
the drug development process.17 Metal–organic frameworks on a nanoscale have been investigated as drug delivery and
imaging carriers.18

Over the last decades, there is a growing interest in Curcuma oil/curcumin due to its roles in the treatment of MS by
adjusting the parameters triggered by the metabolic disorders and eliminating its negative effects.19 Moreover, it has potential
in the treatment of cardiovascular disorders which include lowering the total blood cholesterol and low-density lipoprotein
levels.20 Also, it improves the metabolic profile of patients with diabetes mellitus mainly concerning lipid levels, and reduces
the associated complications.21 Interestingly, the clinical data supported the safety of Curcuma oil/curcumin and recom-
mended unlocking the potential of this polyphenol as a preventive and/or therapeutic strategy for statin-associated muscle
symptoms (SAMS). This is due to its effect in the improvement of mitochondrial function, along with analgesic, anti-
inflammatory, antioxidant, and lipid-modifying properties which supports the potential advantage of curcumin supplement as
an adjunct to statin therapy in patients with SAMS, as well as in persons with a residual cardiovascular risk.22 In addition, the
administration of Curcuma oil/curcumin increases the basal metabolic rate and releases some cytokines that can reduce body
weight. Also, it reduces hepatic fat accumulation and prevents steatosis by downregulating lipogenic factors. In addition, it
improves insulin sensitivity and glycemic control and reduces the biomarkers of systemic inflammation, hepatocyte injury, and
oxidative stress. Interestingly, it is noticed that nano-formulation of curcumin significantly reduced total cholesterol,
triglycerides, serum lipoproteins, serumC reactive protein, and plasmamalonaldehyde. So, it can be deemed in the therapeutic
approach of patients with MS.23

Patients who have huge variations like those of MS need tailored therapy to ensure better medical care. Of note, three-
dimensional (3D) printing technology has been considered as a useful drug delivery manufacturing system in that a 3D
structure can be manufactured by fusing or depositing different materials through applying the strategy of layer-by-layer
additive manufacturing. Patient-specific 3D-printed medications are becoming increasingly beneficial in personalized
treatments. Personalized medicine aims to ensure better health care with much lower cost by selecting the most
appropriate and ideal therapy for individual patients. Also, personalized medicine is usually designed for patients that
are suffering from genetic variations or not responding to the traditional health system, which necessitates providing
tailored drug prescriptions and/or changes in the therapeutic practice manners and strategies of the health care
professionals.24,25

Despite the advantageous features of the current 3D printed medications, several factors may be of concern to the
effectiveness of the 3D printed drug delivery system. For example, many active pharmaceutical ingredients (APIs) do
not reach the commercialization step due to their limited oral bioavailability. Another important current problem in the
pharmaceutical industry for drugs of limited bioavailability is mainly attributed to their inadequate aqueous solubility
and dissolution rate. Moreover, a high percentage of the administered drug is lost during the absorption process due to
the first-pass metabolism phenomenon. Thus, there is a need for a composition and a method for providing an
improved 3D printed drug-delivering tablet with increased aqueous solubility and dissolution rate for ease of
bioavailability. For these reasons, a combination of 3D printing technology and nanotechnology was employed in
this study to print tablets containing a mixture of glimepiride (GMD) and rosuvastatin (RSV) with curcuma oil after
forming them into a self-nanoemulsifying system to improve their absorption and bioavailability. As a result, this
formulation of 3D-printed polypills containing nanosized drugs can be customized to each patient with MS. Also, in
this work, the pharmacokinetics, hyperglycemic/dyslipidemic activities, and histopathological changes of Curcuma
oil-based self-nanoemulsifying drug delivery system (SNEDDS) 3D printed polypills containing GMD and RSV were
investigated. Moreover, the atherosclerotic index, the area of islets of Langerhans, and liver steatosis lesion scores
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were calculated to investigate the potential of the developed polypills in personalized medicine for treatment of
patients with MS.

Materials and Methods
Materials
Glimepiride was obtained as gift samples from the Saudi Pharmaceutical Industries & Medical Appliances Corporation
(SPIMACO) (Al Qassim, Saudi Arabia). Rosuvastatin was kindly gifted by and the Saudi Arabian Japanese
Pharmaceuticals Co. Ltd (SAJA) (Jeddah, Saudi Arabia). Microcrystalline cellulose (Avicel) PH-101 was purchased
from Winlab laboratory chemicals (Leicestershire, UK). Hydroxypropyl methylcellulose (HPMC) 4000 cp were obtained
from Spectrum Chemical Manufacturing Corporation (Gardena, CA). Lactose anhydrous, Polyethylene glycol (PEG)
400, Tween 80, Polyvinyl pyrrolidone (PVP) with a molecular weight of 360,000 Da (K90), Methocel® A15 LV, 27.5–
31.5% methoxyl basis, acetonitrile, and methanol were purchased from Sigma-Aldrich Inc. (St. Louis, MO).
Croscarmellose sodium (Ac-Di-Sol) from Biosynth International, Inc (San Diego, CA).

Preparation and Characterization of Curcuma Oil-Based SNEDDS
To our knowledge, the Curcuma oil-based SNEDDS has been prepared, evaluated and optimized in the first part of this
work that has been previously published in Ahmed et al.26 Briefly, an optimized Curcuma oil-based self-nanoemulsifying
drug delivery system (SNEDDS) formulation was prepared in a screw cap vial by mixing the accurate weights of
Curcuma longa oil (15%), Tween 80 (10%), and PEG 400 (75%) using vortex for 60s to get a homogenous dispersion.

To evaluate the size and polydispersity index (PDI) of the prepared SNEDDS, 1g was added to 10 mL of distilled
water on a magnetic stirrer until a homogenous yellowish nanoemulsion was obtained. The size and PDI of the obtained
emulsion were analyzed using Malvern Zetasizer Nano ZSP, Malvern Panalytical Ltd. (Malvern, UK).

