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Introduction: Intervertebral disc (IVD) degeneration (IDD) is one of the most widespread musculoskeletal diseases worldwide and
remains an intractable clinical challenge. Currently, regenerative strategies based on biomaterials and biological factors to facilitate
IVD repair have been widely explored. However, the harsh microenvironment, such as increased ROS and acidity, of the degenerative
region impedes the efficiency of IVD repair. Here, an intelligent biodegradable nanoplatform using hollow manganese dioxide
(H-MnO2) was developed to modulate the degenerative microenvironment and release transforming growth factor beta-3 (TGF-β3),
which may achieve good long-term therapeutic effects on needle puncture-induced IDD.
Methods: Surface morphology and elemental analysis of the MnO2 nanoparticles (NPs) were performed by transmission electron
microscopy and an energy-dispersive X-ray spectroscopy detector system, respectively. The biological effects of MnO2 loaded with
TGF-β3 (TGF-β3/MnO2) on nucleus pulposus cells (NPCs) were assessed via cytoskeleton staining, EdU staining, qPCR and
immunofluorescence. The efficacy of TGF-β3/MnO2 on needle puncture-induced IDD was further examined using MRI and
histopathological and immunohistochemical staining.
Results: The MnO2 NPs had a spherical morphology and hollow structure that dissociated in the setting of a low pH and H2O2 to
release loaded TGF-β3 molecules. In the oxidative stress environment, TGF-β3/MnO2 was superior to TGF-β3 and MnO2 NPs in the
suppression of H2O2-induced matrix degradation, ROS, and apoptosis in NPCs. When injected into the IVDs of a rat IDD model,
TGF-β3/MnO2 was able to prevent the degeneration and promote self-regeneration.
Conclusion: Use of an MnO2 nanoplatform for biological factors release to regulate the IDD microenvironment and promote
endogenous repair may be an effective approach for treating IDD.
Keywords: intervertebral disc degeneration, hollow manganese dioxide, transforming growth factor beta-3, oxidative stress,
endogenous repair

Introduction
Low back pain, a leading cause of disability worldwide, is strongly associated with intervertebral disc degeneration
(IDD), with IDD appearing in 40% of all cases of lower back pain.1–3 The loss of disc cell viability and functionality is
thought to be critical to disrupting disc homeostasis.4 Excessive apoptosis and cellular senescence from IDD contribute to
a reduced number of viable disc cells.5,6 Deficiencies in anabolic factors such as transforming growth factor beta (TGF-β)
and insulin-like growth factor-1 may further reduce cellular viability and the production of extracellular matrix (ECM).7

In addition, the increased production of reactive oxygen species (ROS) and catabolic cytokines along with the
accumulation of senescent disc cells may further deteriorate the microenvironment of degenerated intervertebral discs
(IVDs).8 Based on these observations, the ideal biological therapeutics for IVD regeneration should provide the disc with
viable and functional cells and improve the survival conditions within degenerating IVDs.9
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TGF-β3, an important member of the TGF-β superfamily, is involved in the regulation of biological processes such as
proliferation, survival, and differentiation.10,11 TGF-β3 upregulates the expression of genes involved in cartilage
formation to promote cartilage repair and accelerate chondrogenic differentiation.12 TGF-β3 was shown to stimulate
adipose-derived stem cell proliferation and chondrogenic differentiation in vitro.13 Importantly, TGF-β3 stimulation
enhances cell survival and matrix deposition in the IVDs.14,15 Hence, targeting the supply of TGF-β3 could improve the
metabolic imbalance of the ECM in IDD, and potentially slow its progression. However, supplying pure TGF-β3 to
diseased tissues will cause local overdose, and the protein will be quickly washed away or degraded by body fluids.10

A way to deliver a sustained dose of TGF-β3 into target tissues could facilitate the IVD repair process.
Nanoparticles (NPs) have been developed as carriers for the delivery of a wide range of active pharmaceutical

ingredients to overcome the limitations of free therapeutics and navigate biological barriers.16 Encapsulation in NPs can
improve the stability and solubility of the cargo, promote transmembrane transport, and prolong drug circulation time,
thereby increasing its safety and effectiveness.17 In recent years, manganese dioxide (MnO2)-based NPs have attracted
interest in the field of medical science due to their high sensitivity to H2O2 and H+, which are abundant in the tumor,
osteoarthritis, and IDD microenvironments.18–20 Yang et al developed a hollow MnO2 nanoplatform for the sustained
release of anti-tumor drugs in a slightly acidic environment and in the presence of H2O2.21 Kumar et al reported that
MnO2 NPs protect cartilage from inflammation induced by oxidative stress.22 However, little is known about the
involvement of MnO2 NPs in the regulation of the IDD microenvironment. During IDD pathogenesis, the acidity and
ROS levels within the degenerated IVDs significantly increase, which can inhibit normal cellular activity and accelerate
IVD degeneration.9,23,24 Therefore, the application of MnO2 NPs might improve the harsh survival conditions in the disc
microenvironment as a way to promote tissue regeneration.

