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Abstract: Cancer is the second leading cause of death in the world, behind only cardiovascular diseases, and is one of the most serious
diseases threatening human health nowadays. Cancer patients’ lives are being extended by the use of contemporary medical technologies,
such as surgery, radiotherapy, and chemotherapy. However, these treatments are not always effective in extending cancer patients’ lives.
Simultaneously, these approaches are often accompanied with a series of negative consequences, such as the occurrence of adverse effects
and an increased risk of relapse. As a result, the development of a novel cancer-eradication strategy is still required. The emergence of
nanomedicine as a promising technology brings a new avenue for the circumvention of limitations of conventional cancer therapies. Gold
nanoparticles (AuNPs), in particular, have garnered extensive attention due to their many specific advantages, including customizable size
and shape, multiple and useful physicochemical properties, and ease of functionalization. Based on these characteristics, many therapeutic
and diagnostic applications of AuNPs have been exploited, particularly for malignant tumors, such as drug and nucleic acid delivery,
photodynamic therapy, photothermal therapy, and X-ray-based computed tomography imaging. To leverage the potential of AuNPs, these
applications demand a comprehensive and in-depth overview. As a result, we discussed current achievements in AuNPs in anticancer
applications in a more methodical manner in this review. Also addressed in depth are the present status of clinical trials, as well as the
difficulties that may be encountered when translating some basic findings into the clinic, in order to serve as a reference for future studies.
Keywords: gold nanoparticles, cancer, drug delivery, photothermal therapy, photodynamic therapy

Introduction
In recent decades, a growing number of people are suffering from cancer. According to the data from GLOBOCAN 2020,
there were about 19.3 million new cancer cases and 10.0 million cancer-related deaths occurred around the world.1 The
number of new cases and death cases from cancer is predicted to rise to 22 million and 13 million annually, respectively,
by 2030.2 Currently, there are many effective therapies against cancer in clinic, among which surgery, radiotherapy (RT)
and chemotherapy are the most leading treatment modalities.3 Although surgery is usually considered the most effective
therapy at the early stage of disease, it is difficult to achieve satisfactory results at the later stage of cancer because
cancerous cells have spread throughout the body.4 Even some patients may undergo cancer recurrence after the operation
and have short survival time.5 Similar to surgery, RT is also barely efficient for metastatic tumors and may result in the
recurrence of cancer. Chemotherapy is regarded as the most valuable approach for most patients with metastatic and late
staged cancer, since chemotherapeutic drugs can reach every organ in the body via the bloodstream.6 However, the
widespread distribution of chemotherapeutic drugs might also lead to additional effects on normal tissues. Since
chemotherapeutic drugs are not limited to cancer cells, large dosage and repeated administration are required for ideal
results, which also leads to undesired side effects.7 These drawbacks, in combination with drug resistance development
and poor aqueous solubility of drugs have emerged as significant problems restricting the clinical utilization of

International Journal of Nanomedicine 2022:17 2041–2067 2041
© 2022 Yang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

International Journal of Nanomedicine Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 21 December 2021
Accepted: 20 April 2022
Published: 6 May 2022

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
http://www.dovepress.com/permissions.php
https://www.dovepress.com


chemotherapeutic medications currently available.8 Therefore, there is an urgent need for new strategies and devices to
treat and diagnose cancer more efficiently and accurately.

Various drug delivery systems have been developed during the last few decades to enhance the anti-tumor efficacy of
chemotherapy drugs. It is feasible to deliver medications selectively into the target locations using a specialized delivery
vector, hence reducing the likelihood of adverse effects. The use of nanotechnology in drug delivery systems gave
reason to believe that this goal would be reached in the near future. For instance, the Food and Drug Administration
(FDA) of the United States approved albumin-bound paclitaxel (nab-paclitaxel), a solvent-free nanoformulation of
paclitaxel as a powerful therapy in patients with metastatic breast cancer in 2005. In the United States, the nab-
paclitaxel has been approved for the treatment of many solid tumors, including breast cancer, non-small-cell lung
cancer, and pancreatic cancer.9 More investigations for the treatment of other solid tumors based on the nab-paclitaxel
are ongoing. Because of their unique physicochemical features, nanoparticles (NPs) have garnered a great deal of
interest in recent decades and were believed to be one of the most promising drug delivery vectors. Given that solid
tumors have wider vascular cell gaps (200 nm-1.2 µm in size) than normal tissues (<10 nm in size),10,11 the NPs loading
drugs may readily cross leaky tumor vascular walls and then be accumulated into tumor areas, as a result of the
enhanced permeability and retention (EPR) effect.12–14 More important, surface modification of NPs by introducing
targeting molecules that bind to overexpressed receptors or antigens on the target cells also favors the increase in
intratumoral accumulation of NPs. Both the passive (the EPR effect) and active (conjugating targeting molecules)
approaches can help decrease the accumulation of available chemotherapy drugs at non-target sites, reducing unwanted
side effects. Therefore, the use of nanoparticles as transport carriers brings a potential avenue for the circumvention of
limitations of conventional cancer therapies.

Noble metal nanoparticles, especially gold nanoparticles (AuNPs), have drawn more and more attention in medical
field, with particular emphasis on oncology in recent studies.15 First of all, AuNPs have multiple geometric shapes and
sizes (Figure 1), which can be controlled through simple synthetic approaches.16–18 As well, many physical and chemical
properties of AuNPs, such as catalytic ability, melting point, electric conductivity and color, can be controlled by
changing their shape, size and even surrounding environment.19 Such design flexibility for ideal performance and
a specific application is difficult to be achieved in organic nanoparticles. Moreover, AuNPs have unique size- and
shape-dependent optical nature, owing to the coherent oscillation of free electrons, so-called surface plasma resonance
(SPR) effect.20 Due to the optical property, AuNPs have been developed as ideal nano-objects, such as biosensors,
imaging agents and photothermal agents for medical diagnosis, imaging and treatment, which is relatively infrequent for
the other inorganic nanomaterials. Meanwhile, large surface area and high surface activity of AuNPs endow the ability of
functionalization and high loading amounts. AuNPs can directly or indirectly conjugate and interact with various
molecules, including drugs, nucleic acids (DNA or RNA), proteins or peptides, antibodies, targeting ligands, and other
molecules (Figure 2).21 The coupling possibility and diversity largely improve their biological activities and broaden the
range of their potential anticancer applications. Furthermore, AuNPs have been found to be relatively stable in
physiological medium because of the modification of amphiphilic materials,22 and biocompatible due to inert nature of
metallic gold.23 All of these features have rendered AuNPs increasingly popular nano-vectors in oncology.

This review focuses on various widely utilized AuNPs applications in cancer treatment and diagnostics, including
drug and nucleic acid delivery, photodynamic therapy (PDT), photothermal therapy (PTT), and X-ray computed
tomography (CT) imaging, among others. In addition, possible combination therapy for full tumor suppression should
be investigated further. Apart from preclinical studies and data, current breakthroughs in AuNPs in clinical trials were
also thoroughly reviewed and discussed in detail. Additionally, also discussed in detail are the existing obstacles that are
preventing AuNPs from receiving FDA approval, with the goal of providing a theoretical contribution to the clinical
translation of AuNPs.

AuNPs in Cancer Therapy
Due to their unique optical properties and conjugating variety, AuNPs show great potential in cancer therapy. In this
section, we will discuss in detail the therapeutic applications of gold nanoparticles for malignant tumors, including drug

https://doi.org/10.2147/IJN.S355142

DovePress

International Journal of Nanomedicine 2022:172042

Yang et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


and nucleic acid delivery, PDT, PTT and possible combination therapies. Currently, these applications are still under
development.

AuNPs in Drug/Nucleic Acid Delivery
It has been proven that AuNPs have several fundamental properties when serving as drug delivery carriers. According to
the EPR effect, the nanoscale particles can preferentially accumulate at tumor sites. In addition, surface functionalization
can be easily achieved since AuNPs have negative surface charges and strong covalent affinity for thiol, amino and
carboxyl. It means that AuNPs can bind with various molecules, including drugs, nucleic acids, antibodies and targeting
ligands, which shows potential for active targeted delivery. These features render AuNPs promising candidates as drug
carriers. Herein, we will present the utilization of AuNPs with regard to drug delivery and nucleic acid delivery.