Preparation and in vitro Characterization of 3D-Printed Polypills
To the best of our knowledge, the 3D-printed polypills have been prepared, and characterized in the first part of this work
that has been previously published in Ahmed et al.26 To develop medicated 3D-printed polypills, hydroxypropyl
methylcellulose gel pastes were first prepared. SNEDDS-based gel pastes and non-SNEDDS gel pastes loaded with
either GMD or RSV were prepared. Non-SNEDDS gel pastes were prepared by dispersing the known weight of GMD or
RSV to a specified volume of distilled water over a magnetic stirrer and 4% of HPMC was added. Stirring was continued
until homogenous gels were obtained that were kept in the refrigerator for 24 h at 4°C for complete swelling of the
polymer. Gels containing the optimized SNEDDS formulation were prepared by dispersing the specified weight of GMD
or RSV in 2 g of SNEDDS and adding the medicated SNEDDS to 18 mL of distilled water on a magnetic stirrer. Finally,
HPMC (4%) was added with continuous stirring and the mixtures were left in the refrigerator. Plain (drug-free)
SNEDDS-based gel formulation was also prepared with the same procedure to be used as a control in the assessment
of pharmacodynamic activity.

Different tablet excipients were added to the prepared gels to develop pastes suitable for tablet printing. Avicel (20% w/w)
as an insoluble ingredient, lactose (10% w/w) and Methocel (5% w/w) as adsorbent for the SNEDDS formulation, PVP K90
(10% w/w) as a binder, and Ac-Di-Sol (5% w/w) as a disintegrant was gradually mixed to the prepared gels in a mortar until
a homogenous paste was obtained. Five different paste formulations were prepared namely, plain (non-medicated) SNEDDS-
loaded paste, non-SNEDDS-loaded GMD paste, non-SNEDDS-loaded RSV paste, SNEDDS-loaded GMD paste, and
SNEDDS-loaded RSV paste. The flow properties and viscosity values of the prepared pastes were studied using a Kinexus
oscillation rheometer (Malvern Instruments Ltd. Worchestershire, UK).

Three-dimensional printed (3D-P) pills were developed from the prepared pastes utilizing REGEMAT3D V1
BioPrinter (REGEMAT Inc. Granada, Spain). A computer-aided design modeling software (REGEMAT 1.4.9
Designer) was used during the printing process. Each paste formulation was loaded into the extrusion tool and extruded
through a 0.58 mm printing nozzle. The flow speed was adjusted at 2.6 mm/s and the infill speed was 10 mm/s. Printing
was done layer-by-layer in a horizontal and vertical direction at room temperature. For each formulation, a total of eight
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layers were printed in the selected area of the building plate to develop a cylinder of 15 mm diameter. The printing
process was conducted for the prepared five gel paste formulations. Another multi-compartment tablet (polypill)
formulation was printed utilizing eight layers of the paste containing GMD and eight layers of the paste containing
RSV. All the printed tablet formulations were dried in a vacuum dryer at 40°C for 24 h and finally kept in a hermetically
sealed container. The quality attributes of the prepared tablets were evaluated according to the specification stated in the
United States Pharmacopeia.27

In vivo Studies on the Induced Hyperglycemic/Dyslipidemic Rats
Pharmacokinetics Evaluation
Study Design and Animal Handling
A single dose one-period parallel design was used to study the pharmacokinetics of GMD and RSV from the prepared
3D-P polypills (F2-F6). Male Wistar rats of an average weight of 200–250 g were used. Normal animals without
treatment were used as a control. Diabetes was induced in the studied animals by intraperitoneal injection of 50 mg/kg
streptozotocin two weeks before the study. Fasting blood glucose level was assessed using All Medicus GlucoDr
SuperSensor Device (AGM-2200), All Medicus Co. Ltd., (Gyeonggi-do, REPUBLIC of KOREA). Rats having moderate
diabetes, with fasting blood glucose levels in the range of 200–300 mg/100 mL, were selected. Hyperlipidemia was
induced in animals by intraperitoneal injection of 0.25 g/kg Poloxamer 407 dissolved in 0.9% saline, 24 h before drug
administration. Animals with hyperlipidemia and hyperglycemia were classified into six groups (6 per each). Group,
I was assigned as a control group while group II was assigned for animals with induced hyperlipidemia and hypergly-
cemia without treatment (model group). Group III, IV, V, VI, and VII were administered tablet formulations F1, F2, F3,
F4, and F5. Before animal treatment, rats were kept in a temperature-controlled closed area with a 12 h light/darkness
cycle for one week with free access to water and food. GMD dose of 10 mg/kg and RSV dose of 20 mg/kg were
used.28,29 Each 3D-P tablet formulation was crushed and suspended in an aqueous solution of carboxymethyl cellulose
(1%) to prepare a uniform suspension suitable for oral administration through a gastric tube. Blood samples were
collected through retro-orbital puncturing over 24 h for animals treated with GMD and extended to 72 h for animals
treated with RSV. The plasma was immediately separated from the blood samples by centrifugation at 6000 rpm for 10
min and stored frozen at −20°C until analysis. The protocol for this study was approved by the Research Ethics
Committee, Faculty of Pharmacy, King Abdulaziz University, SA (Reference No. 1021442). The study was conducted
according to the guidelines of Good Clinical Practice, the International Conference on Harmonization, and the European
Medicines Agency.

Chromatographic Conditions
Calibration curves for GMD and RSV were constructed from blank rat plasma samples. For the determination of GMD,
a methanolic stock solution of metformin was used as an internal standard. The plasma GMD concentration in the unknown
and the prepared calibration standards was determined using Perkin Elmer high-performance liquid chromatography (HPLC)
equipped with variable wavelength UV detector and autosampler. Phenomenex, RP Hi-Q-Sil C18 column (250 × 4.6 mm, 5 µm,
Phenomenex Inc.) was used for separation. The mobile phase consisted of 64:36 acetonitrile and 0.02 M potassium dihydrogen
orthophosphate adjusted to pH 3.5. The injection volume used was 30 µL with a flow rate of 1 mL/min. The UV detector was
adjusted at 230 nm. For extraction and preparation of the samples; 1 mL of acetonitrile-methanol (1:1) mixture was added to each
sample. The mixture was vortexed for 1 min and centrifuged for 10 min at 5000 rpm. The organic phase was separated and
evaporated to dryness under a constant streamof nitrogen at 50°C. The residuewas reconstituted in 80 µLof themobile phase and
a volume of 30 µL was injected. The condition employed for quantification of GMD in the plasma samples was conducted as
previously mentioned except for slight modification.30

