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Abstract: Small interfering ribonucleic acids [siRNAs] are short ribonucleic acid (RNA) fragments cleaved from double-stranded
RNA molecules that target and bind to specific sequences on messenger RNA (mRNA), leading to their destruction. Therefore, the
siRNA down-regulates the formation of selected mRNAs and their protein products. Givosiran is one such siRNA that uses this
mechanism to treat acute hepatic porphyrias. Acute hepatic porphyrias are a group of rare, inherited metabolic disorders, characterized
by acute potentially life-threatening attacks as well as chronic symptoms with a negative impact on quality of life. It has four types,
each associated with distinct enzyme defects in the heme biosynthesis pathway in the liver. By targeting the expression of hepatic
5-aminolevulinic acid [ALA] synthase-1 [ALAS1], givosiran can down-regulate levels of toxic metabolites, leading to biochemical
and clinical improvement. Givosiran selectively targets hepatocytes due to its linkage to N-acetylgalactosamine (GalNac) leading to its
selective uptake via asialoglycoprotein receptors (ASGPR). We provide an up-to-date literature review regarding givosiran in the
context of a clinical overview of the porphyrias, an overview of siRNAs for therapy of human disorders, the design and development
of givosiran, key clinical trial results of givosiran for prevention of acute porphyric attacks, emerging concerns regarding chronic use
of givosiran, and the overall management of acute hepatic porphyrias. These insights are important not only for the management of
acute hepatic porphyrias but also for the emerging field of siRNAs and their role in novel therapies for various diseases.
Keywords: givosiran, small interfering RNA’s, siRNAs, 5- (or δ)-aminolevulinic acid synthase 1 (ALAS1) expression inhibitors,
porphyrias

Clinical Overview of Porphyrias
Porphyria refers to a group of inherited or acquired disorders in the enzymes catalyzing one of the eight steps in heme
synthesis [see Figure 1]. Each enzyme dysfunction may lead to accumulation and excretion of the precursor molecules
that precede the defective step. The prevalence of the porphyrias varies by specific disease and by country or region of
the world. In the case of acute intermittent porphyria [AIP], the major form of acute hepatic porphyrias [AHP], the
prevalence of disease-associated mutations recently has been found to be more common than previously believed,
approximately 1 in 1700 among Europeans and European-Americans.1 Because the prevalence of clinical disease is far
lower, we now estimate that the clinical penetrance of AIP is only about 1–2%, although in first-degree relatives of
known patients, the clinical penetrance is ~20%.2 We will review different types of porphyria with an emphasis on AHPs
as summarized in Table 1.3 Elevation of urinary ALA and porphobilinogen (PBG) may occur in acute intermittent
porphyria (AIP), hereditary coproporphyria (HCP), and variegate porphyria (VP) while elevation of urinary ALA but not
PBG is characteristic of delta-aminolevulinic acid dehydratase porphyria (ADP). Elevation of ALA, in particular, may be
associated with acute attacks of disease with diverse neurovisceral symptoms.
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Figure 1 The pathway of heme synthesis, showing pathway intermediates and end-product regulation by heme. The eight steps of heme synthesis (left column) are shown
with the enzyme (middle column) that catalyzes each step. The enzymes in bold type are the clinically most prevalent porphyrias. From The New England Journal of Medicine,
Bissell DM, Anderson KE, Bonkovsky HL, Porphyria, 377(9), 862–872. Copyright © (2017) Massachusetts Medical Society. Reprinted with permission from Massachusetts
Medical Society.3
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Acute intermittent porphyria (AIP) is the most common among AHPs. It is an autosomal dominant disease caused by
a deficiency in porphobilinogen (PBG) deaminase, also called hydroxymethylbilane synthase [HMBS]. When clinically
active, AIP is characterized by episodes of progressively worsening, unexplained abdominal pain with normal examina-
tion findings. An acute attack commonly presents with incapacitating abdominal pain in reproductive age women.
Seizures can occur in 10–20% of patients.4 Diagnosis is made with an elevated urinary PBG test confirmed by genetic
testing. Excess delta-aminolevulinic acid (ALA) production in the liver causes chronic neural, hepatic, and renal
injuries.5,6 Treatment involves trigger avoidance and intravenous (IV) heme infusion (hydroxyheme [Panhematin] or
heme arginate [Normosang]) for acute attacks. Givosiran is a novel therapy that has shown to have significant efficacy in
prevention of frequent recurrent attacks of AIP in recent clinical trials.7,8

The other AHPs include delta-aminolevulinic acid dehydratase porphyria (ADP), hereditary coproporphyria (HCP), and
variegate porphyria (VP). ADP is a very rare condition due to severeALAdehydratase [also called PBG synthase] deficiency. It is
an autosomal recessive disorder that is highly heterogeneous with various mutant alleles, thus far, for unknown reasons, found
only inmales.9 Typical findings on evaluation of ADP includemarkedly deficient activity (<10% of normal) of ALA dehydratase

Table 1 Porphyria Clinical Summary3

Porphyria Type Tissue Site Clinical Manifestations Demographics

ALA dehydratase
porphyria

Hepatic &
Erythropoietic

● Extrahepatic GI, neuropsychiatric, cardiovascular symptoms Very rare, male of all ages

Acute intermittent
porphyria

Hepatic ● Acute, severe abdominal pain, lasting hours to days
● Nausea & vomiting

● Autonomic & peripheral neuropathy

● Amber or reddish urine

Young (18 to 45) female

Hereditary
coproporphyria

Hepatic &
Cutaneous

● Progressive, subacute abdominal pain
● Autonomic & peripheral neuropathy

● ~20% with associated photosensitivity leading to bullae and skin fragility

Male = female

Variegate porphyria Hepatic &

Cutaneous

● Chronic blisters of sun-exposed skin, hyperpigmentation,

hypertrichosis (adulthood)

● Acute, episodic neurovisceral attacks including abdominal and back
pain, constipation