In this study, we prepared an intelligent drug delivery system based on hollow MnO2 NPs encapsulating TGF-β3. The
NPs exhibited satisfactory drug loading efficiency along with pH-responsive degradation. The hollow MnO2 NPs
degraded to release the encapsulated TGF-β3 when exposed to excessive H2O2 and/or H+ in tissues and cells. The
released TGF-β3 improved cell survival and ECM deposition by scavenging ROS, thereby alleviating the progression of
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IDD. Based on these results, the hollow MnO2-based responsive nanocarriers for drug delivery show promise for IVD
repair.

Materials and Methods
Synthesis and Characterization of Hollow MnO2 Nanoparticles
Hollow MnO2 NPs were prepared as previously described.21,25 Briefly, solid SiO2 (sSiO2) NPs were first synthesized as
follows: 14 mL of ethanol, 2 mL of deionized water, and 500 μL of NH3·H2O were mixed in a 50-mL round-bottom
flask. The mixture was heated under magnetic stirring in an oil bath at 50 °C for 5 min. 500 μL of tetraethyl orthosilicate
was then added dropwise and the mixture was stirred at 50 °C for 2 h to produce sSiO2 NPs. The resulting sSiO2 NPs
were washed twice with ethanol and twice with water and then stored in water for further use. For the synthesis of sSiO2

@MnO2 NPs, 600 mg of KMnO4 dispersed in 20 mL of water was added dropwise into the sSiO2 NPs during sonication.
The mixture was ultrasonicated for 1 h, then stirred overnight at room temperature. The resulting sSiO2@MnO2 NPs
were washed three times with deionized water and centrifuged at 14,800 rpm/min. Finally, the prepared sSiO2 coated
with mesoporous MnO2 was dissolved in Na2CO3 at 60 °C for 12 h. The resulting hollow MnO2 NPs were then
centrifuged and washed several times with water. The surface morphology and elemental analysis of the NPs were
determined by transmission electron microscopy (TEM; FEI Tecnai F20, Hillsboro, OR, USA) and an energy-dispersive
X-ray spectroscopy detector system (EDS, Oxford X-MAX, Oxford, UK), respectively.

Encapsulation of TGF-β3 into Hollow MnO2 Nanoparticles
For TGF-β3 loading, hollow MnO2 NPs (5 mg) were added into 1 mL of phosphate-buffered saline (PBS; pH 7.4)
containing TGF-β3 (1 μg; Sigma-Aldrich, St. Louis, MO, USA) and stirred for 12 h at room temperature. Subsequently,
the NPs were centrifuged, and the supernatant was removed.

Examination of in-vitro Release of TGF-β3 from MnO2 Nanoparticles
The release of TGF-β3 from the NPs in vitro was quantified by ELISA (Sangon Biotech, Shanghai, China). The NPs
were incubated in 1 mL of PBS at different pH values (6.5 and 7.4) in the absence or presence of 100 μM H2O2. At
predetermined time points, the samples were centrifuged, the supernatant was collected, and an equal amount of fresh
PBS was added to continue the release process. All collected solutions were kept frozen at –20°C for subsequent analysis
with TGF-β3-ELISA.

Isolation and Culture of Nucleus Pulposus Cells
To isolate nucleus pulposus cells (NPCs), six-week-old male Sprague-Dawley rats were sacrificed and their lumbar and
caudal IVDs were harvested under aseptic conditions. We then separated gel-like nucleus pulposus tissues from the discs
and treated them with 0.25% (w/v) type II collagenase (Yeasen, Shanghai, China) for 4 h at 37 °C. The obtained cell
suspension was centrifuged at 1200 rpm for 3 min and then cultured with DMEM/F12 containing 10% fetal bovine serum
(HyClone, Logan, UT, USA) and 1% penicillin/streptomycin (Gibco, Grand Island, NY, USA) in a humidified incubator
at 37 °C with 5% CO2. NPCs at passage 2 were used for all of the experiments in this study.

Cell Culture
NPCs at passage 2 were plated on a cell culture dish at an initial density of 5000 cells/cm2. When the cells were attached,
H2O2 solution was diluted with DMEM/F12 medium and then added into the dishes to a final concentration of 100 μM to
induce oxidative stress in the NPCs. To further investigate whether NPs altered oxidative stress, after treatment with H2O2 for
12 h, the medium was replenished by fresh medium containing TGF-β3, MnO2, and TGF-β3/MnO2 for 24 h, respectively.