For RSV determination, atorvastatin was used as an internal standard. Quantification of RSV in the calibration standards
and the unknown samples was done using the same apparatus and condition mentioned above for GMD except that the mobile
phase consisted of acetonitrile and 0.1% phosphoric acid (58:42) and the UV detector was adjusted at 240 nm. Extraction and
separation of RSV were achieved as described above for GMD except that the residue was reconstituted in 80 µL of
acetonitrile and 0.1% phosphoric acid (58:42). The method used for the analysis of RSV in the plasma samples utilized the
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condition previously reported by Ahmed et al.29 PK solver (An add-in program for pharmacokinetic data) was utilized to
calculate the pharmacokinetic parameters using the non-compartmental extravascular pharmacokinetic model. Maximum
plasma drug concentration (Cmax), time to reach the maximum plasma drug concentration (Tmax), the area under the plasma
drug concentration-time curve to the last time point (AUC0–t) and infinity (AUC0–inf), the elimination rate constant
(Lambda_z), the mean residence time (MRT), elimination half-life (t½), total body clearance (Cl/F) and the apparent volume
of distribution (Vz/F).

Pharmacodynamics Study (Hypoglycemic and Antidyslipidemic Effects)
The blood glucose level (BGL) in the studied animals was measured over 24 h after administration of a single oral dose
of 10 mg/kg GMD formulations by intragastric tubing. Blood samples were collected through retro-orbital puncturing
from groups of animals administered GMD formulations compared with the group of animals that received the plain
Curcuma oil-loaded SNEDDS over 24 h.

The antidyslipidemic activity was evaluated in the groups of animals those administered RSV formulations compared
with the group of animals that received the plain Curcuma oil-loaded SNEDDS over 72 h. Serum was separated by
keeping the collected blood samples for 1 h in centrifuge tubes, to allow clotting, followed by centrifugation for 15 min
at 3000 rpm. The separated serum samples were assessed for total cholesterol, triglycerides (TG), low-density lipopro-
teins (LDL), and high-density lipoproteins (HDL) using (Colorimetric/Fluorometric) Assay Kit (ab65390) which
provides a simple quantification method of the studied parameters after convenient separation of the different lipoprotein
fractions.

Hepatoprotective and Antioxidant Activities
The liver function of the studied animals was evaluated before and after treatment by assessing the serum levels of
aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) enzymes. The
concentrations of these enzymes were measured using the colorimetric method utilizing Spectrum diagnostic ALT,
AST, and ALP reagents of the Egyptian company for biotechnology (Cairo, Egypt). The reagents were supplied ready-to-
use and they are used only with non-haemolyzed serum samples. Heparin and EDTA are the only acceptable antic-
oagulants. Measurement was performed at 546 nm at a sample: reagent ratio of 1: 60.

Also, the antioxidant activity was studied by monitoring the serum levels of catalase (CAT), glutathione transferase
(GST), and superoxide dismutase (SOD) enzymes. CAT and SOD serum concentrations were measured using colori-
metric assay kits of Bio-diagnostic (Giza, Egypt), catalog # CA 25 17 and SD 25 21 for CAT and SOD, respectively. GST
was quantified using rat Glutathione S-transferase (GSTs) ELISA Kit (Catalog # MBS260372).

Histopathological Examination of Liver and Pancreas Tissues
The animals under the study were sacrificed and the liver and pancreas specimens were taken and treated with 10%
neutral buffer formalin. Paraffin sections were prepared at the desired thickness using a microtome and stained with
hematoxylin and eosin. Finally, any changes in the tissues of the pancreas and liver were microscopically investigated.31

Histopathological lesion of the liver samples was examined for steatosis following the criteria of Brunt et al.32 Briefly,
macro-vesicular steatosis was graded 0–3 based on the percent of hepatocytes in the biopsy (0 is none; 1 is up to 33%; 2
is 33–66%; 3 is ˃ 66%); zonal distribution of steatosis and the presence of microvesicular steatosis were noted. Also, the
area of islets of Langerhans was microscopically examined in the pancreas specimens of the investigated groups to assess
the potential of 3D-P polypills in the protection of pancreas tissue.

Statistical Analysis
GraphPad Prism 8 software (GraphPad Inc., La Jolla, CA, USA) was used for the statistical analysis of the data for the
pharmacokinetics of GMD and RSV. The data were expressed as mean ± SD and in the plasma concentration-time curve
and two-way ANOVA followed by Tukey’s multiple comparisons test was used to compare each means with the other at
all time points to assess the significance between groups. The biochemical parameters were also assessed for their
statistical difference using the two-way ANOVA followed by Tukey’s multiple comparisons test, as well as a two-tailed
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unpaired t-test was used to assess the difference between the biochemical parameters of the normal and model groups.
Results with P < 0.05 were considered significant.

Results and Discussion
Development of SNEDDS
Based on its importance, Curcuma oil was used to develop SNEDDS with Tween 80 as a surfactant and PEG 400 as
a cosurfactant. An optimized SNEDDS formulation that contains 15%, 10%, and 75% of Curcuma oil, surfactant, and
cosurfactant respectively was prepared and showed the particle size and PDI values of 94.43 nm and 0.544, respectively.

Preparation and Characterization of 3D-Printed Polypills
All the prepared pastes exhibited a shear-thinning behavior of a pseudoplastic flow type. The obtained values for the
viscosity of the studied pastes were 6550 ± 278, 8604 ± 295, 9185 ± 153, 6648 ± 135 and 6684 ± 451 Pa.s. The presence
of the Curcuma oil-based SNEDDS in formulations leads to lower viscosity values due to lubrication of the solid
particles and prevention of water loss from the paste. The obtained dried pills were cylindrical in shape and exhibited an
acceptable weight, thickness and diameter. GMD containing pills demonstrated a drug content of not less than 98.0%
while RSV containing pills illustrated a drug content of not less than 96.9% of the drug loading. Drug loading was found
to range between 96.9% and 99.5%, which is within the acceptable range for content uniformity (85–115%) set by the
British Pharmacopoeia. Also, the 3D-printed polypills demonstrating high reproducibility in physical dimensions, along
with high mechanical strength resistant to damage on handling as indicated from the friability value which was less than
1%. The composition and characteristics of the prepared 3D-printed polypills are summarized in Table 1.