Drug Delivery
In 2004, Paciotti and co-workers first reported the use of colloidal gold as delivery vectors.24 They conjugated tumor necrosis
factor (TNF) onto the surface of AuNPs, with the aim of delivering the TNF to the tumor tissue growing in mice. It was shown
that the AuNP-TNF conjugate actually possessed higher tumor accumulation and consequent lower toxicity in healthy organs
when compared to native TNF.24 Thereafter, the use of AuNPs as delivery tools has been explored deeply. Nowadays, it has been

Figure 1 Different sizes and shapes of AuNPs. The sizes and shapes of AuNPs can be controlled through simple synthetic methods.
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reported that AuNPs had the ability to deliver multiple types of antitumor molecules (Table 1), including synthetic compounds,25

phytochemicals,26,27 therapeutic peptides28,29 and coordination compounds.30,31 These antitumor molecules have cytotoxic or
regulating effects on cancer cells but some drawbacks such as low solubility, short half-life, the development of drug resistance
and weak tumor selectivity limit their practical applications. One of the effective approaches is to conjugate the anticancer
molecules to nanoparticles, particularly AuNPs with a “hard” core.

Doxorubicin (DOX) is one of the most frequently used anticancer drugs, but it is highly likely to induce drug resistance in
tumor cells. In some studies, DOX could conjugate with stabilizer-modified AuNPs through either non-covalent or covalent
interactions.32–34 Studies suggested that the connection favored the intracellular accumulation of the DOX in drug-resistant
cancer cells, demonstrating the possibility of bypassing drug resistance in the case of conjugation (Figure 3).34 Themechanism
by which drug resistance could be avoided by nanoparticle-mediated conjugation may be related to different internalization
mechanisms. The internalization mechanism of free DOX is different compared with the conjugated DOX that enter cells by
endocytosis approach, avoiding P glycoprotein related drug resistance, as it was suggested by Wojcik et al32 5-fluorouracil
(5-FU) is another powerful antineoplastic drug, whose highly polar nature limits its topical use in the treatment of skin cancer.
Delivery of 5-FU by cetyltrimethylammonium bromide (CTAB)-stabilized AuNPs could gain about 2-fold higher skin
permeability compared with the free 5-FU formulation and achieve 6.8- and 18.4-fold lower tumor volume compared with
the negative group (Figure 4).35 It indicated that attaching hydrophilic drugs to AuNPs can contribute to an increase in the skin
permeability and consequent drug efficacy against skin cancer. This may have something to do with the use of stabilizer CTAB
with positive electricity.36 It is worth noting that stabilizers or spacers seem not to be indispensable in the structure of the
conjugates. Some drugs with specific groups can directly link with AuNPs, such as methotrexate (MTX) with carboxylic
groups.37 Even the simplest conjugate (MTX-AuNPs) also showed enhanced cytotoxic effect against cancer cells, while free
MTX exhibited reduced anticancer effect at equal doses.37,38

It is known that the selectivity of drugs for specific tissues and organs has become a major challenge in recent years.
The development of drug delivery systems may be a crucial solution to overcome this problem. AuNPs are one of the
most popular drug delivery platforms, based on their negative surface and high affinity with many functional groups,
especially thiol. For active targeting, the most classic and valuable approach is still introducing targeting ligands onto the
surface of AuNPs.39 The working principle of this approach lies in taking advantage of the affinity of certain substrates
for specific receptors. As a fact, compared with normal cells, cancer cells with a higher metabolic rate can over-express

Figure 2 Diverse connecting molecules of AuNPs. AuNPs can directly or indirectly connect various molecules including drugs, nucleic acids (DNA or RNA), proteins or
peptides, antibodies, targeting ligands, and other molecules for ideal biological activities and diverse medical applications.
Abbreviation: Hv, irradiation with light.
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certain receptors that attract and contact substances to achieve their metabolite.40 The delivery carrier carrying drugs
must have a selective affinity for cancer cells, so it is highly possible for drugs loaded to be selectively transported to the
cancer cells with a desired dose. Based on this, several targeting molecules have been chosen, such as transferrin (Tf),41

pectin (PEC),42 hyaluronic acid (HA),43 folic acid (FA),44,45 and galactose (Gal).46 Additionally, less stable oligonucleo-
tide fragments can also be used as targeting ligands. It has been reported that by using targeting element nucleolin
aptamer (AS1411), a guanosine-rich single-stranded DNA (ssDNA), both DOX and aptamer against Forkhead box M1
(FOXM1 Apt) were selectively co-delivered into cancer cells.47 In return, AuNPs could also protect unstable nucleic acid
fragments against degradation by nucleases.48,49 Besides, some therapeutic drugs that belong to monoclonal antibodies
(mAbs) are inherently targeting, such as cetuximab (C225),50 trastuzumab (Tmab).51 The conjugation between mAbs and
AuNPs is more important for cancer treatment compared to the mAb-based monotherapy. Except for those effects
mediated by mAbs alone, the conjugation can lead to other cytotoxic effects, such as oxidative stress and autophagy
caused by AuNPs,52 which can largely increase the overall efficacy. By loading another therapeutic drug, not only

Table 1 Examples of Gold Nanoparticles for Various Anticancer Drug Delivery

Anticancer
Drug

Modifying
Molecule

Nanocomplex
Name

Cell Line Main Outcome Anticancer
Application

Reference

DOX PEC DOX-PEC-

AuNPs

HepG2

cells

Stronger cytotoxicity compared to

free DOX.

Targeted delivery of

DOX to

hepatocarcinoma cells

42

5-FU PEG and FA AuNPs-PEG-

5-FU-FA

M139 and

M213 cells

Higher cytotoxic effects as

compared to free 5-FU and FA.

Targeted delivery of

5-FU and targeted
therapy of

cholangiocarcinoma cells

44

DTX HA and

GFLGC

DTX@HA-cl-

AuNPs

HeLa and

MCF-7
cells

Higher cytotoxicity and tumor

inhibition efficacy than free DTX
under near-infrared laser

irradiation.

Targeted anticancer

therapy in combination
with laser treatment

43

LIN CALNN

and GSH

LIN-AuNPs-

CALNN

MCF-7

cells

Higher antioxidant activity and

anticancer activity as compared to

Linalool and AuNPs alone.

Human breast cancer

therapy

27

K - K-AuNPs MCF-7

cells

Higher cell apoptosis,

antiproliferative ability and
inhibition of angiogenesis compared

to pure kaempferol.

Human breast cancer

therapy

26

P1 - P1-AuNPs HT-29 and

MDA- MB-

231 cells

Higher DNA disintegration in both

cells and subsequent cell apoptosis

compared to AuNPs and P1 alone.

Human colon cancer

and breast cancer

therapy

29

TS265 PEG, anti-

EGFR D-11
and BSA

TargetNanoTS265 A549 and

HCT116
cells

Elevated tumor cytotoxicity and

tumor inhibition efficacy as
compared to the free TS265.

Targeted delivery of

anticancer agents

30

ZnD PEG, C225
and BSA

NanoZnD DOX-
resistant

HCT116

cells

Enhanced antiproliferative potential
and reduced tumor growth when

compared to free ZnD.

Targeted drug-resistant
cancer therapy

31

Abbreviations: 5-FU, 5-fluorouracil; anti-EGFR D-11, monoclonal antibody D-11 against epidermal growth factor receptor; AuNPs, gold nanoparticles; BSA, bovine serum
albumin; C225, cetuximab; CALNN, Cys-Ala-Leu-Asn-Asn; DOX, doxorubicin; DTX, docetaxel; FA, folic acid; GFLGC, Gly-Phe-Leu-Gly-Cys; GSH, glutathione; HA,
hyaluronic acid; K, kaempferol; LIN, linalool; P1, Boc-L-DP-L-OMe; PEC, pectin; PEG, polyethylene glycol; TS265, CoCl(H2O) (phendione)2][BF4]; ZnD, [Zn(DION)2]Cl2.
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targeted delivery of the drug but also a combined antibody/drug effect were achieved.53 These investigations demon-
strated that the AuNPs modified with targeting ligands are largely useful for the targeted delivery of anticancer drugs.