● Autonomic & peripheral neuropathy, fatal seizure

Puberty into adulthood,

Female > male

Congenital

erythropoietic

porphyria

Erythropoietic ● Pink to dark red urine

● Hemolytic anemia

Early infancy,

Male = female

Porphyria cutanea tarda Cutaneous ● Blisters/bullae on sun-exposed skin

● Scarring, hypertrichosis, sclerodermatous changes
● Reddish-brown urine

● Risk factors include ethanol, smoking, excess estrogen, chronic

HCV, hereditary hemochromatosis

Middle aged (>40) male

X-linked

protoporphyria

Erythropoietic ● Acute, severe pain, edema, pruritus after sun exposure

● No blisters; lichenification
● Normal urine

● Cholestatic liver disease

Infancy or childhood,

male > female

Erythropoietic

Protoporphyria

Erythropoietic ● Acute severe pain, edema, pruritus after sun exposure

● No blisters; lichenification

● Normal urine
● Cholestatic liver disease

Infancy (1 to 3 y),

male = female
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in erythrocytes, elevation in urinaryALA and coproporphyrinwith no increase in urinary PBG.However, a definitive diagnosis is
made by genetic testing that typically reveals disease-associated mutations in both alleles of the ALA dehydratase gene.10

Hereditary coproporphyria (HCP) is a rare inherited type of porphyria due to a mutation in the coproporphyrinogen
oxidase gene [CPOX]. Acute HCP attacks present with progressive, subacute abdominal pain and peripheral weakness if
not treated. Photosensitivity can occur in ~20% with acute attacks.11 Variegate porphyria (VP) is caused by a mutation in
protoporphyrinogen oxidase [PPOX]. VP has a chronic cutaneous and an acute porphyria component. Patients develop
blistering lesions in sun-exposed skin, facial hyperpigmentation, and hypertrichosis. Acute neurovisceral attacks present
with abdominal and back pain, constipation, motor neuropathy, and potentially fatal seizures.12

Porphyria cutanea tarda (PCT) is likely the most common porphyria worldwide. It is due to an inherited or acquired
deficiency of hepatic uroporphyrinogen decarboxylase. Excessive circulating porphyrins cause skin friability and blisters on
sun-exposed areas. The most common risk factors for PCT in the US are ethanol use, smoking, excess estrogen, chronic
hepatitis C virus (HCV) infection, and hereditary hemochromatosis.3 Diagnosis is made by elevation in urine or plasma
uroporphyrin and heptacarboxylporphyrin. Trigger avoidance along with iron reduction via therapeutic phlebotomy or iron
chelation, and/or low-dose hydroxychloroquine are effective treatments. They decrease ongoing overproduction of uro- and
heptacarboxyl-porphyrins by the liver and enhance mobilization and urinary excretion of porphyrins from hepatocytes and
other sites of deposition. Normalization of urine uroporphyrin level signals that it is safe for treatment cessation. Due to the
risk of recurrence, especially among patients with continuing alcohol and tobacco use, chronic hepatitis C, and/or hereditary
hemochromatosis, an annual check of urine or plasma uroporphyrin levels is recommended for early detection of recurrence.13

Such monitoring is best done in the early spring prior to the sunny seasons of the year. Among patients with PCT and chronic
hepatitis C, both disorders usually can be treated with direct-acting antivirals that cure HCV infection.14

Protoporphyria is caused by the overproduction of protoporphyrin in the bone marrow. Ferrochelatase deficiency
leads to erythropoietic protoporphyria whereas gain-of-function mutations in ALA synthase 2 lead to X-linked proto-
porphyria. The clinical presentation consists of acute pain, redness, and swelling of sun-exposed skin. With repeat injury,
mild hyperkeratosis and lichenification may develop, especially notable over the knuckles and on the face. The screening
test for protoporphyria is a significant elevation in blood protoporphyrin. Beta-carotene has not proven very effective in
ameliorating acute photosensitivity, whereas afamelanotide, an analog of melanocyte-stimulating hormone that leads to
increased eumelanin pigmentation, has shown significant benefits in clinical trials.15

Overview of Small Interfering RNA (siRNAs) for Therapy of Human
Disorders
The concept of ribonucleic acid (RNA) interference was first proven in Caenorhabditis elegans in 1998, and this technology has
evolved to be utilized for many applications, including the development of novel therapies for various mammalian disease.16–18

There are various methods to administer RNA-based gene silencing therapies.19 Short hairpin RNAs, which are 19–22 base pairs
(bp) molecules, for example, can be delivered via plasmid DNA or viral vectors, which are then subsequently transcribed
endogenously and converted into siRNAs in the cytoplasm via the enzyme dicer.20 Micro-RNA molecules, which are approxi-
mately 22 nucleotide molecules, are dicer-independent and can be processed directly by another enzyme Argonaute 2 (Ago2).21

When a 20–30 bp siRNA-based therapy is administered and enters a eukaryotic cell, generally, dicer, which is a protein complex
with other RNA-binding proteins, such as TAR-RNA-binding protein, PACT, and Argonaute-2 [Ago-2], interacts with the
2-nucleotide overhang on the 3’ end of the modified siRNA and transfers it to the RNA-induced silencing complex [RISC].22,23

During this hand-off, Ago-2 separates the two siRNA strands; the more thermodynamically stable “guide” strand stays bound to
and activates RISC, allowing this complex to recognize the targetmRNAvia base pairing.24–28 Once bound to the target RNA, the
PIWIdomain ofAgo-2 precisely targets a phosphodiester linkage and creates a nick. The degradative process is then completed by
cellular exonucleases, fragmenting the target mRNA, freeing the RISC/siRNA complex, and allowing the complex to find other
target mRNAs in the cytosol.29–31 Through this mechanism of action, siRNAs can theoretically target and down-regulate almost
all genes of interest.

Although siRNAs appear to have spectacular promise, multiple barriers must be overcome during the drug development
process. The most obvious barrier is RNA degradation via endonucleases and exonucleases, which can quickly degrade naked
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and unmodified siRNAs, leading to poor stability and pharmacokinetic behavior. Other barriers include poor bioavailability,
poor clearance, inappropriate recognition by innate immunity, and off-target effects if the siRNA does not successfully
localize to its target tissue.32,33 Over decades, however, multiple strategies have been developed to mitigate these issues,
including the use of different carriers, such as lipids, polymers, and nanoparticles, to protect and deliver siRNAs to their
desired target organs; chemical modifications to the base, ribose, or phosphonate groups of the siRNAs; and the use of longer
RNA hairpin transcripts, which can be subsequently processed intracellularly to their siRNA effector forms.32,34,35

Even with these modifications, it is still difficult to translate promising in vivo efficacy, pharmacokinetics, and
pharmacodynamics results to human clinical trials. For example, the first clinical application of RNA interference was for
the treatment of age-related macular degeneration using vascular endothelial growth factor [VEGF] A-targeting bevasir-
anib and VEGFR1-targeting AGN211745, but these siRNAs triggered significant induction of toll-like receptor 3,
interleukin-12, and interferon-gamma.36–38 Thus, it is important for researchers to continue to optimize and maximize
treatment potency while avoiding or minimizing these undesirable effects.