Assessment of Pharmacokinetic Parameters
Figure 1A depicted the plasma concentration-time profiles for the SNEDDS-loaded GMD pills and SNEDDS-loaded
GMD/RSV pills in comparison to non-SNEDDS-loaded GMD pills after a single oral administration of 10 mg/kg of body
weight for the induced-hyperglycemic/dyslipidemic male Wistar rats. The figure and the two-way ANOVA showed the
significant difference (p-value <0.05) between the SNEDDS-loaded pills and the non-SNEDDS-loaded ones at all the
time points of the study. The calculated values of the pharmacokinetic parameters for GMD from the investigated
formulations are summarized in Table 2. The results revealed that the loading of GMD in the Curcuma oil-based
SNEDDS hasten the absorption of the drug to reach its maximum plasma concentration (Cmax) after 2 h instead of 4 h in
the case of non-SNEDDS-loaded 3D-P pills. Compared with non-SNEDDS-loaded 3D-P pills, the Cmax of GMD for
SNEDDS-loaded GMD 3D-P pills and SNEDDS-loaded GMD/RSV 3D-P polypills were improved by more than 2
times. Also, SNEDDS-loaded GMD 3D-P pills and SNEDDS-loaded GMD/RSV 3D-P polypills showed a significantly
higher area under the curve (16,263.25 ± 459.36 and 16,035.25 ± 371.43 ng/mL × h), respectively in comparison to the

Table 1 Composition and Characteristics of the Prepared 3D-Printed Polypills

F1 F2 F3 F4 F5 F6

Drug – GMD RSV GMD RSV GMD and RSV

Drug loading (mg) – 4 10 4 10 4 and 10

Weight after drying (mg) 532.58 ± 23.7 490.53 ± 27.76 498.88 ± 55.32 541.68 ± 61.02 559.39± 41.45 1067.54 ± 77.32

Thickness (mm) 3.035 ± 0.038 2.647± 0.160 2.826± 0.228 3.239 ± 0.178 2.876 ± 0.128 5.797 ± 0.156

Diameter (mm) 14.656 ± 0.148 13.289 ± 0.485 15.201 ± 0.228 14.855 ± 0.319 14.082 ± 0.249 14.342 ± 0.109

Friability (%) 0.068 0.159 0.199 0.117 0.043 0.089

Drug content (mg) – 3.98± 0.201 9.76 ± 0.359 3.918 ± 0.219 9.691 ± 0.594 4.052± 0.087 and
9.711± 0.097

Abbreviations: GMD, glimepiride; RSV, rosuvastatin.
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non-SNEDDS-loaded 3D-P pills (7,245.83 ± 386.63 ng/mL × h) which reflected on the significant increase in the relative
bioavailability with 219.75% and 217.16%, respectively.

The same behavior was achieved in the plasma concentration-time profiles for the SNEDDS-loaded RSV pills and
SNEDDS-loaded GMD/RSV pills in comparison to non-SNEDDS-loaded RSV pills after a single oral administration of
20 mg/kg of body weight for the induced-hyperglycemic/dyslipidemic male Wistar rats as depicted in Figure 1B. The plasma
concentrations of RSV of SNEDDS-loaded RSV pills and SNEDDS-loaded GMD/RSV pills were significantly (p-value

Figure 1 Plasma concentration-time curves for (A) GMD and (B) RSV after oral administration of the 3D-printed polypills to induced-hyperglycemic/dyslipidemic male
Wistar rats. #Indicates significant difference between SNEDDS-loaded GMD 3D-P pills and non-SNEDDS-loaded 3D-P pills. $Indicates significant difference between
SNEDDS-loaded GMD/RSV 3D-P pills and non-SNEDDS-loaded 3D-P pills. A significant difference was considered at P < 0.05. Data are presented as mean ± SD, (n = 6).

Table 2 Pharmacokinetic Parameters of GMD After Oral Administration of 10 mg/kg in Rats (n = 6, the Data Expressed as Mean ±
SD)

Parameter Unit Non-SNEDDS-Loaded GMD
Pills

SNEDDS-Loaded GMD
Pills

SNEDDS-Loaded GMD/RSV
Pills

Lambda_z 1/h 0.09 (± 0.00) 0.11 (± 0.01) 0.10 (± 0.00)

t1/2 h 7.49a, b (± 0.18) 6.36 (± 0.41) 6.68 (± 0.14)

Tmax h 4.00a, b (± 0.00) 2.00 (± 0.00) 2.00 (± 0.00)

Cmax ng/mL 1,008.67a, b (± 23.29) 2,290.33 (± 31.39) 2,270.00 (± 52.43)

AUC 0-t ng/mL*h 7,245.83a, b (± 386.63) 16,263.25 (± 459.36) 16,035.25 (± 371.43)

AUC 0-inf ng/mL*h 8,178.36a, b (± 419.23) 17,971.77 (± 562.95) 17,759.83 (± 337.25)

AUMC 0-inf ng/mL*h^2 87,046.63a, b (± 5,116.42) 176,440.39 (±10,605.80) 176,286.42 (± 1,884.49)

MRT 0-inf h 10.64 (± 0.21) 9.81 (± 0.35) 9.93 (± 0.17)

Vz/F (mg)/(ng/mL) 0.01 (± 0.00) 0.01 (± 0.00) 0.01 (± 0.00)