Nucleic Acid Delivery
Gene therapy is an ideal method to prevent and treat cancer by using foreign DNA and RNA. Compared to small-
molecule drugs, nucleic acid drugs are largely labile. On the one hand, the nucleic acid drugs are vulnerable to various
environmental risks, such as enzymatic, chemical and physical degradation during gene manipulation and gene
transfection.54 On the other hand, such drugsas biologic agents are prone to immunogenicity and are consumed readily
by innate immune cells. Therefore, ideal delivery vehicles are required to deliver such drugs into cells, to prevent nucleic
acid drugs from degradation and have a better transfection effect.55 Currently, viral vector systems are very popular for
gene delivery but can activate the host’s immune response, which reduces efficiency of future gene therapy.56 Delivery of
nucleic acids via non-viral vectors systems, such as gold nanoparticles, can avoid this problem. In comparison to viral
vectors, surface design of AuNPs is more flexible, which aids in functionalization and biocompatibility in the body.56

Moreover, AuNPs can protect nucleic acid from nuclease degradation and physical damage54 and show more than 99%
cellular uptake in spite of surface negative charge.57

Figure 4 Schematic diagram for AuNPs synthesis and 5-FU loading using CTAB, and growth curves of A431 tumors in C57BL/6 mice. Reprinted with permission from
Safwat MA, Soliman GM, Sayed D, Attia MA. Fluorouracil-Loaded Gold Nanoparticles for the Treatment of Skin Cancer: development, in Vitro Characterization, and in Vivo
Evaluation in a Mouse Skin Cancer Xenograft Model. Mol Pharm. 2018;15(6):2194–220.35

Abbreviations: 5-FU, 5-fluorouracil; CTAB, cetyltrimethylammonium bromide; GNPs, gold nanoparticles.

Figure 3 Intracellular distribution of free DOX and Au-SS-DOX in HepG2-R cells. Confocal images of cells treated with (A) free DOX and (B) Au-SS-DOX showing
distribution of DOX-derived fluorescence (red). (C) Intracellular DOX fluorescence intensity in HepG2-R cells after exposure to free DOX and Au-SS-DOX for 24 hours.
Reprinted from Nanomedicine, 8(2), Gu YJ, Cheng J, Man CW, Wong WT, Cheng SH. Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. 204–211,
copyright 2012, with permission from Elsevier.34

Abbreviations: DOX, doxorubicin; SS, disulfide linkage.

https://doi.org/10.2147/IJN.S355142

DovePress

International Journal of Nanomedicine 2022:172046

Yang et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Based on the properties above, AuNPs conjugated with nucleic acid can be used for gene silencing therapy in tumor model.
For instance, Tunc et al embeddedmorpholino antisense oligonucleotides into aDNA-tile-AuNPs structure for treatment of breast
cancer. They found that theDNA-tile-AuNPs structure deliveredmorpholinos and silenced the expression ofHER2 andERα gene
in breast cancer cells more effectively than the liposome-based system.58 Besides, due to the photothermal effect of AuNPs, the
conjugate has the ability to become a dual functional delivery nanoplatform that achieves simultaneously gene silencing and
photothermal therapy.59 The complex still has a good photothermal effect even after nucleic acid functionalization. The composite
significantly inhibited tumor growth without overt side effects for major organs after laser exposure.60 Furthermore, AuNPs can
load simultaneously gene and chemotherapy drugs to achieve a synergistic effect. Huang et al prepared a multifunctional
nanoplatform based on AuNPs, which co-delivered microRNA-122 and DOX, achieving triple therapy (photothermal therapy,
chemotherapy and gene therapy).With the aid of polyethylene glycol (PEG) andHA, this delivery system could selectively target
hepatoma carcinoma cells without toxicity to the main organs and showed a better antitumor effect than any single therapy.61

The release of DNA from the gold nanocomplex can be triggered by exogenous light. Upon laser irradiation, the heat
generated by AuNPs through the photothermal effect is transmitted to the ambient DNA molecules. When the temperature
reaches the threshold, the chemical linkages break, thus leading to DNA release.62 Interestingly, the specific DNA release
mechanisms induced by continuous wave (CW) versus pulsed lasers are different. Upon CW laser irradiation, high
temperature results in dehybridization between double-stranded DNA (dsDNA) and release of nonthiolated ssDNA, while
upon pulsed laser illumination, the entire DNA molecules are liberated through Au-S bond cleavage (Figure 5).63 The
discrepancy in release mechanismmakes cell mortality rate different. In a work, an anticancer drug docetaxel (DTX) was inset
into complementary dsDNA that was first attached to gold nanoshells (silica core) through the Au–thiol bond for the treatment
of breast cancer. The CW laser-induced DTX release caused a significant increase in breast cancer cell death, while the pulsed
laser-induced drug release resulted in unobvious cell death (Figure 6).64 Accordingly, AuNPs can be used as a promising
genetic drug delivery vector, achieving multifunctional anti-cancer therapy.

AuNPs in Photodynamic Therapy
More than 100 years ago, photodynamic therapy has been first proposed. Nowadays, it has developed into a relatively
safe and effective therapeutic modality, especially for skin diseases.65 The PDT includes three important elements:

Figure 5 NIR light-induced DNA release. CW irradiation results in dehybridization between dsDNA and release of nonthiolated ssDNA, while pulsed irradiation results in
Au−S bond cleavage and release of entire DNA. Reprinted with permission from Goodman AM, Hogan NJ, Gottheim S, Li C, Clare SE, Halas NJ. Understanding Resonant
Light-Triggered DNA Release from Plasmonic Nanoparticles. ACS Nano. 2017;11(1):171–179.63

Abbreviation: hv, irradiation with light.
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a photosensitizer (PS), light with an appropriate wavelength and molecular oxygen (O2). The original PS molecule can be
activated easily by light to transform into an excited singlet state. However, the unstable excited singlet PS easily loses
spare energy in the form of heat production or emission of light to turn into an excited triplet state. Compared to the
excited singlet state, the excited triplet state is more stable, so that it has sufficient time to undergo photochemical
reactions in the presence of O2 to produce reactive oxygen species (ROS) such as singlet oxygen (1O2).66 The
overproduction of ROS triggers oxidative stress, causing cell death by cell apoptosis or necrosis. The PDT takes
advantage of this working principle to damage diseased cells. However, most of the PSs are low water-soluble and
tend to aggregate in physiological media, largely affecting the quantum yield of 1O2. Another drawback of PSs is their
non-specific biodistribution in vivo, which may cause unwanted systematic side effects. Hence, to obtain the ideal PDT
result, it is crucial to ensure the stability and tumor selectivity of the PS molecules in vivo.

Conjugating the PSs on the AuNP surface is an effective method to overcome the above drawbacks. It has been reported that
incorporating hydrophobic porphyrin derivatives to the AuNPs that were first modified with hydrophilic PEG chains rendered it
possible to obtain a higher aqueous solubility.67,68 Meanwhile, the water-soluble, porphyrin-containing conjugate was shown to
produce higher 1O2 compared to free porphyrin derivatives, thus achieving increased PDT results in cell model.67,68 A similar
effect could also be achieved in the case of conjugation of AuNPs with meso-tetrahydroxyphenylchlorin (mTHPC), a -
hydrophobic second-generation photosensitizer.69 Modifying hydrophilic molecules onto the AuNPs bound to hydrophobic
drugs is of great significance to improve the solubility and stability. This strategy has enabled higher death rates of cancer cells
compared to free PS molecules. For some water-soluble second-generation PSssuch as methylene blue (MB)70 and 5-amino-
levulinic acid (5-ALA),71 they fortunately bypass the problem associated with solubility of first-generation PSs. However, the
hydrophilic nature limits the ability to cross lipophilic cell membranes, consequently decreasing the intracellular accumulation of
the water-soluble PSs and PDT efficacy. It was confirmed that the 5-ALAwhen bound to AuNPs grafted with targeting moiety
Arg-Gly-Asp (RGD) peptide, could significantly increase its intracellular amount and exhibit the stronger photodynamic
cytotoxicity than free 5-ALA.72 This result can be attributed to the integrin (specific receptor of the RGD peptide) mediated
endocytosis effect, which thus causes the increase in intracellular 5-ALA amount and PDT efficacy. Different from the 5-ALA,
the MB can easily cross the cell membrane in spite of the hydrophilicity due to the special structure of plane benzene ring.73

Targeted delivery of PS molecules using AuNPs for PDT is an important strategy for the selective treatment of
malignant tumors. Dixit and co-workers constructed a nanocomplex (Tfpep-coated PEGylated AuNPs) to selectively