Although there are several promising siRNA therapeutics in clinical studies, such as fitusiran for hemophilia,39

and tivanisiran for Sjogren Syndrome,40 only four siRNA therapies are currently FDA-approved, namely, patisiran
for transthyretin-mediated amyloidosis,41 lumasiran for primary hyperoxaluria type 1,42 inclisiran for
hypercholesterolemia,43 and givosiran for acute hepatic porphyrias (AHP’s).8 These FDA-approved siRNAs
show remarkable efficacy in treating their respective target diseases with favorable safety profiles, although
effects of long-term therapy are not yet known. For this review, only givosiran will be further discussed.

Design and Development of Givosiran
Givosiran (Figure 2), which was developed by Alnylam Pharmaceuticals (Cambridge, MA), is a siRNA that decreases hepatic
delta-aminolevulinic acid synthase 1 (ALAS1) expression to prevent recurrent acute attacks of AIP or other acute porphyrias.44

There have beenmany reports that showassociations between basal hepaticALAS1mRNA levels andAIP attacks, indicating that

Figure 2 Chemical structure of givosiran.
Note: Reprinted from FDA. Highlights of prescribing information; 2019. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/0212194s000lbl.pdf.67

Abbreviations: Af, adenine 2’-F ribonucleoside; Cf, cytosine 2’-F ribonucleoside; Uf, uracil 2’-F ribonucleoside; Am, adenine 2’-OMe ribonucleoside; Cm, cytosine 2’-OMe
ribonucleoside; Gf, guanine 2’-F ribonucleoside; Gm, guanine 2’-OMe ribonucleoside; Um, uracil 2’-OMe ribonucleoside; L96, triantennary GalNAc (N-acetylgalactosamine).
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decreasing ALAS1 mRNA expression is a critical target for therapy.7 Givosiran was initially designed based on the nucleotide
sequence,NM_020559.2 [NationalCenter forBiotechnology InformationReferenceSequence], inmurineALAS1.45 From there,
Alnylam investigators worked to improve the delivery system of givosiran to hepatocytes by conjugating a trivalent N-acetyl-
galactosamine [GalNac] to the siRNA.44–46 Human hepatocytes express high levels of asialoglycoprotein receptors [ASGPR],
which are transmembrane receptors with high affinity and specificity for GalNac. Thus, conjugation of givosiran to GalNAC
achieved greater silencing of hepatocyticALAS1with fewer off-target effects.47 In absence of the triGalNAc ligand, no activity is
observed with siRNA in liver.47,48 Givosiran was further modified to protect it from nuclease digestion by incorporating either
a 2’-deoxy-2’-fluoro or a 2’-O-methyl group in the ribose sugar moieties, and phosphorothioate linkages at the 5’ end of the
siRNA strands.44,49 After uptake into cell, it is unclear how siRNA escapes from the trafficking pathway. One hypothesis is that
small amounts are released during fission/fusion events of endolysosomes.48 Upon uptake, theGalNAc ligand rapidly degrades in
the endolysosomes. It is thought that siRNA degradation is largely intracellular by nucleases and a smaller portion is removed
through urine and bile.50 It is believed that slower onset of activity with conjugate siRNAs is due to time it takes for it to escape
from subcellular compartments and reach RNA-induced silencing complex (RISC) for RNAi activity. It also likely provides the
depot for long duration of activity.48 Both in vitro and in vivo studies were conducted to investigate the metabolic stability and
metabolite profile of givosiran. The metabolic stability of givosiran was evaluated in serum and liver S9-fractions obtained from
mouse, rat, monkey, and human. The in vivo metabolism of givosiran, assessed by analyzing plasma and liver samples after
administration of givosiran in rats and monkeys, was generally similar to that observed in vitro. Metabolic profiling was
performed in human plasma and urine. No human unique metabolites were detected. An in vitro study conducted with human
liver S9 fraction confirmed that both sense and antisense strands of givosiran were stable, and no change was observed with and
without nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), suggesting that cytochromeP450 (CYP) isozymes are
not involved in the metabolism of givosiran. The proposed biotransformation and breakdown products are described in more
detail in Figure 3.51 Before human trials, the rodents trials of weekly subcutaneous injections were encouraging and showed dose
dependent ALAS1 gene silencing with a sustained response of over 9 months with no adverse effects.47

Givosiran’s mechanism of action is very similar to that of any siRNA as outlined in the “Overview of siRNAs for
therapy of human disorders” section. The steps that are unique to givosiran are the initial interaction of the GalNac
moieties to asialoglycoprotein receptor (ASGPR) on hepatocytes, allowing internalization of the siRNA, and givosiran
subsequently complexing with both dicer and HIV1 transactivation response RNA-binding protein, catalyzing the
separation of the two RNA strands (Figure 4).44,46,52,53

Figure 3 Metabolism of givosiran.
Note: Li J, Liu J, Zhang X, et al. Nonclinical pharmacokinetics and absorption, distribution, metabolism, and excretion of givosiran, the first approved N-Acetylgalactosamine-
conjugated RNA interference therapeutic. Drug Metab Dispos. 2021;49(7):572–580.51
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Due to givosiran’s high specificity for the liver, its pharmacokinetics and absorption, distribution, elimination, metabolism,
and excretion profiles were all favorable in rats (Table 2). In this pharmacokinetic study, the givosiran concentration was found to
be 11 times higher in the liver than in the kidneys. Givosiran was found inmultiple organs, including the heart, lungs, and adrenal
glands, at significantly lower concentrations, ranging from 1/100 to 1/800 than of the concentrations found in the liver. Givosiran
was not detected in the brain, and the degradedRNA fragmentswere excreted through the urine.54–56Different dosing of givosiran
produced rapid and sustained, dose-dependent reductions in serum ALAS1 mRNA and urinary levels of δ-ALA and PBG. The
maximum reductions in serum ALAS1 mRNA from baseline ranged from 49% to 74% based on dosage (2.5 or 5 mg/kg) and
frequency (monthly or quarterly). Givosiran exhibits linear plasma pharmacokinetics over a dose range of 0.35 to 2.5 mg/kg. At
2.5 mg/kg, givosiran exhibited a time to maximum plasma concentration of 2.07 hours, steady state apparent volume of
distribution of 10.4 liters, elimination half-life of 4 to 40 hours, and fraction of renal clearance over 24 h of 6.59%. These results
were consistently observed after stratification based on age, gender, race, kidney function.56AlthoughASGPRs are also expressed
in peripheral monocytes, peritoneal macrophages, endometrial cells, renal tubular cells and other cell types, givosiran has
a selective preference for localization in the liver, which limits the likelihood of off-target effects.57–60 Perhaps, related to some
degree of givosiran’s localization in the kidneys, both the clinical trials of its use and a recent study reported an increase in serum
creatinine (Cr) and a decrease in estimated glomerular filtration rate [eGFR].; long-term adverse effects of givosiran on renal
function cannot be excluded.61