Cl/F (mg)/(ng/mL)/h 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

F % – 219.75 217.16

Notes: a Significantly different from values of SNEDDS-loaded GMD pills with p-value <0.05. b Significantly different from values of SNEDDS-loaded GMD/RSV pills with
p-value <0.05.
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<0.05) higher than those of non-SNEDDS-loaded RSV pills at all the time points of the study. The calculated values of the
pharmacokinetic parameters for RSV from the investigated formulations are summarized in Table 3. The tmax was 2 h in the
SNEDDS-loaded RSV 3D-P pills instead of 4 h in the case of non-SNEDDS-loaded 3D-P pills. Also, the value ofCmax for the
SNEDDS-loaded RSV 3D-P pills and SNEDDS-loaded GMD/RSV 3D-P polypills were 2,062.00 ± 38.30 ng/mL and
2,036.67 ± 22.50 ng/mL, respectively versus 901.00 ± 10.00 ng/mL for non-SNEDDS-loaded 3D-P pills. Also, SNEDDS-
loaded RSV 3D-P pills and SNEDDS-loaded GMD/RSV 3D-P polypills showed significance higher area under the curve
(AUC0-t) of 68,414.25 ± 1,461.16 and 67,811.75 ± 1,470.46 ng/mL×h, respectively in comparison to the non-SNEDDS-loaded
3D-P pills (30,085.67 ± 645.03 ng/mL×h). These findings reflected the significant increase in the relative bioavailability of
RSV from the SNEDDS-loaded RSV 3D-P pills and SNEDDS-loaded GMD/RSV 3D-P polypills were 219.75% and
217.16%, respectively compared with that of non-SNEDDS-loaded 3D-P pills.

The plasma concentration-time profile following a single oral dose of SNEDDS-loaded RSV showed two separate
peaks the first at 2 h and the second at 6 h which is known as the Double Peak Phenomenon. This phenomenon is
explained by either enterohepatic recirculation, delayed gastric emptying, and/or variability of absorption.33 In enter-
ohepatic recirculation, the first peak in the profile is often the largest of the two peaks which were observed in our case
with RSV loaded-SNEDDS. This phenomenon is attributed to the circulation of bile from the liver to the small intestine,
where it promotes the digestion of fats and other substances and back to the liver which is in full agreement with the
reported enhanced bioavailability of silymarin SMEDDS.34 Also, the absence of the double peaks after oral administra-
tion of non-SNEDDS-loaded RSV formulation may be useful to negate the variability of absorption or the presence of
two absorption sites along the gastrointestinal tract.35

The obtained results suggest that the incorporation of GMD and RSV in Curcuma oil-based SNEDDS with minimum
globule size, loading onto 3D-P pills lead to an increase in the rate and extent of absorption as well as improving the oral
bioavailability of these drugs which is in agreement with the previously reported results.29,31,36–38 This improvement will
be assessed and confirmed by the biochemical analysis of blood glucose level, TC, TG, HDL, and LDL as well as the
calculation of the atherosclerotic index (AI), as a marker of cardiovascular disease.

Table 3 Pharmacokinetic Parameters of RSV After Oral Administration of 20 mg/kg in Rats (n = 6, the Data Expressed as Mean ± SD)

Parameter Unit Non-SNEDDS-Loaded RSV Pills SNEDDS-Loaded RSV Pills SNEDDS-Loaded GMD/RSV Pills

Lambda_z 1/h 0.03 (± 0.00) 0.03 (± 0.00) 0.03 (± 0.00)

t1/2 h 23.20 (±0.28) 23.02 (± 0.22) 22.79 (± 0.15)

Tmax h 4.00a, b (± 0.00) 2.00 (± 0.00) 2.00 (± 0.00)

Cmax ng/mL 901.00a, b (± 10.00) 2,062.00 (± 38.30) 2,036.67 (± 22.50)

AUC 0-t ng/mL*h 30,085.67a, b (± 645.03) 68,414.25 (± 1,461.16) 67,811.75 (± 1,470.46)

AUC 0-inf ng/mL*h 34,101.93a, b (± 783.83) 77,371.16 (±1,811.78) 76,482.63 (± 1,678.71)

AUMC 0-inf ng/mL*h^2 1,175,344.38a, b (± 36,253.05) 2,652,298.87 (± 84,867.52) 2,600,769.10 (± 70,329.74)

MRT 0-inf h 34.46 (± 0.31) 34.28 (± 0.30) 34.00 (± 0.18)

Vz/F (mg)/(ng/mL) 0.02 (± 0.00) 0.01 (± 0.00) 0.01 (± 0.00)

Cl/F (mg)/(ng/mL)/h 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

F % – 229.88 224.28

Notes: aSignificantly different from values of SNEDDS-loaded RSV pills with p-value <0.05. bSignificantly different from values of SNEDDS-loaded GMD/RSV pills with
p-value <0.05.
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Assessment of Hypoglycemic Efficacy
There is a significant increase (p < 0.05) in BGL in the induced-hyperglycemic rats (model) when compared with the normal
rats (control) as depicted in Figure 2A. This finding confirms the induction of diabetes in the rats after intraperitoneal injection
of 50 mg/kg streptozotocin two weeks before the study. It is noticed that the plain SNEDDS-loaded pills containing only
Curcuma oil showed a slight reduction in BGL over 4 h compared with the model group. Also, a significant reduction in BGL
was noticed after administration of non-SNEDDS-loaded GMD pills that extended only for 6 h and then substantially
increased. The hypoglycemic efficacy of SNEDDS-loaded GMD pills and SNEDDS-loaded GMD/RSV pills have shown
a significant reduction (p < 0.05) after 1 h and extended to 8 h after administration. This significant reduction appeared in
comparison with the model group and plain SNEDDS-loaded pills. On the other hand, there is no significant difference
between SNEDDS-loaded GMD pills and SNEDDS-loaded GMD/RSV pills. Figure 2B revealed a percentage reduction of
BGL after administration of a single dose of SNEDDS-loaded GMD pills or SNEDDS-loaded GMD/RSV pills of ~40% after
1 h and ~60% after 4 h and this reduction was extended for 8 h with ~40% from the model group. On the other hand, non-
SNEDDS-loaded GMD pills showed a percentage reduction in BGL from 30% to 40% for not more than 6 h. This indicates
that the duration of action of the SNEDDS-loaded formulations is markedly longer than that of the non-SNEDDS-loaded
formulations.