In vitro Cytotoxicity Assay
The cell toxicity of the NPs was determined by examining the viability of NPCs treated with NPs using a CCK-8 assay
(NCM Biotech, Suzhou, China). Briefly, cells (5×103 per well) were seeded into 96-well plates and cultured for 12 h to

International Journal of Nanomedicine 2022:17 https://doi.org/10.2147/IJN.S358396

DovePress
2081

Dovepress Zhu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


allow cell attachment. The cells were then incubated with a series of increasing concentrations of hollow MnO2 NPs for
24 h. After incubation, the cell medium was removed and replaced with 100 μL of culture medium and 10 μL of CCK-8
reagent for another 2 h for color development. Optical density was measured using a microplate reader (BioTek, VT,
USA) at 450 nm.

Cellular Uptake Experiments
To assess the cellular uptake efficiency of the NPs, bovine serum albumin (BSA), and fluorescein isothiocyanate-labeled
BSA (FITC-BSA; Solarbio, Beijing, China) were encapsulated into hollow MnO2 NPs. After encapsulation, NPCs
(5×103 per well) were cultured in 48-well plates at 37 °C for 12 h. After complete adhesion, the cells were washed twice
with PBS followed by the addition of 100 μL of fresh medium containing NPs loaded with BSA or FITC-BSA.
Incubation was then continued for 12 h. Next, the cells were washed three times with PBS to remove the residual
NPs, fixed with 4% paraformaldehyde solution for 15 min, and stained with TRITC-phalloidin and DAPI. Finally, images
were obtained using a fluorescence microscope.

Intracellular ROS Assay
An ROS assay kit (Beyotime, Shanghai, China) was used to measure the accumulation of intracellular ROS in the treated
cells. The cells were first exposed to DCFH-DA solution (10 µM) and then incubated for 1 h at 37 °C. After a wash with
PBS, the fluorescence of the cells was observed with a fluorescence microscope.

Cell Proliferation Assay
Cell proliferation was measured using a BeyoClick™ EdU Cell Proliferation Kit with Alexa Fluor 488 (Beyotime,
Shanghai, China). Briefly, immediately before H2O2 treatment in all groups, EdU was added to label cells undergoing
active DNA synthesis. After 6 h, the cells were fixed in 4% paraformaldehyde for 15 min and permeabilized with 0.3%
Triton X-100 in PBS for 10 min. Subsequently, the samples were incubated with click reaction solution at room
temperature for 30 min, and the nuclei were counterstained with Hoechst 33342 dye. Images were acquired using
a fluorescence microscope.

Quantitative Polymerase Chain Reaction Analysis
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used to extract the total RNA from NPCs under different
conditions. The RNA concentrations were measured using a NanoDrop 2000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). RNA (1 μg) was reverse-transcribed into cDNA using a 5X All-In-One RT
MasterMix (abm, Vancouver, BC, Canada) according to the manufacturer’s instructions. Subsequently, qPCR was
performed using iQ SYBR Green Supermix (Bio-Rad, Hercules, CA, USA). The primer sequences (Sangon Biotech,
Shanghai, China) of the genes used in this study are listed in Table 1. The expression of each gene was normalized by
the housekeeping gene GAPDH. Relative changes in mRNA level were analyzed using the 2−ΔΔCT method.

Immunofluorescence
NPCs were fixed in 4% paraformaldehyde for 15 min and then permeabilized with 0.3% Triton X-100 in PBS for 10 min.
Non-specific binding was blocked by a commercial blocking reagent (Beyotime, Shanghai, China) followed by primary
antibodies incubation at 4 °C overnight (rabbit anti-Col-II, rabbit anti-iNOS, Abcam, Cambridge, UK). After overnight
incubation, samples were incubated with second antibodies (Beyotime, Shanghai, China) for 1 h. Nuclei were stained
with DAPI and images were acquired using a fluorescence microscope. Semi-quantitative fluorescence analysis was
performed using Image J software (NIH, Bethesda, MD, USA).

Examination of Caudal Full (Form of IDD) Using Rat Model
All procedures followed the NIH Guide for the Care and Use of Laboratory Animals and were approved by the
Institutional Animal Care and Use Committee of Soochow University. After complete anesthesia, the rat tails were
disinfected, and Co7-8 IVDs were punctured sequentially with 21G needles to induce degeneration. To ensure that
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trauma was induced, a needle was used to puncture the center of the discs, rotated for 5 s then the position maintained for
30s. Each disc was then injected with 20 µL of material by a 33 G needle; in the negative control group, the discs were
injected with PBS instead of NPs. After surgery, the rats were placed in a warm and ventilated location.

Magnetic Resonance Imaging
Four and eight weeks after surgery, the water contents of the IVDs were evaluated on magnetic resonance imaging (MRI,
3.0 T; Siemens, Germany) based on the signal intensity in sagittal T2-weighted images. The MRI images were evaluated
by another blinded researcher using the classification for intervertebral disc degeneration (Table 2), as previously
reported.26

Histopathological and Immunohistochemical Analysis of Intervertebral Disc
Regeneration
After sacrifice, the IVDs were removed from each rat and placed in 10% formalin for 48 h, decalcified in 10% EDTA for
30 d, and then embedded in paraffin blocks. The specimens were cut into 5-µm-thick histopathological sections followed
by staining with either H&E or Safranin-O/Fast Green. The histopathological grade was calculated as described in
previous work27 and the specific definition of histopathological grade was shown in Table 3. To observe the expressions
of type II collagen and iNOS in the harvested tissues, the sections were immunohistochemically stained for collagen type
II and iNOS (Abcam, Cambridge, UK). Semi-quantitative immunohistochemical stain analysis was performed using
Image J software.