Prior to the approval of givosiran, weekly IV heme infusions were, and perhaps still are, the most widely used prescription
for prophylaxis of frequent acute attacks of AHP. Due to its instability in aqueous solution and its risk for painful phlebitis, IV
heme is better administered bound to human serum albumin and through a high-flow large peripheral vein or central line.
Frequent heme infusions also increase the risk of iron overload.3,62–64 These issues do not exist with givosiran, but there are
adverse effects of givosiran that have been reported as outlined in the “Emerging concerns regarding chronic use of givosiran”
section.

Figure 4 The mechanism of small interfering RNA (siRNA) therapy. Synthetic double-stranded RNA containing an ALAS1-specific sequence is derivatized with
N-acetylgalactosamine to target the asialoorosomucoid (galactose) receptor, which is expressed nearly exclusively on hepatocytes. Within the hepatocyte, the RNA is
processed into approximately 20-bp fragments by a cellular enzyme (dicer), and then separated into single strands. The strand that is complementary to ALAS1 (the guide
strand) binds to cellular ALAS1 messenger RNA (mRNA) and enters the RNA-induced silencing complex (RISC), where the new double-stranded RNA is cleaved by a group
of factors that include argonaute, a ribonuclease. The result is a reduction in the level of delta ALA synthase 1 protein and decreased production of ALA. From The New
England Journal of Medicine, Bissell DM, Anderson KE, Bonkovsky HL, Porphyria, 377(9), 862–872. Copyright © (2017) Massachusetts Medical Society. Reprinted with
permission from Massachusetts Medical Society.3
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Key Clinical Trial Results for Givosiran for Prevention of Acute Porphyric
Attacks
A Phase I trial (NCT02452372) was performed to investigate the safety, pharmacokinetic, pharmacodynamic, and
efficacy of givosiran in confirmed AIP patients.7 This trial enrolled a total of 40 patients with mutation-confirmed
AIP. Parts A and B of the trial investigated patients without attacks in the past 6 months (N=23). Part A of the trial
investigated selected dosages of givosiran, given as a single subcutaneous [sc] injection, while part B investigated once-
monthly injections for two injections. Higher doses of givosiran were associated with lower expression of urinary ALA

Table 2 Pharmacokinetic Parameters of Givosiran and Its Active Metabolite54,67

Givosiran AS(N-1)3’ Givosiran

General Information

Steady-State Exposure Cmax [Mean (CV%)] 321 ng/mL (51%) 123 ng/mL (64%)

AUC24 [Mean (CV%)] 4130 ng·h/mL (43%) 1930 ng·h/mL (63%)

Dose Proportionality ● Steady-state maximum plasma concentration (Cmax) and area under the curve

(AUC) for givosiran and AS(N-1)3′ givosiran increase proportionally over the
0.35 mg/kg to 2.5 mg/kg once monthly dose range (0.14 to 1-fold the approved
recommended dosage).

● Cmax and AUC for givosiran and AS(N-1)3′givosiran increase slightly greater
than proportionally at doses greater than 2.5 mg/kg once monthly

Accumulation No accumulation of givosiran or AS(N-1)3′givosiran was observed following
multiple dosing.

Absorption

Tmax [Median (range)] 3 (0.5–8) hours 7 (1.5–12) hours

Distribution

Apparent Central Volume of Distribution (Vz/F)
[Mean (RSE%)]a

10.4 L (2.3%)

Protein Binding 90%b Not evaluated

Organ Distribution Givosiran and AS(N-1)3′givosiran distribute primarily to the liver after

subcutaneous dosing.

Elimination

Half-Life [Mean (CV%)] 6 hours (46%) 6 hours (41%)

Apparent Clearance [Mean (CV%)]a 35.1 L/hr (18%) 64.7 L/hr (33%)

Metabolism

Primary Pathway Givosiran is metabolized by nucleases to oligonucleotides of shorter lengths.
Givosiran is not a substrate of CYP enzymesc.

Active Metabolite The active metabolite, AS(N-1)3′givosiran, is equipotent to givosiran in plasma
and the AUC0–24 represents 45% of givosiran AUC, at the approved

recommended givosiran dosage.

Excretion

Primary Pathway The dose recovered in urine was 5–14% as givosiran and 4–13% as AS(N-1)3′
givosirand.

Notes: aBased on population PK model estimation. bGivosiran plasma protein binding was concentration-dependent and decreased with increasing givosiran concentrations
(from 92% at 1 µg/mL to 21% at 50 µg/mL). cBased on in vitro study result. dAfter single and multiple subcutaneous doses of givosiran 2.5 mg/kg and 5 mg/kg.
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and PBG levels. Part C of the trial investigated patients with recurrent attacks (N=17) at two different dosages (2.5 or
5.0 mg/kg) and dosing frequencies (monthly vs quarterly). The 5.0 mg/kg once-monthly group led to the greatest
reduction in ALAS1 mRNA level at −74 ± 6%. The placebo groups in this study were administered sterile normal saline.

In conclusion, the pharmacokinetic profile indicated dose-proportional characteristics of givosiran with no drug
accumulation after repeated injections. Once-monthly treatment in the patient population with recurrent attacks resulted
in low-grade adverse events (AE), maximal reduction in ALAS1 mRNA levels, near normalization of neurotoxic
intermediates, a 48% reduction of annualized hemin administration, and a 79% lower attack rate compared to the
placebo group. The study limitations included a short intervention period (12 weeks) and small patient populations (N =
23 and 17). This trial confirmed an association between lower biochemical activities among the givosiran patient
population and reduction in annualized attack rate (ARR) and reduced rate of as-needed hemin use.