Assessment of Antidyslipidemic Efficacy
The efficacy of the Curcuma oil SNEDDS-loaded GMD/RSV 3D-P polypills on the serum total cholesterol, triglyceride,
HDL, and LDL was assessed in the induced-dyslipidemic rat model. The observed levels of the circulating lipids were
significantly increased (p < 0.05) following oral administration of poloxamer 407 (Figure 3) which confirms the induction
of hyperlipidemia in the model rats compared with the normal rats. Also, the figure revealed that there is a reduction in
the total cholesterol, triglyceride, and LDL with ~27%, ~50%, and ~45%, respectively, after 24 h of the administration of
the Curcuma oil-based SNEDDS-loaded 3D-P pills. The same behavior with a slight and insignificant difference has
appeared with the non-SNEDDS-loaded RSV 3D-P pills. This finding displayed a hypolipidemic activity of Curcuma oil
that is only loaded in the first formula and equivalent to the second formula that contains non-SNEDDS-loaded RSV.
Figure 3A revealed that after 24 h, the SNEDDS-loaded RSV 3D-P pills and SNEDDS-loaded GMD/RSV 3D-P polypills
significantly reduced the serum total cholesterol by ~46% and ~51%, respectively, which was significantly different from

Figure 2 (A) Blood glucose level and (B) the percentage of inhibition of blood glucose level after oral administration of the 3D-printed polypills to induced-hyperglycemic
/dyslipidemic male Wistar rats.
Notes: #Indicates significant from the control group. *Indicates significant from plain SNEDDS-loaded 3D-P pills. Significant difference was considered at P < 0.05. Data are
presented as mean ± SD, (n = 3).
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the corresponding plain SNEDDS and the control (P < 0.05). Also, Figure 3B displays the level of triglycerides in the
model group was significantly higher than that in the control group (P < 0.05). The marked reduction in the level of
triglyceride was observed in all groups after 2 h and extended for 72 h. A significant reduction was noticed between the
Curcuma oil-loaded SNEDDS and the SNEDDS-loaded RSV at all time points, but the significant difference was
achieved only at 6 h between the non-SNEDDS loaded RSV pills and the SNEDDS-loaded RSV pills. An interesting
finding by reducing the level of the circulating triglyceride was 60% after 24 h with the SNEDDS-loaded RSV 3D-P
pills. These results implied that SNEDDS-loaded RSV 3D-P polypills have the potential in reducing the lipid contents in
the serum of dyslipidemic rats. Similarly, serum lipoproteins were also evaluated and presented in Figure 3C and D. The
LDL levels were decreased in the serum of the dyslipidemic rats treated with SNEDDS-loaded RSV 3D-P pills and
SNEDDS-loaded GMD/RSV 3D-P polypills with 58.5% and 62.5%, respectively, compared with the model group after
24 h. Figure 3C reveals that there is a significant reduction (p < 0.05) in the LDL percentage over 72 h between the plain
SNEDDS and non-SNEDDS-loaded RSV pills and the SNEDDS-loaded RSV pills. On the other hand, the plain
SNEDDS-loaded 3D-P pills showed an elevated percentage in the circulating HDL by ~53% in comparison with its
value in the model group. Also, it was noticed that there is no significant difference between these pills and the non-
SNEDDS-loaded RSV 3D-P pills in the elevation percentage of HDL at the same time. But the significant difference has
been verified between these two pills and the SNEDDS-loaded RSV and SNEDDS-loaded GMD/RSV 3D-P pills which

Figure 3 Serum lipid profile in induced-hyperglycemic/dyslipidemic male Wistar rats after oral treatment with a single dose of the prepared 3D-printed polypills. (A) Levels
of total cholesterol; (B) levels of triglycerides; (C) LDL levels and (D) HDL levels.
Notes: #Indicates significant from the control group. *Indicates significant from plain SNEDDS-loaded 3D-P pills. $Indicates significant from non-SNEDDS-loaded 3D-P pills.
Significant difference was considered at P < 0.05. Data are presented as mean ± SD, (n = 3).
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produced an elevation percentage of ~89%, and ~86%, respectively. Surprisingly, the level of HDL elevation reached the
normal level after 2 h with significant (p < 0.05) elevation at all time points of the study between and the SNEDDS-
loaded RSV and SNEDDS-loaded GMD/RSV 3D-P pills and the model group. The greater hypolipidemic activity of
SNEDDS-loaded RSV 3D-P polypills can be explained by the greater solubilization of RSV, which could have increased
absorption and thereby a higher plasma drug concentration (higher bioavailability) corresponding to the pharmacokinetic
data. These findings were in good agreement with a previous work that reported an increase in HDL levels after 24 h and
a reduction in the total cholesterol and LDL levels following administration of RSV solid lipid nanoparticle formulation,
after 36 and 12 h, respectively.39 Figure 4 shows the calculated atherosclerotic index (AI) as a predictor of metabolic
disorders for all groups. AI was determined according to the reported formula, log (Triglyceride/HDL).40,41 The figure
displayed a significant decrease in the AI value between all formulations and the model group (P < 0.05). Furthermore,
higher significances were observed between SNEDDS-loaded RSV pills and non-SNEDDS and plain SNEDDS for-
mulations. These outcomes suggested that RSV-loaded SNEDDS could decrease the risk of coronary disease and
atherosclerosis by boosting the level of HDL and lowering both triglyceride and LDL levels.

Assessment of Hepatoprotective and Antioxidant Activity
The most common hepatic serum biomarkers namely, AST, ALT, and ALP showed a dramatic increase after adminis-
tration of poloxamer 407 in the induced-dyslipidemic rats (model) that may cause liver injury. Figures 5A–C described
the significant increase (P < 0.05) in the level of these liver enzymes in the model group in comparison with the control
one. Markedly, the rats who administered either SNEDDS-loaded RSV 3D-P pills or SNEDDS-loaded GMD/RSV 3D-P
pills exerted a significant improvement (P < 0.05) in these parameters when compared to the groups given the non-
SNEDDS-loaded GMD or RSV 3D-P pills indicating the impact of incorporating these drugs in SNEDDS formulations
on their efficacy. Despite the significant reduction in the level of the AST and ALT after administration of SNEDDS-