Figure 6 Comparison of cell viability after DTX release from a DNA host without (blue) and with (Orange) CW and pulsed lasers in (A) MDA-MB-231 and (B) RAW 264.7
cells. *P<0.05, **P<0.01, and ***P<0.001. Reprinted with permission from Goodman AM, Neumann O, Norregaard K, et al. Near-infrared remotely triggered drug-release
strategies for cancer treatment. Proc Natl Acad Sci U S A. 2017;114(47):12419–12424. Creative Commons license and disclaimer available from: http://creativecommons.org/
licenses/by/4.0/legalcode.64

Abbreviations: CW, continuous wave; DTX, docetaxel; NS, nanoshell.
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deliver photodynamic prodrug phthalocyanine 4 (Pc 4) to glioblastoma cells. Interestingly, they found that the efficiency
of Pc 4 delivery and PDT was superior over untargeted (AuNPs-Pc 4) NPs, confirming the potential of the Tfpep-AuNPs
for targeted delivery to glioblastoma cells with high Tf receptor expression level (Figure 7).74 In other studies, authors
used the same PEGylated Au nanostructures to load Pc 4. By conjugating the targeting molecules to AuNPs, selective

Figure 7 Tfpep-AuNPs-Pc 4 accumulate in orthotopic brain tumors in vivo. (A) Representative in vivo fluorescence hotmap images of a mouse implanted with an orthotopic glioma
injected with Tfpep-Au NPs-Pc 4 over time. Bar graph quantifies uptake of Tfpep-Au NPs-Pc 4 versus Au NPs-Pc 4. (B) Mice were analyzed for free Pc 4 fluorescence (RFU) 6 hours
post injection. (C) Brains of glioma mice were excised and examined for ex vivo fluorescence (hotmap) after 6 hours. (D) Fluorescence imaging 24 hours post injection of ex vivo
organs from mice injected with Au NPs-Pc 4 or Tfpep-Au NPs-Pc 4. Reprinted with permission from Royal Society of Chemistry. Dixit S, Novak T, Miller K, Zhu Y, Kenney ME,
Broome AM. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale. 2015;7(5):1782–1790.74

Abbreviations: Au NPs, gold nanoparticles; Pc 4, phthalocyanine 4; Tfpep, transferrin.

International Journal of Nanomedicine 2022:17 https://doi.org/10.2147/IJN.S355142

DovePress
2049

Dovepress Yang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


delivery of the Pc 4 into the cancer cells was achieved.75,76 Savarimuthu et al synthesized AuNPs conjugated photo-
sensitizer protoporphyrin IX (PpIX) equipped with FA, which is efficiently taken up by Vero and HeLa cells due to the
presence of the FA and thus exhibit superior phototoxicity compared to the Au-PpIX electrostatic and covalent
complexes.77 In 2018, Calavia et al prepared Pc-AuNPs with lactose as a Pc-releasing nanosystem, where the targeting
ability of the lactose towards galectin-1 receptors overexpressed on breast cancer cells was assessed in vitro. It was
shown that the lactose-Pc-AuNPs possessed higher cytotoxicity in comparison with the control Pc-sPEG-AuNPs.78 In
several studies, small AuNPs (<10 nm) and photosensitizer verteporfin are co-encapsulated into different organic
nanocarriers via different methods, whose surfaces then were modified with triphenylphosphonium, a cationic mitochon-
drial targeting moiety.79,80 Upon X-ray radiation, the nanocomplexes generated cytotoxic 1O2 within the mitochondria,
leading to the alteration of mitochondrial membrane potential and increase in the level of cell apoptosis, but with greatly
reduced radiation doses and radiation side effects.79,80 In conclusion, AuNPs bound to the PS and targeting warheads
have great application prospects in terms of targeted PDT.

AuNPs in Photothermal Therapy and in Combined Therapy
Beyond PDT, photothermal therapy is another attractive light-activated application of AuNPs for cancer treatment. It is
reported that AuNPs have the ability to absorb light to produce localized high temperatures (>43 °C), based on the SPR
effect of free electrons, ultimately resulting in thermal damage for cancer cells.81–83 Importantly, AuNPs can change their
absorption and scattering cross sections and spectrums (from visible to near-infrared (NIR) region) by changing their
size, shapes and adjacent environment.84,85 For instance, the transition efficiency of rod-shaped AuNPs can be tuned by
changing their aspect ratio of length to diameter.86 A similar effect can also be achieved in shell-shaped AuNPs by
changing the relative ratio of core radius and shell thickness.87,88 All of these characteristics endow AuNPs with
outstanding advantages over other nanomaterials that are also used as photothermal agents. However, PTT using visible
light is usually limited to superficial tumors due to their short wavelengths and consequent weak tissue penetration
ability. By contrast, the NIR region is more important since the long wavelengths allow deeper light penetration into
living tissues with less tissue damage.55,89

Hyperthermia involves cancer cell death through two mechanisms, namely cell apoptosis and necrosis. Generally,
hyperthermia induces cell apoptosis by irreversible mitochondrial damage and ROS overproduction.90 Some investiga-
tions, however, have found that the hyperthermia can also induce cell necrosis by cell membrane damage and protein
denaturation.91,92 Markovic et al thought that the mechanisms of thermal damage of cancer cells were apparently related
to induced oxidative stress and depolarization of mitochondrial membrane, eventually resulting in mixed apoptotic/
necrotic cancer cell death.93 In fact, using a single PTT usually cannot completely eradicate the tumor owing to the
intratumoral uneven and uncontrollable heat distribution; the surviving cancer cells fast develop resistance to thermal
stress, jointly leading to tumor metastasis and recurrence.94,95 To further improve the efficacy of cancer treatment, PTT
has been developed to combine with other therapies, such as chemotherapy, PDT and RT.11,96,97

With regard to the combination of PTT and chemotherapy, many types of gold nanocomplexes exhibited strikingly
enhanced cytotoxicity and tumor inhibition effect in comparison with a single application of PTT or chemotherapy.98–101

A good example is the AuNPs modified with aptamer AS1411 and hairpin DNA loading with DOX, which were used for
targeted and synergistic chemo-PTT.102 Upon 808 nm NIR laser illumination (1 or 2 W/cm2), the viability of colon
cancer cells was found to dramatically decrease when compared to separate application of PTT and chemotherapy
(Figure 8).102 The NIR laser not only generated the photothermal effect of gold nanomaterials, but also accelerated the
release of chemotherapeutic drugs from AuNP-based nanocomplexes, enhancing the synergistic treatment effect at the
target site.103 In addition, a high concentration of glutathione (GSH)104 and a weak acidic condition105 are also
responsible for a controlled release of the loaded drugs. Importantly, the combination therapy effectively avoided side
effects caused by high doses of chemotherapeutic agents.106 Even under sub-therapeutic doses, combined therapy also
shows a better antitumor efficacy.107,108 The synergistic effect between hyperthermia and drugs may be attributed to the
following mechanisms. First of all, high temperatures can delay the repair pathways of DNA damage induced by
chemotherapeutic agents, stabilizing chemotherapy-caused DNA damage response.109 Moreover, hyperthermia can
increase the permeability of tumor vasculature and blood flow, which increases the accumulation of chemotherapeutic
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drugs within tumor tissue.110,111 Furthermore, hyperthermia can inhibit the expression of drug resistance-related
transporters, mainly P-glycoprotein (P-gp) through high expression of heat shock factor-1 (HSF-1) trimers, and then
provide the possibility of overcoming multidrug resistance (MDR).112 The gold nanocomplex in combination with drugs
can merge dual therapeutic functions simultaneously under laser irradiation, thus giving rise to synergistic therapeutic
effects.