A phase I/II open-label extension (OLE) study (NCT02949830) of givosiran enrolled all patients from phase I part C.65

The study had a mean intervention duration of 22.8 months, and up to 30.9 months of total treatment. The results of the OLE
study demonstrated maintenance of clinical activity with continuous monthly dosing of givosiran at 2.5 mg/kg. There was
consistent reduction of urinary ALA and PBG by ≥80% at 12 months and >85% at 18 months. The mean annualized attack
rate was reduced by 96% and annualized hemin use was reduced by 98%. Continued givosiran dosing maintained the
reduced of mean attack rate in patients out to 30 months.

Based upon the encouraging results of the phase I and II trials, the pivotal Phase III ENVISION trial (NCT03338816)
was performed with participation from 36 sites.8 For a 6-month period, AIP patients (N=94) were randomly assigned to
receive once monthly (QM) givosiran at 2.5 mg/kg vs placebo (sterile normal saline). The study investigated annualized
attack rate, urinary ALA and PBG levels, annualized hemin use, and daily worst pain scores. The givosiran group
showed a lower attack rate, reduction in biochemical markers, fewer hemin infusions, and reduction in physical pain and
limitations. The mean annualized attack rate over 6 months was 3.2 in the givosiran group vs 12.5 in the placebo group,
a 74% reduction. Fifty percent of patients in the givosiran group had no attacks during the intervention period compared
to 17% in the placebo group. Urinary ALA level was reduced by 86% and PBG level reduced by 91% after 6 months of
givosiran (Figure 5). Fifty-four percent of patients in the givosiran group did not require hemin use compared to 23% in
the placebo group. This trial demonstrated a similar pharmacokinetic profile and efficacy of givosiran in a larger
population for a longer duration of treatment period.

With the statistically significant results in the phase III ENVISION study an OLE study was performed for a 24-month
interval on all eligible patients from the ENVISION study for a total of 30 months.66 The givosiran group from the
ENVISION study continue to receive givosiran 2.5 mg/kg while the placebo group from ENVISION study crossed over and
received givosiran 1.25 mg/kg. Givosiran treatment led to sustained lowering of median ALA levels to near normal and
PBG levels by >75% through month 24 as seen in Figure 6. The median number of attacks during the OLE period was 0 for
the continuous givosiran group and 1.35 (87% reduction) in the placebo crossover group. In addition, a higher proportion of
patients in the givosiran group (83%) was attack-free compared to the placebo crossover group (76%). The median
annualized hemin use remained at 0 in the continuous givosiran group during the OLE period and 0.71 (95% reduction)
in the placebo crossover group. In addition, a higher proportion of patients in the givosiran group (68%) required no hemin
use compared to the patients in the crossover group (49%). Patient-reported outcomes reflected improvements across all
domains, including activities of daily living, satisfaction with treatment, and living a more normal life.

Emerging Concerns Regarding Chronic Use of Givosiran
Overall, givosiran was well tolerated during the trials. In Phase I, the side effects were mostly mild to moderate in
severity and were mostly GI-related (nausea, abdominal pain, diarrhea) and nasopharyngitis.7,8 Part A of phase I had two
patients with severe abdominal pain while part B had one patient with a spontaneous abortion at seven weeks but
considered unlikely to be related to givosiran.7 Of note, givosiran administration at maternally toxic doses in an embryo-
fetal development study in pregnant rabbits (1.5 mg/kg/day which is five times the maximum recommended human dose)
resulted in increased post-implantation loss. With one time dose of 20 mg/kg, an increased incidence of skeletal
variations of the sternebrae was observed. In a combined fertility and embryo-fetal development study in female rats,
givosiran administration at nine times the normalized maximum recommended human dose was associated with
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a skeletal variation (incomplete ossification of pubes) and produced maternal toxicity. As per FDA, there is not enough
data of givosiran in pregnant women to evaluate a drug-associated risk of major birth defects, miscarriage, or adverse
maternal or fetal outcomes. Thus, the current package insert for givosiran recommends to assess risk vs benefits of
potential effects on fetus and mother while prescribing givosiran to pregnant patients.67

In part C, there were five serious adverse events (SAE) reported with one patient developing influenza A infection and
another developing opioid-induced bowel dysfunction responsive to the treatment. A single patient had 3 serious adverse
events (including hemorrhagic pancreatitis) while receiving 5 mg/kg monthly injections of givosiran, but that patient had
confounding factors, including a complex medical history and acute pulmonary embolism.7 Eighteen percent of treatment
groups developed a serious adverse event. During, Phase I/II, 100% (16/16) patients reported at least 1 adverse event. Six

Figure 5 Annualized attack rate (AAR) and urinary levels of neurotoxic heme intermediates in patients with acute intermittent porphyria. (A) shows the mean annualized
rate of composite porphyria attacks (the primary end point) among the 89 patients with acute intermittent porphyria who received either givosiran or placebo. A composite
porphyria attack was defined as an attack that resulted in hospitalization, an urgent health care visit, or intravenous administration of hemin at home. IV denotes intravenous.
(B) shows the median annualized attack rate, which was calculated from the individual patients’ annualized attack rates. Also shown are the median levels of urinary delta-
aminolevulinic acid (ALA) ((C) and porphobilinogen (PBG) ((D) in patients with acute intermittent porphyria. In (C and D), the I bars denote the interquartile range. From
The New England Journal of Medicine, Balwani M et al, Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria, 382 (24), 2289–2301. Copyright © (2020)
Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.8
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patients developed serious adverse events, but only one with an anaphylactic reaction was deemed related to givosiran.
There were no clinically significant laboratory changes, including in liver chemistries.