Figure 4 Atherosclerosis index of induced hyperglycemic/dyslipidemic male Wistar rats after oral administration of a single dose of the prepared 3D-printed polypills.
Notes: #Indicates significant from the control group. *Indicates significant from the model group. nsIndicates nonsignificant from the assigned groups. Significant difference
was considered at P < 0.05. Data are presented as mean ± SD, (n = 3). Data are presented as mean ± SEM, (n = 3). Significant difference was considered at P˂0.05.
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loaded RSV 3D-P pills or SNEDDS-loaded GMD/RSV 3D-P pills, the figure showed that there is no significant
reduction between both groups except in the ALP level. Also, the figure revealed there is a significant difference
between the rats who received plain SNEDDS 3D-P pills containing only Curcuma oil and the rats who received all
formulations containing GMD, RSV, or both which confirm the potential of this combination in the hepatoprotective
effect. Metabolic disorders and altered liver enzymes are related to the progression of diseases like myocardial lipidosis
and profound toxicity.42

It was recently reported that RSV has an anti-inflammatory and antioxidant effect against Poloxamer 407-induced
oxidative damage.43 As shown in Figure 6A–C a dramatic decrease with significant effect (P < 0.05) in the serum CAT,
SOD, and GST levels, in response to Poloxamer 407 intoxication, indicated the presence of oxidative stress. Along with
these data, the values of CAT, SOD, and GST that were increased following administration of the SNEDDS-loaded RSV

Figure 6 Antioxidant enzymes of induced-hyperglycemic/dyslipidemic male Wistar rats after oral treatment with a single dose of the prepared 3D-printed polypills. Serum
levels of (A) CAT, (B) SOD, and (C) GST.
Notes: #Indicates significant from the control group. *Indicates significant between other groups. nsIndicates nonsignificant from the assigned groups. Significant difference
was considered at P < 0.05. Data are presented as mean ± SD (n = 3).

Figure 5 Serum liver enzymes (A) levels of ALT, (B) levels of AST and (C) levels of ALP of induced-hyperglycemic/dyslipidemic male Wistar rats after oral treatment with
a single dose of the prepared 3D-printed polypills.
Notes: #Indicates significant from the control group. *Indicates significant between other groups. nsIndicates nonsignificant from the assigned groups. Significant difference
was considered at P < 0.05. Data are presented as mean ± SD (n = 3).
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3D-P pills or SNEDDS-loaded GMD/RSV 3D-P pills were closer to the control values. Notably, rats treated with
SNEDDS-loaded GMD/RSV 3D-P pills significantly upregulated the antioxidant enzymes, CAT, SOD, and GST
compared to the plain SNEDDS and non-SNEDDS loaded GMD or RSV (P < 0.05). These results support the protective
effects of SNEDDS-loaded GMD/RSV 3D-P pills against Poloxamer 407-induced oxidative damage. Furthermore, by
comparing the liver functions and oxidative stress in both non-SNEDDS-treated hyperglycemic/dyslipidemic and
SNEDDS-treated hyperglycemic/dyslipidemic groups, we found that SNEDDS-loaded GMD/RSV 3D-P polypills had
a significantly prominent reduction in serum ALT, AST, ALP levels as well as profound elevation in serum CAT, SOD,
and GST levels (P < 0.05).

Histopathological Examination
Microscopic examination of pancreas tissues of the control group (Figure 7A) revealed the normal structure of both
exocrine units and endocrine components. Islets of Langerhans appeared of normal size and contained β-cells.
Pancreas tissues of the model group (Figure 7B) showed atrophied ill-distinct islets of Langerhans that contained
few vacuolated and necrotic β-cells. Necrosis of islets of Langerhans was noticed accompanied by eosinophilic tissue
debris. Examination of group 2 (Figure 7C) that was administered the plain SNEDDS loaded with Curcuma oil 3D-P
pills revealed mild to moderate atrophy of islets of Langerhans associated with necrobiotic changes that affected
some islets which characterized by vacuolation of β-cells and few necrotic debris. Administration of non-SNEDDS-
loaded GMD 3D-P pills to the rats (Figure 7D) showed partial improvement in the islets of Langerhans that
characterized by the presence of variable-sized islets and the existence of vacuolated cells. Regarding rats receiving
non-SNEDDS-loaded RSV 3D-P pills (Figure 7E), marked vacuolation of the islets of Langerhans cells was
frequently observed along with cystic dilated intralobular pancreatic ducts were commonly detected in some

Figure 7 Histopathological images of the pancreas cells. Photomicrograph for the pancreas of the control group showing normal islets of Langerhans (A). Photomicrograph for the
pancreas of the model group showing necrosis of islets of Langerhans admixed with an accumulation of eosinophilic tissue debris “black arrow” (B). Photomicrograph for the
pancreas of plain SNEDDS-loaded 3D-P pills showing average-sized islets of Langerhans with few vacuolated cells (arrow) and few necrotic debris (C). Photomicrograph for the
pancreas of non-SNEDDS-loaded GMD 3D-P pills showing vacuolation in the islets cells (D). Photomicrograph for the pancreas of non-SNEDDS-loaded RSV 3D-P pills showing
marked vacuolation of islets cells with reduction of islets size (E). Photomicrograph for the pancreas of SNEDDS-loaded GMD 3D-P pills showing atrophy of pancreatic islet with
vacuolation and mild congested blood vessel (F). Photomicrograph for the pancreas of SNEDDS-loaded RSV 3D-P pills showing mild atrophy of pancreatic islets (G).
Photomicrograph for the pancreas of SNEDDS-loaded GMD/RSV 3D-P polypills showing apparently normal pancreatic islet (H).
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examined sections. Administration of SNEDDS-loaded GMD 3D-P pills to animals demonstrated partial protection of
the pancreatic islets that showed variable size and vacuolation of the endocrine cells (Figure 7F). A variable number
of congested blood vessels was noticed in some affected tissue sections. Animals that received SNEDDS-loaded RSV
3D-P pills showed marked improvement in the pancreatic islets regarding size. However, vacuolated cells were still
noticed among the examined pancreatic islets (Figure 7G). The highest protection was noticed in animals that were
treated with SNEDDS-loaded GMD/RSV 3D-P polypills. The pancreatic islets of this group showed normal size with
apparently normal pancreatic parenchyma including exocrine acini and pancreatic duct (Figure 7H).