Table 1 Primers for qPCR

Gene Forward (5’-3’) Reverse (5’-3’)

SOD1 CGGCTTCTGTCGTCTCCTTGC AACTGGTTCACCGCTTGCCTTC
SOD2 GCTGGAGGCTATCAAGCGTGAC TTAGAGCAGGCGGCAATCTGTAAG

CAT GGCCTGACTGACGCGATTGC CTGCTCCTTCCACTGCTTCATCTG

Adamts5 TCCTCTTGGTGGCTGACTCTTCC TGGTTCTCGATGCTTGCATGACTG
MMP3 CAGTCCTGCTGTGGCTGTGTAC AACCTCCATGCCAGCATCTTCTTC

BAX CACCAGCTCTGAACAGATCATGA TCAGCCCATCTTCTTCCAGATGGT

Col-II ACGCTCAAGTCGCTGAACAACC ATCCAGTAGTCTCCGCTCTTCCAC
iNOS GAGACGCACAGGCAGAGGTTG CAGGAAGGCAGCAGGCACAC

COX-2 TTCCAGTATCAGAACCGCATTGCC CCGTGTTCAAGGAGGATGGAGTTG
ACAN GGCGT CCAAA CCAAC CCGAG GGCGT CCAAA CCAAC CCGAG

MCL1 TCATCTCCCGCTACCTGC ACTCCACAAACCCATCCC

BCL2 CACCCCTGGCATCTTCTCCTT AGCGTCTTCAGAGACAGCCAG
GAPDH GACATGCCGCCTGGAGAAAC AGCCCAGGATGCCCTTTAGT

Table 2 Classification of Disc Degeneration

Grade Structure Distinction of Nucleus
and Annulus

Signal Intensity Height of
Intervertebral Disc

I Homogeneous, bright white Clear Hyperintense, isointense to
cerebrospinal fluid

Normal

II Inhomogeneous with or without

horizontal bands

Clear Hyperintense, isointense to

cerebrospinal fluid

Normal

III Inhomogeneous, gray Unclear Intermediate Normal to slightly

decreased

IV Inhomogeneous, gray to black Lost Intermediate to hypointense Normal to moderately
decreased

V Inhomogeneous, black Lost Hypointense Collapsed disc space
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Statistical Analysis
All data are expressed as mean ± standard deviation. Statistical significance was evaluated using a one-way analysis of
variance (GraphPad Software, USA) with Tukey’s multiple comparison test to further evaluate differences between
groups. P values less than 0.05 were considered statistically significant.

Results
Synthesis and Characterization of MnO2 Nanoparticles
The MnO2 NPs were successfully synthesized and used as carriers for TGF-β3 delivery. The TEM images of the MnO2

NPs clearly show the spherical morphology and hollow structure of the product, and the thickness of the MnO2 shell was
approximately 15 nm (Figure 1A). The corresponding EDS spectrum proved the presence of the Mn and O elements
derived from MnO2 and also confirmed the hollow structure of MnO2 without element Si (Figure 1B). In addition, the
cytotoxicity of the MnO2 NPs was tested by CCK-8 assay, which found that the MnO2 NPs did not exhibit obvious
toxicity to NPCs, even at high concentrations up to 50 μg/mL (Figure 1C). Hence, the MnO2 NPs were used at
a concentration of 50 μg/mL in further experiments.

The Critical Examination of Controlled Drug Release
MnO2 is known to be stable under neutral and basic conditions; however, it decomposes into Mn2+ under low pH.28

A release test was performed to evaluate the degradation and loading of MnO2 at different pH values (7.4 and 6.5) in the
absence or presence of 100 μM H2O2 for various treatment times lengths (Figure 2). The release curve shows that TGF-
β3 was continuously released from MnO2 in a time-dependent manner. Compared with the slow drug release observed at
pH 7.4, the rate of TGF-β3 release was higher at pH 6.5. Furthermore, incubation with H2O2 at pH 6.5 further accelerated
drug release by triggering the decomposition of the MnO2 nanocarriers into Mn2+ ions.

In vitro Cellular Uptake of MnO2 Nanoparticles
The endocytosis of NPs in NPCs was investigated by loading FITC-BSA into the MnO2 NPs. As shown in Figure 3, the
fluorescence signal of the FITC-BSA-loaded MnO2 NPs was strong, indicating that the MnO2 NPs had excellent drug-
loading ability. In particular, the fluorescence signal was primarily located in the cytoplasm with some signal found in the
nucleus. This confirmed the high cellular uptake of MnO2 NPs.