While during the ENVISION trial, givosiran generally showed mild adverse effects (nausea, fatigue, and injection site
rash), there were reports of adverse events related to the liver and kidneys including increased serum alanine amino-
transferase (ALT), worsening chronic kidney disease (CKD), decreased estimated glomerular filtration rate (eGFR).8

Serum ALT elevation up to >3 times the upper limit of normal was more common in the givosiran-treated group than
in the placebo group (7 vs. 1 patient).8 Generally, ALT elevations occurred between 3 and 6 months after starting
treatment and resolved with continued givosiran treatment, suggesting possible adaptation by the liver.8 One patient
developed serum ALT elevation 9.9 times the upper limit of normal without symptoms of hepatitis or elevation of serum

Figure 6 Phase 3 open label extension study mean levels of urinary ALA (A) and PBG (B) of the placebo/givosiran crossover group and the givosiran/givosiran group. DB
denotes the double-blind phase of study.
Note: Reprinted from Ventura P, Bonkovsky HL, Gouya L, et al. Efficacy and safety of givosiran for acute hepatic porphyria: 24-month interim analysis of the randomized
phase 3 ENVISION study. Liver Int. 2022;42(1):161–172. © 2021 The Authors. Liver International published by John Wiley & Sons Ltd. Creative Commons license and
disclaimer available from: http://creativecommons.org/licenses/by/4.0/legalcode.66
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total bilirubin, which led to permanent discontinuation of givosiran and subsequently ALT normalization after 5 months.8

In another patient with elevated ALT, the givosiran was interrupted according to the protocol and then resumed at a lower
dose of (1.25 mg/kg) with no signs of ALT elevation.8 The other patients with elevations in their aminotransferases had
eventual resolution of their ALT elevations with continued dosing of givosiran at 2.5 mg/kg. It appeared that elevations of
serum aminotransferases were seen at similar rates in patients with or without elevated aminotransferases at baseline.8

Thus, despite increases in ALT levels, most of these elevations were transient and/or resolved with decreased monthly
doses.

Patients receiving givosiran also demonstrated adverse renal events (15% in the givosiran group compared to 7% in
the placebo group) manifested by increased serum creatinine (median increase at 3 months, was 0.07 mg/dL) and
a corresponding decrease in the eGFR. Five patients in the givosiran group had onset of worsening CKD.8 On renal
biopsies, two of these patients’ renal adverse events were related to worsening of their underlying CKD (hypertensive
and porphyria-associated nephropathy). Overall, the rise in creatinine observed with givosiran use was noted early in the
treatment course and was mainly reversible.8

During the OLE, the safety profile of givosiran remained acceptable with long-term treatment associated with the
same common adverse events. Mild to moderate elevations in liver chemistries occurred in 17 patients. Renal adverse
events were reported in 21 patients; however, none required treatment discontinuation.66

There are concerns that the decrease in ALAS1 could eventually cause hepatic heme deficiency and would also
impact heme-dependent processes in hepatocytes. There have been reports of elevated homocysteine levels in AHP
patients that are being treated with givosiran,66,68 especially in patients with variants that reduce activity of the
methylene-tetrahydrofolate reductase [MTHFR] gene.69,70 Several mechanisms have been proposed for this finding,
including cystathionine beta-synthase (CBS) impairment caused by low heme availability in the liver. Altered ALAS1
activity can also influence pyridoxine (B6) availability and impact other pyridoxine-dependent enzymes involved in
homocysteine metabolism leading to hyperhomocysteinemia. In a study of 15 patients, high doses of vitamin B6
(pyridoxine) resulted in lowering homocysteine and methionine plasma levels.68 Hyperhomocysteinemia can lead to
venous thrombosis, atherosclerotic cardiovascular disease, and pancreatitis.70–72 In a recent French study, some addi-
tional side effects were noted in patients with homocysteine level over 150 μmol/L.73 This included quadriceps
myoclonus and/or hand tremors in three (12%) patients and an increase in hair loss in five (20%) patients. The
mechanism[s] for such adverse effects remains unclear. Hyperhomocysteinemia was previously associated with myo-
clonus in a child with methylene tetrahydrofolate reductase deficiency (MTHFR).74 Another patient with plasma
homocysteine level 187 μmol/L was admitted with pulmonary embolism without any identifiable risk factors and
found to have moderate protein C deficiency. Homocystinuria is a similar disease that is characterized by involvement
of the eye, skeletal system, vascular system, and central nervous system with frequent developmental delay.
Thromboembolism is the major cause of morbidity and early death. Thus, perhaps, patients who are considering or are
taking givosiran should be tested for MTHFR polymorphisms and vitamins B6, B9 (folate) and B12 (cobalamin)
deficiency. Supplementation of these vitamins if deficient is appropriate and has been associated with decreases in
plasma levels of homocysteine, albeit not always into the reference range.70,73 With ongoing use of givosiran, the
possible impact of heme deficiency on other heme-dependent processes should be considered. One such concern is
possible down-regulation of the cytochrome P450 (CYP) super-family of hemoproteins,75 which can influence the
metabolism of many endogenous and exogenous compounds, including many drugs.8 In a mouse study, givosiran
reduced ALAS1 mRNA substantially by approximately 75% but did not affect CYP2E1 activity or the degree of
heme saturation of tryptophan 2,3 dioxygenase [formerly known as tryptophan pyrrolase].45 In a short term, one-
month drug–drug interaction study in normal human volunteers, givosiran had moderate down-regulatory effect
(CYP1A2 and CYP2D6), weak effect (CYP2C19 and CYP3A4), and no effect (CYP2C9) on these selected CYP
enzymes.76 While this suggests that givosiran does not have a large effect on heme-dependent CYP enzyme activity
in the liver, this was a short-term study; thus, long-term effects of givosiran on hepatic hemoprotein levels in persons
with partial defects in normal heme synthesis, such as those with AHP, cannot be ruled out.

Across the givosiran clinical program, two cases of pancreatitis have been reported in givosiran-treated patients, both
considered unlikely related to givosiran, but rather due to the presence of gallbladder sludge or gallstones. Elevations in
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lipase and amylase were observed in both givosiran and placebo treatment groups, with a higher-grade severity observed
more frequently in the placebo group than in the givosiran group. Considering confounding factors, the potential role of
givosiran in the development of pancreatitis has not been established. The cases of pancreatitis can be related to increased
incidence of elevations in amylase or lipase, acute and chronic pancreatitis, and a higher frequency of gallstones naturally
seen in patients with AHP.66,73,77

In a retrospective study of twenty-five patients in France, a personalized medicine approach was suggested by which
timing of givosiran was titrated based on close surveillance of heme precursor levels (ALA) without a reduction in
biological or clinical efficacy. Patients were divided in two groups: one required givosiran every 3 months or less and
the second group received givosiran at intervals greater than once every 3 months. Thus, givosiran dosing frequency was
decreased in patients with a prolonged response to treatment leading to a decrease in the dosing frequency in most
patients and a presumed decreased risk of adverse events. The probability of dose reduction was higher in patients with
the shortest disease course with shorter mean time since disease onset, suggesting a probable benefit to initiate givosiran
early in the course of the disease.73 It must also be acknowledged that such reduced dosing of givosiran is “off label” use,
perhaps, exposing prescribers to adverse exposure for deviation from approved use of the drug in the event of possible
adverse effects associated with such use.