Another interesting aspect is that PTT can be combined with PDT to achieve a synergistic anticancer treatment. As
mentioned above, PTT alone cannot completely annihilate tumors. Likewise, a single PDT may do not attain
a satisfactory result. For one thing, the PDT treatment usually uses light with limited wavelengths (<700 nm), which
are difficult to penetrate deep tumor tissue.113 For another thing, ample 1O2 generation requires sufficient oxygen supply
within tissue, but the hypoxic state of tumor microenvironment often makes the PSs ineffective in the area.114

Fortunately, it has been corroborated that a combination of PTT and PDT could complement one another to provide
better therapeutic effects than a single PTT or PDT.115–117 The reason may be that hyperthermia caused by PTT can
increase oxygen amount within tumor tissue via boosting blood flow to improve the generation of 1O2, and in turn 1O2

generation caused by PDT can enhance cytotoxicity induced by PTT.118 However, combined PTT/PDT treatment often
requires two kinds of different wavelength lights, which causes complexity of treatment and limits clinical

Figure 8 CCK-8 assay of different formulations. (A & B) Cytotoxicity and IC50 of free DOX, AAHD-NPs. (C) The cell viability of SW480 or L929 cell treated with different
NPs. (D) Cytotoxicity of chemotherapy and PTT effect by a 808 nm laser irradiation (1 W/cm2 or 2 W/cm2) for 10 min. *P < 0.05. **P < 0.01. Reprinted from Biomed
Pharmacother, 130, Zhang Y, Zhou L, Tan J, Liu J, Shan X, Ma Y. Laser-triggered collaborative chemophotothermal effect of gold nanoparticles for targeted colon cancer therapy.
2020;10492. Creative Commons license and disclaimer available from: http://creativecommons.org/licenses/by/4.0/legalcode.102

Abbreviations: AAH, gold nanoparticles modified with AS1411 and DNA; AAHD, gold nanoparticles modified with AS1411 and DNA loading with doxorubicin; APHD,
gold nanoparticles modified with DNA loading with doxorubicin; DOX, doxorubicin; IC50, half-inhibitory concentration; NPs, nanoparticles; PTT, photothermal therapy.
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transformation. Hence, it is necessary to develop a novel PTT and PDT agent that can be activated by a single wavelength
light. For this purpose, Liu’s group designed captopril-stabilized Au nanoclusters (Au25(Capt)18) as the PTT and PDT
agent and chose 808 nm NIR light as the single light source. They found the Au25(Capt)18 had a quick temperature
increasing rate (within 5 min) and continuous 1O2 generation (at least 1 hour) under NIR laser exposure (Figure 9).118

The results suggested that modified AuNPs can be used as a single agent which performs concurrently PTT and PDT
under single wavelength light irradiation.

Furthermore, a collaborative effect also can be achieved by the application of both PTT and RT together. The
combination of PTT and RT promotes an increase in cancer cell lethality, even at a low nanoparticle concentration.97

Additionally, heating the tumors with NIR laser to 48 °C before RT could reduce the X-ray dose required to control the
tumor, thus protecting adjacent normal tissues from ionizing radiation-associated damage.119 On the other hand, using
mild PTT after RT was able to inhibit the self-repair of damaged DNA induced by RT by down-regulating the expression
of DNA repair proteins, thus improving radiosensitive efficiency.120 Accordingly, the dual PTT/RT therapy was indeed
more effective than the use of PTT alone or RT alone.

Triple therapy seems more necessary for complete tumor inhibition, as evidenced by the fact that its therapeutic
efficacy is obviously superior to that of any monotherapy or dual therapy. Although various dual therapeutic therapies

Figure 9 Photothermal and photodynamic effects of Au25(Capt)18. (A) Thermal images of Au25(Capt)18 aqueous solution at different Au concentrations under laser irradiation
(808 nm, 2 W/cm2, 5 min); also, DI water under the same condition was set as the control. (B) Temperature curves in (A). (C) Temperature changes in (A). (D) Photostability
evaluation by measuring the temperature curves of Au25(Capt)18 aqueous solutions after 4 heating–cooling cycles under repeated laser irradiation (2 W/cm2, 5 min for each). (E)
Generation of 1O2 by Au25(Capt)18 via recording the fluorescence emission spectra at 530 nm under laser irradiation at different time points (1W/cm2, 1–70min). (F) Fluorescence
intensities with irradiation time increasing in (E); (G) Generation of 1O2 by Au25(Capt)18 via recording the fluorescence intensities at 530 nm under laser irradiation with different
power densities for 5 min. Reprinted with permission from Royal Society of Chemistry, Liu P, YangW, Shi L, et al. Concurrent photothermal therapy and photodynamic therapy for
cutaneous squamous cell carcinoma by gold nanoclusters under a single NIR laser irradiation. J Materials Chem B. 2019;7(44):6924–6933.118

Abbreviation: SOSG, singlet oxygen sensor green.
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(chemotherapy/PTT, PTT/PDT, PTT/RT) based on AuNPs have been vigorously developed, the triple therapy of AuNP-
based nanoplatforms is still in an infancy stage. Recently, several multifunctional nanoplatforms based on copper sulfide
nanoparticles,121,122 bismuth sulfide nanoparticles,123 and especial AuNPs have been developed for triple-modality
cancer therapy.124–126 The outcomes of these studies demonstrated the great potential of triple therapy to eradicate
tumors compared to monotherapy and dual therapy. In 2018, Xu et al reported a pH-responsive DOX and 5-ALA co-
loaded gold nanorods (AuNRs) for enhanced breast cancer treatment through combined chemo/photothermal/photody-
namic therapy.127 This complex nanosystem was constructed by first decorating AuNRs with mercaptopropionylhydra-
zide (MPH) and thiol-terminated monomethoxy PEG (mPEG-SH) via Au-S bonds, and subsequently linking onto MPH
molecules with chemotherapeutic agent DOX and pro-photosensitizer 5-ALA through acid-liable hydrazone bonds,
termed asAuNRs-MPH−ALA/DOX-PEG. The cumulative release amounts of DOX and 5-ALA from AuNRs-MPH−ALA/

DOX-PEG were higher in phosphate buffer solution (PBS) at 37 °C at pH 5.0 than at pH 7.4 (eg 58% vs 3% of DOX, 71%
vs 6% of 5-ALAwithin one day). In vitro and in vivo studies showed that the resulting GNRs-MPH−ALA/DOX-PEG could
kill human breast cancer MCF-7 cells and inhibit tumor growth without overt side effects more efficiently, respectively,
through a superadditive antitumor effect.127 Previously, a novel multifunctional nanoplatform based on gold nanocages
(AuNCs) with NIR stimuli-responsive DOX and photosensitizer indocyanine green (ICG) release was also developed for
simultaneous chemo/photothermal/photodynamic therapy of breast cancer.128 In another work, Xu et al reported the
preparation and in vitro and in vivo evaluation of a new nanocomposite based on HA modified AuNCs (AuNCs-HA)
forsynergetic RT/PTT/PDT of breast cancer. In agreement with results of reports on chemotherapy/PTT/PDT, the
AuNCs-HA exhibited complete tumor growth inhibition, compared to each monotherapy or dual therapy.129 These
studies provide new avenues for triple therapy of malignant tumors, which represents a feasible and simple strategy for
constructing ideal cancer-aimed nanoplatforms that integrate multiple treatment functionalities.

AuNPs in Cancer Imaging
Imaging technologies can provide anatomical information of tissues with accuracy and specificity, which is indispensable
for clinicians to diagnose diseases. Many studies have reported AuNPs have promising potential applications in cancer
detection, especially in the fields of CT imaging. Therefore, AuNPs-based CT imaging technology will be elaborated in
detail in this part.

Nowadays, CT imaging has become a widely used diagnostic tool due to its high efficiency and fairly low cost. The X-ray-
based CT technology can take advantage of differences in X-ray attenuation to reconstruct 3D images of subject tissues.130

Tissues with different densities will present different X-ray attenuation, particularly between healthy and diseased
tissues.131,132 Thus imaging and distinguishing the interface between two neighboring tissues or imaging soft tissues in
contact with physiological fluids such as blood is very challenging unless using contrast agents.133 The most commonly used
CT contrast agent currently remains iodine-based compounds, such as iohexol.39 However, short imaging times caused by
rapid renal clearance and side effects at iodine concentrations required for imaging limit their use.133,134 Hence, it is necessary
to develop novel materials as CT contrast agents. This need has driven the development of AuNPs as promising alternatives.
Due to higher atomic number and electron density of gold (79 and 19.32 g/cm3), AuNPs exhibit a higher X-ray absorption
coefficient than iodine-based contrast agents.133 Importantly, AuNPs have prolonged vascular retention time due to high
molecular weight and increased intratumoral accumulation for enhanced CT imaging.135,136 These favorable characteriza-
tions, in combination with good biocompatibility make the AuNPs an ideal contrast candidate for CT imaging.