Table 3 Histological Grading Scale

Category Grade

I. Cellularity of the annulus fibrosus 1. Fibroblasts comprise more than 75% of the cells
2. Neither fibroblasts nor chondrocytes comprise more than 75% of the cells

3. Chondrocytes comprise more than 75% of the cells

II. Morphology of the annulus fibrosus 1. Well-organized collagen lamellae without ruptured or serpentine fibers
2. Inward bulging, ruptured or serpentine fibers in less than one third of the annulus

3. Inward bulging, ruptured or serpentine fibers in more than one third of the annulus

III. Border between the annulus fibrosus
and nucleus pulposus

1. Normal, without any interruption
2. Minimal interruption

3. Moderate or severe interruption

IV. Cellularity of the nucleus pulposus 1. Normal cellularity with stellar shaped nuclear cells evenly distributed throughout the nucleus
2. Slight decrease in the no. of cells with some clustering

3. Moderate or severe decrease (>50%) in the number of cells with all the remaining cells clustered

and separated by dense areas of proteoglycans
V. Morphology of the nucleus pulposus 1. Round, comprising at least half of the disc area in midsagittal sections

2. Rounded or irregularly shaped, comprising one quarter to half of the disc area in midsagittal
sections

3. Irregularly shaped, comprising less than one quarter of the disc area in midsagittal sections
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Antioxidant Activity of TGF-β3-Loaded MnO2 Nanoparticles (TGF-β3/MnO2) Against
H2O2
To investigate the ROS scavenging activity of TGF-β3/MnO2, the DCF fluorescence intensity was detected using an ROS
assay kit. The ROS content increased after H2O2 treatment, but decreased following treatment with MnO2 and
TGF-β3/MnO2. However, treatment with TGF-β3 did not significant reverse H2O2-induced ROS production
(Figure 4A). In addition, the expressions of the antioxidative genes SOD1, SOD2, and CAT were significantly increased
in cells treated with MnO2 and TGF-β3/MnO2 compared to cells treated with H2O2 and TGF-β3 (Figure 4B–D). Hence,
the antioxidant activity of TGF-β3/MnO2 was mainly attributed to MnO2.

Anti-Apoptotic and Proliferative Effects of TGF-β3/MnO2 Against H2O2
We evaluated the anti-apoptotic effects of TGF-β3/MnO2 against H2O2 using the expression of the apoptotic gene BAX
and the anti-apoptotic genes BCL2 and MCL1 in cultured NPCs. The expression of BAX was enhanced in H2O2-treated
cells compared to the control NPCs. In contrast, the enhanced expression of the BAX gene was significantly reduced by
treatment with TGF-β3, MnO2, or TGF-β3/MnO2, with TGF-β3/MnO2 producing the greatest decrease in BAX expres-
sion (Figure 5A). Compared to the cells treated with H2O2, the expression of BCL2 and MCL1 was significantly
increased by treatment with TGF-β3, MnO2, or TGF-β3/MnO2, with TGF-β3/MnO2 resulting in the highest expressions
(Figure 5B and C). Further, EdU assay showed that cell proliferation rate, represented by the percentage of EdU-positive
cells, was decreased to 9.6% in H2O2-treated cells. Interestingly, this number was significantly increased to 17.6% and
18.5% in following treatment with MnO2 and TGF-β3, respectively, and it was markedly enhanced to 28.4% in the
setting of TGF-β3/MnO2 (Figure 5D and E).

Figure 1 Synthesis and characterization of MnO2 NPs. (A) Digital picture and TEM images of MnO2 NPs. (B) EDS analysis of MnO2 NPs. (C) Relative viabilities of NPCs
treated with various concentrations of MnO2 NPs for 24 h. *, p<0.05.
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Characterization of the Metabolic Effects of TGF-β3/MnO2
The above results suggest that TGF-β3/MnO2 exerted antioxidant, anti-apoptotic, and proliferative activities to protect
cells from H2O2 damage. To further explore the effects of TGF-β3/MnO2 on ECM synthesis in NPCs treated with H2O2,
we conducted qPCR measurements to investigate the expressions of genes related to anabolism, inflammation, and

Figure 2 Nanoparticle decomposition and drug behaviors of TGF-β3/MnO2. In vitro release of TGF-β3 from MnO2 NPs at different pH values (7.4 and 6.5) in the absence
or presence of 100 μM H2O2.