One approach to therapeutic monitoring can be checking for MTHFR polymorphisms and vitamins B6, B9, and B12
deficiencies before the start of treatment and assessing liver function tests (LFTs), plasma homocysteine, blood urea nitrogen,
creatinine, eGFR, and urinalysis monthly for first three months. If the results are stable, a reasonable plan is then to repeat lab
studies every 3 months for the first year, every 4 months for the second year, and every 6 months after that. We also
recommend checking random urine samples for ALA, PBG, total porphyrins, and creatinine at each follow-up visit.54

Management of AHP
In AIP, a disease-causing mutation in porphobilinogen deaminase in combination with precipitating factors are needed to
manifest clinical signs and symptoms. In fact, only a small percentage of patients (<5%) with disease-causing mutations
will develop acute attacks.78 Common precipitating factors of acute attacks in patients with AIP include excess alcohol,
certain medications, rapid weight loss, acute illness/physiologic stress, and changes in hormone levels (Table 3).
Avoiding identified triggers in individuals may minimize, but not eliminate, the risk of precipitating an acute attack.

Patients should be counseled regarding avoidance or cessation of alcohol and tobacco use. A unique nutritional aspect
of AIP is that a diet to some extent high in carbohydrate intake (60–70% of total calories) is preferred, as carbohydrates
act to down-regulate ALAS-1. Rapid weight loss either by crash dieting or starvation, and surgical weight loss may result

Table 3 Common Precipitants of Acute Porphyric Attacks

Medications/Chemicals Other Causes

Alcohol Stress

Antiepileptics Emotional

Barbiturates Physical

Carbamazepine Physiologic
Phenytoin Acute illness/infection

Valproic acid Surgery/anesthesia

Oral contraceptives (progesterone>estrogen) Rapid weight loss

Severe caloric restriction

Bariatric surgery
Cytochrome P450 inducing agents

Female specific

Menstrual cycle (luteal phase)
Pregnancy

Post-partum

Drug Design, Development and Therapy 2022:16 https://doi.org/10.2147/DDDT.S281631

DovePress
1839

Dovepress Majeed et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


in precipitation of an attack.79 Appropriate immunizations to avoid preventable infection, and prompt treatment of newly
diagnosed infections may help prevent acute attacks. To the degree possible, patients and providers should develop
strategies to avoid excess emotional or physical stress, with the understanding that these may be the most difficult
precipitants to avoid. In women, attacks can be associated with the luteal phase of the menstrual cycle. In these patients,
the use of gonadotropin-releasing hormone (GnRH) analogs to suppress ovulation may provide relief.

Awareness of the medications that are known to precipitate attacks is of particular importance to medical profes-
sionals. Antiepileptic medications deserve particular attention as patients may present with seizures, and the use of
certain antiepileptic medications may further exacerbate an acute attack and lead to respiratory compromise (eg,
phenytoin, valproic acid, carbamazepine). Treatment of seizures in a patient with suspected or known AIP should
favor gabapentin, vigabatrin, or lorazepam. Additionally, medications that induce cytochrome P450 (eg, barbiturates,
rifampin) are recognized as potentially detrimental. Multiple resources exist for the clinician to reference in regards to
medication safety in patients with porphyria, including at the following web sites: www.drugs-porphyria.org (European)
and www.porphyriafoundation.org/drugdatabase (the United States).

Once an acute attack is underway, general treatment strategies include management of pain, monitoring/treatment of
electrolyte abnormalities and neurologic complications, and downregulation of ALAS-1.

Narcotic analgesics are typically required as initial therapy to decrease incapacitating pain, and the IV route is favored
as patients in a severe acute attack can rarely tolerate oral intake. The authors favor the use of patient-controlled analgesia
[PCA] in initial management. In those with significant nausea, antiemetics including chlorpromazine, promethazine, and
ondansetron can be used safely. Typical electrolyte abnormalities during an acute attack include hyponatremia and
hypomagnesemia, which should be managed appropriately.

As up-regulation in ALAS-1 activity drives the pathophysiology of acute attacks, its down-regulation provides the
main therapeutic target. In the absence of infection, the use of carbohydrates (10% dextrose in 0.45% saline via
continuous infusion) is a useful initial therapy and can be continued while other therapies are being utilized. The most
effective therapy for acute attacks remains IV heme (Panhematin USA; Recordati; heme arginate [Normosang] in the EU
and elsewhere), preferably administered with human serum albumin at 3–4 mg/kg/day.80,81 Down-regulation of ALAS-1
as measured by urinary ALA and PBG is typically observed within 4 days.75,82,83

For patients in whom preventative measures are unsuccessful and suffer recurrent attacks, possible preventative
therapies include the use of IV heme and givosiran. In one study, the use of weekly IV heme (Panhematin) in patients
with frequent recurrent attacks (defined as at least 3 attacks requiring treatment in the last 12 months) was associated with
a decrease in acute attacks, inpatient admissions, emergency room visits, healthcare cost, and increased quality of life.84

The effectiveness of weekly IV heme arginate for prevention of recurrent acute attacks has recently been confirmed in
a longitudinal observational study from Taiwan.85 Long-term use of hematin may be associated with adverse effects
including hepatic iron overload, thrombocytopenia, phlebitis, and tachyphylaxis.64,86

Givosiran was studied in a similar patient population with a high disease burden; at least 2 attacks in the 6 months
prior to study enrollment.8 Importantly, prophylactic hemin use was not permitted in the study population. Additionally,
the overwhelming majority of patients included in the study (N=89) had AIP. There were 2 patients with VP, 1 patient
with HCP, and 2 without identified mutations. Thus, although givosiran is indicated for the treatment of AHP in general,
caution in generalizability is warranted given the small number of subjects with VP or HCP. Limitations notwithstanding,
70% of the patients treated with givosiran had fewer attacks compared to placebo. Furthermore, 50% of the patients
treated with givosiran had zero attacks during the 6-month treatment period. Treatment with givosiran resulted in
sustained reductions in ALA and PBG, linking the pathophysiologic mechanism to the observed clinical endpoints
which suggest that givosiran is effective in preventing recurrent attacks in high-risk patients.