In a study, PEGylated hollow AuNPs (mPEG@HAuNPs) with a diameter of 63.4 nm were chosen as contrast agents
for CT imaging studies in vivo. The results showed a sustained contrast enhancement at the tumor area in the
mPEG@HAuNPs group. Comparatively, no inherent contrast created from the same doses of iohexol (0.6 mg/g) at the
tumor site was observed at 12 h post-injection.137 Moreover, AuNPs can be multi-functionalized through modification on
their surface, taking advantage of the interaction between sulfur and gold atoms. By exploiting this characteristic, it is
possible to link multiple targeting moieties on the surface, which can contribute to the selectivity of the contrast agents
towards specific tissues. For instance, the FA was conjugated onto AuNPs through a cysteamine (Cys) linking, to target
against human nasopharyngeal KB cancer cells. The authors found that the FA-Cys-AuNPs conjugates led to a 2.03-times
increase in the attenuation of X-ray intensity in comparison to AuNPs alone (Figure 10).138 Likewise, Beik et al also
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conjugated the FA to AuNPs for targeted CT imaging of KB cells. They found the FA-modified AuNPs had benefits of
image contrast enhancement as well as radiation dose reduction.139 Hence, the AuNPs modified with FA can be used not
only for targeted CT imaging to detect cancer cells overexpressing FA receptors but also for X-ray-based RT where RT
needs to increase the radiation dose of X-rays.

Multimode imaging is essential for clinicians to identify diseased tissues as it can offer more accurate and ample
imaging information than single imaging modalities. By combining other contrast-enhancing agents with gold nanoma-
terials, it is possible to exploit novel systems that provide contrast for CT imaging along with other imaging approaches,
such as magnetic resonance imaging (MRI)140 and NIR fluorescence imaging.141 Ge’s group developed a PEG modified
nano-system (named as PEG-LnAu NPs) incorporating 10 nm AuNPs and lanthanide ions (Gd3+ and Yb3+) for CT/MR
dual mode imaging. The multifunctional nanoplatform (PEG-LnAu NPs) showed good performance in both MRI and CT
imaging and could be used as a positive-contrast agent for dual mode imaging.142 Kuhn’s team reported a versatile nano-
system loading two imaging enhancing elements (gold and magnetic iron oxide NPs) for tri-modal (MR, CT and
intravascular ultrasound (IVUS)) imaging. In vitro results showed that the nanoprobe has concentration-dependent
contrast-enhancing ability for MR, CT and IVUS imaging, without toxicity to cells even at a maximum concentration
of 100 μg/mL.143 Moreover, the use of FA modified AuNPs loaded with other imaging materials for targeted tumor dual
mode imaging has also been successfully reported.141,144

AuNPs in Clinical Trials
As described above, AuNPs do show potentially useful properties in many preclinical studies. Nevertheless, there are few
examples associated with AuNPs being under clinical trials, and, till now, no AuNP-containing formulations are used
successfully in clinical practices. Table 2 exhibits a list of clinical trials of AuNPs for disease treatment and diagnosis to date.

Aurimune (CYT-6091) is the most typical example of AuNPs used in clinical testing for cancer treatment. The
nanocomplex is a PEGylated 27-nm AuNP containing recombinant human tumor necrosis factor alpha (rhTNFα). TNFα
is a potent anticancer agent, but its extreme side effects largely limit its clinical use.145 Here, by conjugating the rhTNFα
onto the colloidal AuNPs to deliver the rhTNFα to tumor sites, it is favorable to ameliorate the systemic toxicity of
TNFα.24 Moreover, the PEG coating is introduced to the surface of colloidal gold particles, prolonging circulation time in
blood and accumulation of colloidal gold particles in the tumor sites. Nowadays, its Phase I clinical trial (NCT00356980)
has been successfully completed and published, where clinical safety profile of this drug was demonstrated. The trial
results showed that the CYT-6091 at the dose tested (50–600 μg/m2) was safely tolerated and a maximum tolerated dose
was not reached even at the highest dose (600 μg/m2). No severe side effects occurred except that first two patients

Figure 10 Coronal CT images of nude mice after intravenous injection of AuNPs and FA-Cys-AuNPs at 3 hours (A) and 6 hours (B) (blue arrows indicate the tumor site
and red arrows indicate other sites). The injection of the AuNPs (either non-targeted or targeted) leads to an enhanced CT contrast of the tumor area, and 3 h post
injection shows a maximum CT enhancement of the tumor area. Reprinted from Int J Biochem Cell Biol, 114, Khademi S, Sarkar S, Shakeri-Zadeh A, et al. Targeted gold
nanoparticles enable molecular CT imaging of head and neck cancer: an in vivo study. 105554, Copyright 2019, with permission from Elsevier.138
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Table 2 List of Clinical Trials of Gold Nanoparticles for Disease Treatment and Diagnosis154

Product
Name

Component/
Material

Research Purpose Application Phase/Status Clinical
trials.gov
Identifier

Reference

Aurimune

(CYT-6091)

PEGylated

colloidal AuNP-
bound rhTNFα

To study the side effects and best

dose of the CYT-6091 in treating
patients with advanced solid tumors

Treatment of

advanced solid
tumors

Phase 1,

completed

NCT00356980 146

To study TNF in patients undergoing
surgery for primary cancer or

metastatic cancer

Treatment of
primary or

metastatic

cancer

Early phase 1,
completed

NCT00436410 -

AuroShell Silica-gold core
shell

nanoparticle

coated with
PEG

To study the adverse effects of the
AuroShell in treating patients with

refractory or recurrent head and

neck cancer

AuroLase
therapy of

refractory or

recurrent head
and neck cancer

Pilot study,
completed

NCT00848042 -

To evaluate the efficacy of AuroLase
therapy in subjects with primary or

metastatic lung tumors

AuroLase
therapy of

primary or

metastatic lung
tumors

Pilot study,
terminated

NCT01679470 -

To determine the efficacy of using
MRI/US fusion imaging technology to

direct focal ablation of prostate

tissue using nanoparticle-directed
laser irradiation

Thermal
ablation of

prostate tissue

Extension
study,

recruiting

NCT04240639 -

Phase 1,

completed

NCT02680535 -

Silica-Gold

Nanoparticles

Silica-Gold

Nanoparticles

To evaluate the safety and feasibility

of two delivery approaches for

treatment of coronary
atherosclerosis

Photothermal

therapy of

atherosclerosis

Not applicable,

completed

NCT01270139 158

Nanosensors Gold
nanoparticles

and carbon

nanotubes

To prove the diagnosis of Parkinson’s
disease from exhaled breath

Distinguish
Parkinson’s

disease

Observational,
completed

NCT01246336 -

To prove the diagnosis of GC from

exhaled breath and seek the

interrelationship among breathomics,
metabolomics and transcriptomics

Identifying GC Observational,

completed

NCT01420588 156

Gold
nanoparticles

coated with

organic ligands

To evaluate the diagnostic
performance of a novel electronic

nose for the detection of PAH

Diagnosis of
PAH

Not applicable,
completed

NCT02782026 -

CNM-Au8 Gold

nanocrystal

To evaluate the safety, tolerability,

and pharmacokinetics of CNM-Au8
in healthy male and female volunteers

Treatment of

relapsing
multiple

sclerosis

Phase 1,

completed

NCT02755870 -

(Continued)
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experienced controllable fevers. As for efficacy, although it was not the overarching objective of this study, one patient
underwent a partial response and other four patients displayed stable disease.146 The encouraging results obtained here
have initiated the Phase II clinical study to further demonstrate its clinical efficacy.

Auroshell is another example of AuNPs under clinical trials for cancer treatment. Auroshell is a silica-gold core shell
nanoparticle with a total diameter of 144–150 nm, which is developed by Nanospectra Sciences Inc to thermally ablate
the localized tumors.147 In Aurotherapy, the Auroshell particles accumulate in the tumor tissues via the EPR effect and
then are activated by an external NIR laser, without effect to adjacent normal tissues. Therefore, photothermal cancer
therapy is an effective and highly selective approach with minimal side effects. These efforts build on many previous
testing.148–150 Preclinical biosafety of the Auroshell particles has been assessed in a series of vitro and vivo studies,
where the particles were well tolerated and toxicity was not observed after intravenous infusion.151 Furthermore, an
initial clinical trial based on the Auroshell particles was performed in 22 patients with prostate cancer, whose results also
suggested excellent tolerability in human beings. It was found that only 2 adverse events (an itching and a burning
sensation of the epigastrium) were judged to be associated with the particle infusion.152 After confirming safety profile of
the Auroshell particles, researchers further assessed the feasibility and safety of the AuroShell-mediated laser ablation in
combination with MR/ultrasound fusion imaging in 16 low- or intermediate-grade prostate cancer men.153 Corresponding
with previous findings, a patient suffered from transient epigastric pain during the particle infusion. Except for this, no

Table 2 (Continued).