Figure 3 Representative images of NPC uptake of BSA/MnO2 and FITC-BSA/MnO2 for 12 h. Green, red and blue colors represent FITC-BSA/MnO2, F-actin, and DAPI
fluorescence, respectively.
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catabolism. Of the studied treatments, TGF-β3/MnO2 had the best ability to reverse the H2O2-induced expression of the
ECM genes Col-II and ACAN (Figure 6A and B). Further, TGF-β3/MnO2 almost completely blocked the stimulatory
effect of H2O2 on the expressions of the pro-inflammatory enzymes COX-2 and iNOS (Figure 6C and D) and the
catabolic genes MMP3 and Adamts5 (Figure 6E and F). Immunofluorescent experiments also confirmed that Col-II
associated fluorescence intensity in the TGF-β3/MnO2 group, was highest of the experimental groups (Figure 7A and B).
Meanwhile, lower fluorescence intensity of iNOS was observed after TGF-β3/MnO2 treatment (Figure 7C and D).

In vivo Evaluation of Intervertebral Disc Regeneration by TGF-β3/MnO2
To assess the in vivo effect of TGF-β3/MnO2 treatment, a rat disc puncture model was established. PBS, MnO2, TGF-β3,
or TGF-β3/MnO2 was injected into the rat IVDs after they were punctured with a 21G needle. The therapeutic efficacy
was evaluated based on changes in the gross appearance (Figure 8A) and MRI images (Figure 8B). After puncture, the
gross appearance and T2-weighted MRI signal intensity of the IVDs were similar in the sham group and the group treated
with TGF-β3/MnO2. In contrast, discs treated with PBS, MnO2, and TGF-β3 lost their signal, and water was observed
(Figure 8C and D). The morphologies of the discs in each group were also evaluated with H&E (Figure 9A) and Safranin
O-Fast Green staining (Figure 9B). In the sham group, the discs contained elliptical nucleus pulposus (NP), well-
organized collagen lamellae, and a clear boundary between the annulus fibrosus (AF) and NP. From four to eight weeks
after puncture, the size of the NP region and proteoglycan content decreased in the TGF-β3/MnO2 group; however, these
changes were relatively minor compared to the other experimental groups, and a clear tissue boundary between the AF
and NP was still observed. In the PBS, MnO2, and TGF-β3 groups, the discs displayed degenerative characteristics such
as decreased NP size and disorganized collagen fibers in the inner AF. The histopathological scores of the TGF-β3/MnO2

group were significantly lower after 4 weeks, which were closest to the Ctrl group. Conversely, the histopathological
scores of the other experimental groups were significantly higher, a difference that were more obvious at week 8
(Figure 9C and D).

Finally, to verify the effectiveness of TGF-β3/MnO2, the expressions of iNOS and Col-II in the IVD tissue were
further evaluated using immunohistochemistry. The expression of iNOS was significantly lower in the TGF-β3/MnO2

Figure 4 Antioxidant activity of TGF-β3/MnO2 NPs. (A) Representative fluorescent images of NPCs stained with DCFH-DA in the Ctrl, H2O2, MnO2, TGF-β3, and
TGF-β3/MnO2 groups, respectively. (B–D) qPCR analyses of the relative expression of the SOD1, SOD2, and CAT genes of the NPCs in Ctrl, H2O2, MnO2, TGF-β3, and
TGF-β3/MnO2 groups, respectively. *, p<0.05.
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group than in the other experimental groups (Figure 10A). Conversely, the expression of Col-II, an important marker of
ECM in the NP, was significantly higher in the TGF-β3/MnO2 group than in the other experimental groups (Figure 10B).
Semi-quantitative analysis of the staining further illustrated these differences (Figure 10C and D). Therefore, from
a macroscopic perspective, the in vivo experimental results indicate that the TGF-β3/MnO2 group had superior MRI
signal and gross appearance compared with the other experimental groups. At the microscopic level, immunohistochem-
ical staining revealed more residual NP, lower iNOS expression, and significantly higher Col-II expression in the
TGF-β3/MnO2 group. This indicates that the imbalance in ECM synthesis in IDD, which is one of the main causes of

Figure 5 Anti-apoptotic and proliferative effects of TGF-β3/MnO2. qPCR analyses of the relative expression of apoptotic (BAX) (A) and anti-apoptotic (MCL1 and BCL2)
(B and C) genes of NPCs in the Ctrl, H2O2, MnO2, TGF-β3, and TGF-β3/MnO2 groups, respectively. (D) Representative images of EdU staining of NPCs in the Ctrl, H2O2,
MnO2, TGF-β3, and TGF-β3/MnO2 groups, respectively. Green represents EdU-labeled proliferating cells and blue represents nuclei. (E) Quantification of the percentage of
EdU-positive cells in the Ctrl, H2O2, MnO2, TGF-β3, and TGF-β3/MnO2 groups, respectively. *, p<0.05.
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the loss of IVD function, can be reversed, thereby delaying the progression of IVD degeneration. This effect was
attributed to the ability of the MnO2 NPs to create an appropriate microenvironment/vehicle for TGF-β3 delivery to the
IVDs. Moreover, TGF-β3 delivered via the MnO2 system effectively promoted cell proliferation and inhibited ECM
degradation by reducing the acidity and scavenging ROS of the IVD microenvironment.