Givosiran is very expensive. For patients weighing 75.6 kg or less, the average annual cost of givosiran,
2.5 mg/kg =189 mg/1 mL dose × 12 months, is $575,000 per year, or $442,000 per year after expected
discounts.87 For patients weighing more than 75.6 kg, a second dose each month, with double the cost, will be
required, although it may be that such patients would respond adequately to doses a bit lower than the
recommended 2.5 mg/kg body weight. A recent analysis of total costs for givosiran vs IV heme, either for
treatment of acute attacks or for prophylaxis, assuming once weekly IV heme vs once monthly givosiran, showed
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that IV heme is much less expensive.88 Specifically, for all patients with AIP, the average annual total cost of care
for IV heme therapy was $482,113 [78%] lower than for givosiran.

In severe cases of AIP [frequent attacks that require lengthy and repeated hospitalizations, etc], liver transplantation
has been utilized as a curative therapy as it results in amelioration of the underlying enzymatic defect that is localized
within the liver. In a study reviewing the European experience with liver transplantation for AIP, the 1-year and 5-year
survival rates were similar to other metabolic diseases transplanted during the same time period.89 Neurologic and renal
impairment were common pre-transplant patients, with advanced pre-transplant neurological impairment associated with
increased mortality. Although improvement in renal function was uncommon, improvement or stabilization of neurologic
symptoms was observed. Overall, liver transplantation for AHP should be reserved as a treatment of last resort in patients
with a severe disease course not responding to other available therapies. With the availability of givosiran for prevention
of recurrent attacks, we anticipate that liver transplantation will become less frequent in AHP.

In the less common AHPs (ADP, VP, and HCP), IV heme can be utilized. In VP, in which cutaneous manifestations
are common, sun exposure must be minimized.90 Dietary supplementation with vitamins C and E may help mitigate
oxidative damage in VP,91 although the evidence for benefit is scant. Importantly, as the less common AHP presents with
findings similar to other porphyrias with alternative etiologies/treatment (eg, VP presents similarly to PCT), accurate
diagnosis is paramount to ensure appropriate therapy.

In women with frequent cyclic attacks associated with menstrual cycles, prophylactic GnRH, perhaps, with a low-
dose estrogen supplement, is worthy of trial. Progestins are identified as the triggering agent; thus, oral contraceptives,
hormone-releasing implants, and intrauterine devices should be avoided. GnRH treatment, if it proven effective (as it is in
approximately 50% of women), is reevaluated after 6 to 12 months. Pregnant women should be evaluated and monitored
by a high-risk obstetrician as acute attacks are more common during pregnancy and in the postpartum period.13

Summary/Conclusion
In summary, the acute hepatic porphyrias are rare, inherited inborn errors of normal heme synthesis. Clinically, they
present first and foremost as diseases that cause recurrent and severe episodes of abdominal pain, mainly in women aged
~16–50 years. The key test for rapid diagnosis is measurement of ALA, PBG, and creatinine in a random urine sample.
Up-regulation of hepatic ALAS1 is the key factor in pathogenesis. Acute attacks require early diagnosis, analgesia, anti-
emetics, and removal of inciting factors, such as alcohol intake, starvation, drugs that induce CYPs. Treatment to down-
regulate hepatic ALAS1 includes adequate nutrition, with at least 300 g/d of glucose or other similar metabolizable
carbohydrates, and IV heme [3–4 mg/kg/d for 3–5 days]. Givosiran is an siRNA that is highly selective in down-
regulating ALAS1 in hepatocytes and effective in decreasing the frequency of recurrent attacks. Givosiran has potential
adverse effects, especially risk of hepatic and renal adverse effects and of hyperhomocysteinemia, the latter a risk
especially in patients with defects in MTHFR activity. There is concern about possible long-term adverse effects of
down-regulation of hepatic heme synthesis and a possible heme-deficient state, although thus far, 30-month follow-up in
the OLE of the ENVISION trial has not unveiled major new adverse effects. Givosiran is very expensive, considerably
more expensive than IV heme, either given for acute attacks or as weekly prophylaxis for prevention of recurrent attacks.
Because of greater ease and speed of use, patients are likely to prefer once monthly sc givosiran to weekly IV heme-
albumin, given by a peripheral vein inserted central catheter (PICC) line or into a central venous port, for prophylaxis
against recurrent acute attacks. Currently, it seems reasonable for prescribers and insurers to restrict the chronic use of
givosiran to those patients with well-documented biochemically and clinically active AHP and with a history of three or
more acute attacks in the prior year.

Abbreviations
AAR, annualized attack rate; ADP, delta-aminolevulinic acid dehydratase porphyria; AE, adverse event; AHP, acute
hepatic porphyria; AIP, acute intermittent porphyria; ALA, delta-aminolevulinic acid; ALAS1, delta-aminolevulinic acid
synthase 1; ALT, alanine aminotransferase; Ago2, Argonaute 2; ASGPR, asialoglycoprotein receptor; AST, aspartate
aminotransferase; B6, pyridoxine; B9, folate; B12, cobalamin; CBS, cystathionine beta-synthase; CKD, chronic kidney
disease; CPOX, coproporphyrinogen oxidase gene; Cr, creatinine; eGFR, estimated glomerular filtration rate; CYP,
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cytochrome P450; GI, gastrointestinal; HCP, hereditary coproporphyria; GalNac, N-acetylgalactosamine; GnRH, gona-
dotropin releasing hormone; HCV, hepatitis C virus; HMBS, hydroxymethylbilane synthase; ISR, injection-site reaction;
IV, intravenous; LFTs, liver function tests; mRNA, messenger RNA; MTHFR, methylene-tetrahydrofolate reductase;
OLE, open-label extension; PBG, porphobilinogen; PCT, porphyria cutanea tarda; PICC, peripheral vein inserted central
catheter; PPOX, protoporphyrinogen oxidase; QM, once monthly; RNA, ribonucleic acid; RISC, RNA-induced silencing
complex; SAE, serious adverse event; SF-12v2, 12-Item Short Form Health Survey Version 2; siRNA, small interfering
RNA; VP, variegate porphyria.
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