Product
Name

Component/
Material

Research Purpose Application Phase/Status Clinical
trials.gov
Identifier

Reference

C19-A3 GNP Human C19A3
proinsulin

peptide

coupled to gold

To study the risk of C19A3 GNP
administration and the feasibility of

delivering C19A3 GNP via

microneedles

Treatment of
type 1 Diabetes

Phase 1,
unknown

NCT02837094 -

NU-0129 A Spherical

Nucleic Acid
Gold

Nanoparticle

To evaluate the safety of intravenous

NU-0129 in patients with recurrent
GBM or GS

Treatment of

recurrent GBM
or GS

Early phase 1,

completed

NCT03020017 -

CD24-Gold

Nanocomposite

Gold

nanoparticles

conjugated to
CD24

To introduce a novel diagnostic and

prognostic approach in early

detection of cancer stem cells in
salivary gland tumors

Diagnosis of

salivary gland

tumors

Observational,

completed

NCT04907422 -

GNP and
PepGNP-

Dengue

Gold
nanoparticle

mounted with/

without
Dengue virus

peptides

To test the safety of 2 doses of
a T-cell priming specific cocktail of

Dengue virus peptides mounted on

a gold nanoparticle

Prevention of
Dengue

Phase 1,
recruiting

NCT04935801 -

GNP and

PepGNP-SARS-

CoV-2

Gold

nanoparticle

mounted with/
without

Coronaviruses

peptides

To investigate the safety of 2 doses of

a T-cell priming specific cocktail of

Coronaviruses peptides mounted on
a gold nanoparticle

Prevention of

Coronavirus

SARS-CoV-2
Infection

COVID-19

Phase 1,

recruiting

NCT05113862 -

Abbreviations: CD24, cluster of differentiation 24; COVID-19, coronavirus disease 2019; GBM, glioblastoma; GC, gastric cancer; GNP, gold nanoparticles; GS,
gliosarcoma; PAH, pulmonary arterial hypertension; PEG, polyethylene glycol; PepGNP, gold nanoparticle mounted with peptides; rhTNFα, recombinant human tumor
necrosis factor alpha; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TNF, tumor necrosis factor.
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other adverse events occurred. With respect to treatment efficacy, the tumor ablation zones were free in 62.5% of patients
at 3 months and 87.5% of patients at 12 months.153 These clinical results revealed that the AuroShell-directed PTT is
a relatively safe and feasible modality for the targeted treatment of prostate tumors. Now this company is recruiting
participants with prostate cancer for another clinical study (NCT04240639), with the aim of the focal ablation of prostate
tissue via Auroshell particle directed laser irradiation.154

Besides, several other gold nanoparticle-based agents have also completed preliminary clinical studies or are under
clinical testing. Khoobchandani et al investigated an intervention of green nanotechnology in preclinical and clinical
studies for human metastatic breast cancer therapy. In this work, authors have succeeded in clinical translation, from
cells, animals to humans, of AuNP-based Nano-Ayurvedic drug: Nano Swarna Bhasma, which is composed of AuNPs
and mangiferin (a phytochemical).155 Another pilot clinical trial (NCT01420588) related to AuNPs has been performed
and published. Researchers developed a gold nanomaterial-based nanosensor and assessed the feasibility of a new avenue
involving a breath test with the sensor for identifying gastric cancer from other gastric diseases.156 The completion of the
pilot study has provided great confidence in the success of an ongoing multicenter clinical trial.

Moreover, due to the excellent photothermal conversion efficiency, AuNPs show great promise in other fields other
than oncology. Pang et al developed a hydrogel eye patch that was composed of AuNR core and palladium shell and
assessed safety and effectiveness in animal and human tests. It was found that the hydrogel eye patches could heat up
spontaneously in response to various visible light, thus producing more tears to relieve the dry eye and moisturize the
eyelid skin.157 In another example, the safety and feasibility of two delivery approaches for treatment of coronary
atherosclerosis were evaluated (NCT01270139). The first is a PTT method using silica-gold NPs and the second is
a magnetic navigation approach with delivery of silica-gold iron bearing NPs. The obtained results showed that both
delivery approaches have an acceptable level of safety for clinical practice.158

Challenges of AuNPs in Clinical Applications
Although the preclinical and initial clinical studies are encouraging, there are still several important issues that need to be
fully clarified prior to clinical use of AuNPs. It is reported that toxicity is the most important problem amongst them.
Despite several studies indicating that AuNPs were relatively low toxic due to chemical inertness of metal gold,159–162 the
toxicity produced by AuNPs have been demonstrated in multiple cell and animal models. Many factors, no doubt, are able
to largely affect their biodistribution in vivo and eventual toxicity, such as fundamental features of particles (eg, particle
size, shape, surface charge, and coating), experimental conditions (eg, cell and animal model tested, assessed duration),
administration scheme (eg, administration route, dose, time and times) and so forth (Figure 11). Thereby, the results may be
diverse and even contradictory sometimes. This, along with the heterogeneity among individual tissues and cells, makes it
intricate and challenging to utterly comprehend their interplay with the living organisms. Hence, toxicity profile of AuNPs
and other reasons decelerating clinical translation of the AuNPs will be described fully in this part.

Particle size has been reported to impact toxicity of AuNPs, wherein smaller particles were observed to be more toxic
than the larger ones.163,164 This may be attributed to the fact that small nanoparticles cross the cell membrane and the
nucleus pore more easily, thus favoring the intracellular ROS generation and DNA damage.165,166 However, at a more
early time point, Chen et al found that AuNPs of 8–37 nm induced severe disease in BALB/C mice after the AuNPs were
injected intraperitoneally, while AuNPs of 3, 5, 50, and 100 nm did not exhibit deleterious effects.167 The results may be
related to urinary elimination and excretion since particles smaller than 5.5 nm can be removed rapidly and efficiently
through urinary system from the body.168

Particle shape is equally thought to be an important factor in affecting AuNP toxicity. Comparative toxicity analysis among
various shaped AuNPs has already been established. Nevertheless, opinions differ in the shape effect of nanoparticles on cells. In
the view of Patibandla et al, AuNRs have more deleterious effects on zebrafish than spherical AuNPs.169 They attributed the
toxicity of AuNRs to CTAB coating, which is an essential but toxic surfactant for the synthesis of AuNRs.170 Thus, the toxicity of
AuNRs can be improved by coating them with alternative biocompatible materials, such as phosphatidylcholine and PEG,171,172

underlining the impact of surface coating materials on toxicity. However, Tarantola et al pointed out that spherical AuNPs are
more toxic than rod-shaped particles due to the larger surface area ratio of spherical particles and thus higher intracellular gold
content.173 In other studies, it was observed that non-spherical (star/flower-shaped) AuNPs had relatively stronger toxicity than
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spherical AuNPs.174,175 They attributed this outcome to the larger specific surface area presented by non-spherical AuNPs than
spherical AuNPs. Higher is the internalization, more is the harmful substances carried into cells and severer is the cell damage.
However, in another study, spherical and rod-shaped nanoparticles were observed to be more toxic than star-, flower- and prism-
shaped AuNPs.176

It is equally important to consider the impact of surface charge on the toxicity of AuNPs. It was reported that
positively charged particles were more toxic than negative or neutral counterparts.177,178 The toxicity of cationic AuNPs
may be as a result of the presence of electrostatic interaction of positive NPs with a negative cell surface, thereby
increasing cellular uptake or membrane disruption. The outcome is either beneficial or unintended, which depends on the
research purpose and concrete application. Cho et al provided a different example of the effect of cationic AuNPs on two
different cells. They found that a positively charged AuNP-dendron conjugate (PCD-AuNP) is no toxic towards two cells
used even at the highest dose tested (40 μg/mL), but there is a visible attachment of the PCD-AuNPs on the monkey
kidney Vero cell surface.179 The specific mechanism requires to be further researched and elucidated.