As illustrated in Figure 8, the area of islets of Langerhans was decreased significantly in the model group when
compared to the control group, all groups treated with SNEDDS-loaded formulations. The absence of significant
difference was noticed between these groups and the highest pancreatic islets area average was noticed in the rats
treated with SNEDDS-loaded GMD/RSV 3D-P polypills.

On the other hand, microscopic examination of liver tissues of the control group revealed normal hepatocytes that
orderly arranged in normal lobular architecture with central veins and radiating hepatic cords. The portal triads showed
normal histology containing branches of the hepatic artery, portal vein, and bile duct (Figure 9A). Animals of the model
group showed diffuse steatosis of the hepatic parenchyma. The hepatocytes showed macro and microvesicular steatosis.
The cytoplasm displayed a fat globule that pushed the nucleus to the periphery giving the characteristic signet ring
appearance. Some examined sections showed diffuse hemorrhages and widening of hepatic sinusoids. Activation of
Kupffer cells was also observed among the affected hepatic lobules associated with sporadic cell necrosis and apoptosis
of hepatocytes (Figure 9B). Administration of the plain SNEDDS loaded with Curcuma oil 3D-P pills revealed partial
protection of the hepatic parenchyma. Several examined sections showed widespread microvesicular steatosis among the
hepatic lobules (Figure 9C). Mild improvement was recorded in rats that received non-SNEDDS-loaded GMD tablets.
The hepatic parenchyma showed diffuse steatosis in the hepatocytes associated with hemorrhages and expansion of
hepatic sinusoids in some instances (Figure 9D). Likewise, animals treated with non-SNEDDS-loaded RSV 3D-P pills

Figure 8 Area of islets of Langerhans in different groups.
Notes: *Indicates significant from the control group. #Indicates significant from the model. &Indicates significant from plain-SNEDDS-loaded 3D-P polypills. αIndicates
significant from non-SNEDDS-loaded GMD 3D-P polypills. βIndicates significant from non-SNEDDS-loaded RSV 3D-P polypills. Data were presented as mean ±SD (n = 3).
Significant difference was considered at P < 0.05.
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showed marked fatty change of the affected hepatocytes associated with activation of Kupffer cells. The hepatocytes
displayed large fat globules that pushed the nucleus to the periphery with a signet ring appearance (Figure 9E). Marked
protection of hepatic parenchyma was noticed in rats that were administered SNEDDS-loaded GMD 3D-P pills.
Examination of hepatic tissue showed apparently normal hepatocytes. However, widening of hepatic sinusoids was
commonly detected in the affected tissue (Figure 9F). Similarly, SNEDDS-loaded RSV 3D-P pills administered to rats
showed a marked enhancement in the hepatic parenchyma in several examined sections. The hepatic sinusoids were less
expanded when compared to the group that received the SNEDDS-loaded GMD 3D-P pills. The hepatocytes appeared
apparently normal with the absence of fat vacuoles in their cytoplasm (Figure 9G). Finally, examination of liver sections
of animals that received SNEDDS-loaded GMD/RSV 3D-P pills showed apparently normal hepatocytes with normal
hepatic sinusoids. This group illustrated the highest protection level with less detectable steatosis in the examined
hepatocytes (Figure 9H). According to the studied steatosis score, a significant decrease was detected in the rats that
received the plain SNEDDS loaded with Curcuma oil 3D-P pills as well as the groups that administered SNEDDS-loaded
GMD, RSV, or both when compared with the model group. Meanwhile, a significant increase was recorded in the model,
and groups received non-SNEDDS-loaded GMD or RSV 3D-P pills. These findings confirm the potential of Curcuma oil
as adjunct therapy with GMD and RSV in the prophylaxis of steatosis in patients with metabolic disorders. The lowest
level was detected in rats treated with SNEDDS-loaded RSV alone or GMD/RSV polypills which showed an absence of
significant difference when compared with the control group (Figure 10).

Conclusions
Three-dimensional printing of polypills based on the Curcuma oil self-nanoemulsifying drug delivery system and loaded
with glimepiride and rosuvastatin were developed and showed acceptable quality attributes. These polypills improved the
pharmacokinetics of both glimepiride and rosuvastatin with AUC0-t values of 16,035.25 ng/mL×h and 67,811.75 ng/mL×h,

Figure 9 Histopathological images of the liver cells. Liver tissue from the control group showing normal histological structure (A). Liver tissue from the model group
showing diffuse steatosis of the hepatic parenchyma (B). Liver tissue from plain-SNEDDS-loaded 3D-P polypills showing steatosis of hepatocytes (C). Liver tissue from non-
SNEDDS-loaded GMD 3D-P polypills showing hemorrhages and steatosis of the hepatic parenchyma (D). Liver tissue from non-SNEDDS-loaded RSV 3D-P polypills showing
widespread micro and macrovesicular steatosis in the hepatic parenchyma (E). Liver tissue from SNEDDS-loaded GMD 3D-P polypills showing apparently normal
hepatocytes (F). Liver tissue from SNEDDS-loaded RSV 3D-P polypills showing mild dilation of hepatic sinusoids (G). Liver tissue from SNEDDS-loaded GMD/RSV 3D-P
polypills showing apparently normal hepatic parenchyma (H).

https://doi.org/10.2147/IJN.S357356

DovePress

International Journal of Nanomedicine 2022:171798

El-Say et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


respectively in comparison to the non-SNEDDS-loaded 3D-P pills. Furthermore, these polypills showed significant anti-
dyslipidemic, hepatoprotective and antioxidant activities when compared with the control and non-SNEDDS-loaded drugs.
Also, SNEDDS-loaded GMD/RSV polypills could decrease the risk of coronary disease and atherosclerosis by boosting the
level of HDL and lowering both triglyceride and LDL levels. No marked hepatic histopathological changes with normal
hepatic sinusoids and illustrated the highest protection level with less detectable steatosis in the examined hepatocytes. Also,
microscopic examination of the pancreatic specimen showed apparently normal size pancreatic islets with apparently normal
pancreatic parenchyma including exocrine acini and pancreatic duct. All these findings confirm the potential of Curcuma oil
as adjunct therapy with GMD and RSV in the prophylaxis of the risk of coronary disease and liver steatosis in patients with
metabolic syndrome. Further clinical studies to substantiate the present findings is needed.
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