Discussion
We have proposed a novel strategy for IDD treatment using a MnO2 nanoplatform that effectively releases TGF-β3 in
response to the acidic microenvironment produced by IDD. This novel nanoplatform can also decrease ROS
accumulation to further promote cell survival and endogenous repair. The mechanisms and effectiveness of the
proposed therapeutic system were validated both in vitro using rat NPCs and in vivo using a rat IDD model.
Growing evidence suggests that the progression of IDD is accompanied by a pronounced decline in cell density.29

The IVD is an avascular organ with a small cell population and a limited nutrient supply, resulting in poor endogenous
repair capability.30,31 During aging and degeneration, excessive cellular senescence and death prevent the natural
repair processes from occurring, exacerbating IDD.32,33 Anti-senescent therapy appears to have a curative effect on
IDD.34,35

Regenerative medicine has emerged as a promising option for the prevention or even reversal of disc degeneration.36

Growth factors, which are an important component of regenerative medicine, act as mediators of the healing processes
and represent potential molecular targets for stimulating and guiding regeneration.37 TGF-β3 plays an essential role in
cell differentiation, cell adhesion, and ECM formation; TGF-β3 has been shown to promote the repair of cartilaginous

Figure 6 TGF-β3/MnO2 regulating the ECM metabolic balance of NPCs in vitro. qPCR analyses of the relative expression of anabolic (Col-II and ACAN) (A and B), pro-
inflammatory (COX-2 and iNOS) (C and D), and catabolic (MMP3 and Adamts5) (E and F) genes in the NPCs of the Ctrl, H2O2, MnO2, TGF-β3, and TGF-β3/MnO2 groups,
respectively. *, p<0.05.
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Figure 7 Immunofluorescent analysis of Col-II and iNOS expression in NPCs. Representative images of the immunofluorescence of Col-II (A) with semi-quantitative
analysis (B) and iNOS (C) with semi-quantitative analysis (D) in the NPCs of the Ctrl, H2O2, MnO2, TGF-β3, and TGF-β3/MnO2 groups, respectively. Red, green and blue
colors indicate Col-II protein, iNOS protein and DAPI fluorescence, respectively. *, p<0.05.
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organs including IVDs and upregulate the expressions of aggrecan and type II collagen.38 Peck et al reported that TGF-
β3 enhanced cell survival and ECM synthesis of mesenchymal stem cells in low-oxygen and nutrient-limited
microenvironments.39 Ashraf et al reported that TGF-β3 enhanced the ability of NPCs to form tissues, in part by
decreasing cell death.40 Consistent with the results of the present study, TGF-β3 treatment blocked the inhibitory effect of
H2O2 on NPC proliferation, likely by suppressing the apoptotic gene BAX and upregulating the proliferative genes
MCL1 and BCL2. Further, TGF-β3 alleviated the H2O2-induced expression of ECM genes (ACAN and Col-II) and partly
blocked the stimulatory effect of H2O2 on the expression of catabolic (MMP3 and Adamts5) and inflammatory genes
(COX-2 and iNOS). Interestingly, the protective effect of TGF-β3 against H2O2 damage in NPCs was independent of the
inhibition of oxidative stress, as evidenced by the lack of any effect of TGF-β3 on intracellular ROS and antioxidant

Figure 8 Evaluation of disc degeneration with T2-weighted MRI and gross appearance. Representative images of disc gross appearance (A) and MRI signal intensity (B) at 4
and 8 weeks. Changes in MRI grade at 4 and 8 weeks after surgery (C and D). *, p<0.05.
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genes. In a rat model of IDD induced by needle puncture, the reductions in water and Col-II contents were attenuated by
TGF-β3 treatment, which is consistent with the recovery of the MRI signal at four weeks after injection. Regrettably, the
effectiveness of TGF-β3 was diminished at 8 weeks after injection, as evidenced by decreased in NP area and ECM
content. This is likely because growth factors are prone to degradation in the body.41 Furthermore, the iNOS expression
was higher in the group treated with TGF-β3 alone compared to the sham group at both time points (4 w and 8 w). This
may represent an increased inflammatory response and persistent oxidative stress within the IDD microenvironment,
which may be another important reason why the positive effects of TGF-β3 attenuate over time.