Furthermore, Bahamonde et al found that mice and rats responded differently to PEGylated AuNPs exposure, where
mice experienced robust macrophage response and no fatality was seen, whereas abundant rats suddenly died within
hours of administration.180 The results indicated AuNPs have species-specific differences in terms of toxicity, even
amongst closely related groups. Ginzburg et al observed a synergistic increase in toxicity of PEG-stabilized AuNPs in the
presence of the surfactant, while the components separately were no toxic.181 These results demonstrated the importance
of identifying strategies for choosing safe NP/additive combinations. Additionally, Schwartz et al reported that 10-nm

Figure 11 Factors influencing the toxicity of AuNPs. Most factors are able to influence toxicity of AuNPs, including fundamental features of the particles (eg, particle size,
shape, surface charge, and coating), experimental conditions (eg, cell and animal model tested, assessed duration), administration scheme (eg, administration route, dose,
time and times) and so forth.
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AuNPs had potential nephrotoxicity when were co-administrated with cisplatin, paraquat and 5-aminosalicylic acid due
to their interactions with drugs, whereas AuNPs themselves were not hepatotoxic or nephrotoxic when alone
administered.182 It is very clear that the dose at which particles are administered is critical for toxicity, since many
drugs that are beneficial at low doses may exhibit harm at high doses. The administration route and assessed duration are
also crucially important for toxicity.183–185 However, these conditions are diverse in different studies, and they are not
always fully reported in the literature. Therefore, it is suggested that authors reported the employed conditions in as much
detail as possible, which helps readers to comparatively analyze.

Although plentiful researchers have been attempting to figure out the toxicity profile of AuNPs in vivo, it is still
difficult to draw consistent and meaningful conclusions from these reports owing to the variations in many parameters
and conditions.186 As a result, the contradictory results were obtained in different studies with different experimental
designs. Moreover, many studies merely considered toxicity evaluation for particles, without involving the possible
toxicity mechanisms.187 Thereby there is an urgent demand for deeper studies to reveal the potential toxicity mechanism
of AuNPs in vivo, not only at the cellular level but also at the molecular level. Furthermore, most results are built on
short-term observation data, and long-term data are relatively scarce. Thus further long-term in vivo investigations should
be implemented for more representative data. Lastly, no standardized method that is universally appropriate for toxicity
testing of various types of AuNPs to date is also a matter of concern.188 The lack of a unified detection method and
evaluation standard leads to the presence of conflicting results and varying interpretations. Therefore, it is recommended
to establish uniform standards and methods for toxicological testing of nanoparticles, to facilitate comparisons of data
among different studies and clinical translation of AuNPs.

Last but not least, it is worth considering the trade-off between underlying benefit and cost of production when
designing new multifunctional formulations. The addition of new functionality, such as targeting and imaging contrast
enhancement not only means an increase in patient survival time and available clinical benefit, but also additional cost
and complexity of synthesis and purification.189 The production and conjugation of some ligands for targeting is greatly
expensive and inefficient.190 Even though the cost related to adding imaging contrast materials may be relatively lower
than adding targeting ligands, the costs would be likely to be shrunk partly and the benefits more profound, if the
nanomaterial itself had both therapeutic and imaging abilities, such as AuNPs.189 Hence, the functionality of the
materials themselves and design cost are also major concerns when constructing novel formulations.

Conclusion and Outlooks
Cancer is still a largely complex and serious disease. In addition to exploiting new therapeutic drugs, taking full
advantage of available chemotherapy drugs is another feasible strategy. At present, the use of nanotechnology has had
a crucial impact on many fields of science, including medicine, biology, physics and chemistry. Due to unique
pathophysiological phenomenon of solid tumors and unique physicochemical properties of AuNPs, the use of AuNP-
based delivery systems provided the potential for improved cancer treatment and diagnosis. In previous studies, AuNPs
have been used as delivery carriers for various agents, especially cytotoxic drugs, unstable nucleic acid drugs, and
hydrophobic/hydrophilic photosensitizers for PDT. In addition, AuNPs have been used for cancer phototherapy, such as
PTT by using their light absorption properties. To complement their respective disadvantages and further improve the
efficacy of cancer treatment, the AuNPs have been developed as a promising nanoplatform that integrates multiple
treatment functionalities, like chemotherapy/PTT, PTT/PDT, PTT/RT, chemotherapy/PTT/PDT, and RT/PTT/PDT. In
preclinical research, AuNPs have also been used as biological imaging contrast agents, particularly CT imaging, which
helps clinicians recognize tumor conditions and choose applicable therapeutic strategies.

In addition to positive preclinical research, a series of AuNP-based nanoproducts (NCT00356980, NCT00848042,
NCT01270139, NCT01246336, NCT02755870, NCT03020017, etc) have been used in clinical trials. These results
achieved in the clinical studies are mostly positive and very encouraging. However, most of them are limited to early
phase 1 or phase 1 clinical studies, and to date, no AuNP-based products have actually entered the late phase of the
clinical process or have been successfully on the market. Some clinical trials are recruiting, withdrawn, and even
terminated. Compared to other nano-formulations, like liposomes and polymeric micelles, the number of AuNP-based
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products in clinical trials is still relatively small. When basic preclinical studies are being conducted, more studies are
required to devote to pushing basic experimental studies of AuNPs towards clinicalization.

Although the results achieved from many studies are very encouraging, there are several critical issues that deserve to
be taken seriously into account. One important problem is that toxicity of AuNPs requires to be addressed properly. In
spite of chemical inertness, gold is, after all, a noble metal and has inherently chemical toxicity to a certain degree.
Introducing functional moieties such as stabilizing materials and biocompatible materials seems to reduce toxicity of
AuNP core to some extent, but it is worth noting that a number of surface modifications may also cause unwanted side
effects. Except for the nanoparticle core, some toxicity may be attributed to these modifying materials.Further research
should be required to quantify the trade-off between treatment/diagnosis benefit and toxicity after functional modifica-
tions. It is equally important to consider whether and how the functional substances affect the biodistribution and
consequent side effects. Similarly, if we want to avoid the plague of immunogenicity in vivo, surface modification
technology requires to be further optimized. Another possible effect on biosafety is biodistribution of AuNPs, because
AuNPs can accumulate in the spleen and liver, and other sites, hence showing toxic effects in these organs.There is need
for further knowledge to understand the biodistribution profile of AuNPs.

Moreover, molecular interactions between gold nanoparticles with targets were scarcely reported. Such interactions
include not only therapeutic/diagnostic effects but also toxicological aspects. A full understanding of nanoparticle-target
interactions and potential mechanisms is greatly important in nanotechnology for improved cancer management.
Furthermore, the specific mechanism that AuNPs are internalized by target cells also needs to be fully studied in
diversified cell models. A comprehensive understanding of the intake mechanism is crucial for improved intracellular
drug amount and eventual therapeutic effect. Although most of the current literature attributes the internalization
mechanism of nanoparticles to endocytosis, not all AuNPs are suitable for this case. In agreement with the toxicity,
the uptake mechanism of AuNPs by cells may depend on a variety of factors, such as particle size, shape, surface charge,
coating, cell model tested and so on. However, so far there is no unified conclusion and explanation about the
internalization mechanism of AuNPs in the academic circle.

For biomedical applications, especially in clinical practice, a requirement for the production of AuNPs with long-time
stability is essential. Possible aggregation of AuNPs during preparation and use processes may pose further threats to the
lives of patients. To avoid this, improved and reproducible manufacturing technologies are indispensable for large-scale
production of AuNPs with high stability. In addition, there is still a need for adequately cost-effective AuNP-based
systems. Adding additional functions means not only the increase in clinical benefit, but also elevated cost and
complexity of synthesis and purification. The high cost places a financial burden on the cancer patients themselves
and their families. Hence, in future work, more studies should be performed to develop newly budget-friendly functional
AuNP-based products.

Taking all aspects into account, there is still a long way and there is more work to be done before AuNP-based
products are successfully on the market. Nevertheless, existing evidence on potential of nanogold in cancer research field
allows us to believe that we can develop more efficient and accurate cancer therapies based on AuNPs in the future. We
also believe that, in the future, AuNP-based systems will play a more important role in early tumor diagnosis and tumor
treatment in different stages, with the hope of circumventing the common drawbacks of currently available tumor
therapies in clinic.
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