Increasing evidence suggests that the harsh disc microenvironment inhibits the self-healing processes of degenerating
IVDs and restricts the capacity for external intervention.33,42 Oxidative stress has been identified as a major risk
component of pathological mechanism behind IDD.43,44 Oxidative stress increases the concentration of ROS, which is
closely related to cell senescence and apoptosis.45 Further, oxidative stress enhances the degradation of the ECM and the
inflammatory response in IVD cells and damages the mechanical function of the IVDs.8,46 These effects accelerate the
progress of IDD and lead to low back pain. Disc degeneration has long been associated with increased acidity.47 The pH
value of normal discs is 7.2, while the pH in severely degenerated discs is 6.2.48,49 A normal pH is necessary to maintain
cellular functions, while an excessively acidic environment significantly inhibits cell viability and matrix synthesis.50

Gilbert et al reported that the increased pH was associated with decreased NPC proliferation and vitality, a shift towards
matrix catabolism, and an increased expression of proinflammatory cytokines and pain-related factors.51 Therefore,

Figure 9 Histopathological evaluation in vivo. H&E (A) and Safranin O-Fast Green (B) images of IVDs in the rat caudal vertebrae at 4 and 8 weeks. The histopathological
scores of different groups at 4 and 8 weeks after surgery (C and D). *, p<0.05.
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targeting oxidative stress or acidity to improve the harsh microenvironment of disc degeneration may provide a new
strategy for IDD treatment.

Based on the above considerations, MnO2 nanostructures that are decomposed in the presence of H+ or glutathione
have attracted our attention.52 MnO2 nanostructures are also able to trigger the decomposition of H2O2 into water and
oxygen.53 These characteristics enhance the therapeutic potential of the nanostructure, in particular as anti-tumor and
anti-osteoarthritis vectors.54,55 However, to the best of our knowledge, MnO2 nanostructures have not yet been reported
as a strategy for IDD therapy. In this study, we developed an intelligent nanoplatform based on MnO2 NPs for TGF-β3
delivery. The nanoplatform exhibited an ultrasensitive pH-triggered release and H2O2-responsive oxygen generation to
relieve IVD hypoxia and reduce oxidative injury, resulting in long-term therapeutic effects. We successfully synthesized
spherical MnO2 NPs with hollow structures. The NPs exhibited no obvious toxicity to the NPCs, even at high
concentrations up to 50 μg/mL. The NPs were highly effective at drug loading. The encapsulated drug was precisely
and controllably released upon exposure to H+ or H2O2. In vitro experiments demonstrated that TGF-β3/MnO2 had
antioxidant and anti-apoptosis effects and promoted cell proliferation. Although TGF-β3 did not increase the antioxidant
capacity of MnO2, the proliferative effect of TGF-β3 was enhanced by MnO2. There was increased production of ECM
components (eg, ACAN and Col-II) in the presence of H2O2 in cells treated with TGF-β3/MnO2 compared to those
treated with TGF-β3 alone. We hypothesized that the enhanced effects of TGF-β3 in the setting of MnO2 may be related

Figure 10 Immunohistochemical analysis of iNOS and Col-II expression in each group. Representative images of the immunohistochemical staining of iNOS (A) and Col-II
(B) at 4 and 8 weeks after surgery, and the semi-quantitative analysis of iNOS (C) and COL-II (D) at these timepoints. *, p<0.05.
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to the elimination of H2O2 by MnO2, resulting in a better environment for cell survival. This effect may be derived from
the reduction in inflammatory factors and catabolic makers.

To further investigate the role of TGF-β3/MnO2 in vivo, an IDD model was established in rats by needle puncture
with half penetration. Needle puncture is the most common method used to establish injury models because of its
repeatability and short-term degenerative changes.56 Our in vivo results showed that needle puncture induced rapid and
severe disc degeneration, as indicated by the disappearance of the nucleus pulposus area and the imbalanced ECM. These
altered morphological features were almost recovered at four weeks after treatment with TGF-β3/MnO2. Further, the
MRI signal intensity and nucleus area were larger in the TGF-β3/MnO2 group compared to the TGF-β3 and MnO2

groups. Additionally, TGF-β3/MnO2 effectively slowed Col-II degradation and iNOS expression for up to eight weeks
after treatment, which was not observed in the TGF-β3 and MnO2 groups. These findings reveal that MnO2 contributes to
eliminating oxidative stress and controlling the release of TGF-β3, and the latter promoted cell survival, ECM deposition
and enhanced endogenous repair.

The present study has some limitations. First, we only examined the effects of TGF-β3/MnO2 on the rat IDD model
for eight weeks. A longer study period is needed to evaluate the long-term efficacy of the nanoplatform. Second, an
upright model that is more similar to a human IDD should be used to further validate the results obtained in the rat IDD
model. Third, the use of PBS solution as a vehicle increases the possibility of leakage. Thus, a better vehicle such as
a hydrogel should be developed to improve drug bioavailability and avoid burst drug release.

Conclusion
In summary, we fabricated hollow mesoporous MnO2 NPs loaded with TGF-β3 as a multifunctional drug delivery system
that is responsive to H+ and H2O2 in the IDD microenvironment. This nanoplatform can modulate the microenvironment
to prolong the effects of TGF-β3, which achieved well persistent influence in IDD injury. Further studies will be needed
to explore some suitable vehicles to enhance the curative effect and longer treatment periods to confirm the long-term
efficacy of the nanoplatform. This injectable nanoplatform for controlled drug release provides a new strategy for tissue
regeneration under local oxidative stress and acidic microenvironments.
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