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Purpose: Eyeball shape varies with refraction and body stature. Nevertheless, there are few reports on three-dimensional measure-
ments of eyeball shape in children. The aim of this cross-sectional observational study was to investigate the associations between 
three-dimensional measurements of ocular dimensions, refractive error, and body stature in young Chinese children with myopia in 
Kuala Lumpur.
Materials and Methods: Thirty-five female and 35 male school children aged 8–9 years old were recruited in this study. Cycloplegic 
spherical equivalent (SE) and visual acuity (VA) were determined using a logarithm of the minimum angle of resolution (logMAR) 
chart. Body mass index (BMI), body height, and head circumference were ascertained. Three ocular dimensions, that is, longitudinal 
axial length (LAL), horizontal width (HW), and vertical height (VH), were determined using magnetic resonance imaging (MRI).
Results: There were significant differences among the ocular dimensions in the myopic children. Bonferroni-corrected pairwise t-tests 
showed that LAL was significantly longer (mean difference, 0.318 mm) than VH, which was in turn significantly longer (mean 
difference, 0.245 mm) than HW. Body height was significantly correlated with LAL (p < 0.001) and SE (p < 0.001), and multivariate 
linear regression confirmed that longer LAL and more myopic SE were associated with increased body height (p < 0.001 for both) but 
not BMI (p = 0.894 and p = 0.413) or head circumference (p = 0.305 and p = 0.226).
Conclusion: This study confirms previous reports that changes in ocular dimensions are associated with body height in young 
children. Axial elongation (forming a prolate profile) occurs in myopic children of both genders at a young age.
Keywords: height, BMI, ocular shape, MRI analysis, axial length

Introduction
The refractive status of the eye is determined by the balance of the corneal and crystalline lens refractive power and the 
longitudinal axial length (LAL) of the eye. Elongation of LAL and change in refraction happen at the same time as the increase 
in body height during puberty, and an emmetropization mechanism takes place to prevent the development of ametropia.1,2 

Despite this, LAL continues to elongate in some children, producing myopia. Myopia is the most common ocular anomaly 
worldwide. It has the highest prevalence in East Asian countries, including China, Japan, and Singapore.3,4 Estimates show that 
half of the world’s population will have myopia by 2050, and 10% of these cases are expected to involve high myopia.5 High 
myopia is associated with serious and potentially blinding ocular diseases such as cataract, retinal detachment, glaucoma, and 
maculopathy.6 The associations of LAL and refraction with anthropometric measurements have been investigated by several 
research groups. Dirani et al investigated the relationship between body stature and myopia using data from an Australian twin 
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cohort study and found that females in the heaviest weight quartile were at greater risk of myopia than those in the lightest 
quartile.7 Kearney et al investigated the change in body height, LAL, and refractive status over a 4-year period in 140 Caucasian 
children and young adults.8 Their results showed that body growth and LAL elongation were correlated in emmetropes. However, 
in subjects with myopia, body growth appeared to stabilize whilst LAL elongation accelerated, indicating dysregulation of normal 
ocular growth. Nevertheless, in a cross-sectional study of 4681 male Danish school students ages 8–13 years, no relationship was 
found between myopia and BMI or height, but number of years in education and IQ test score were related to myopia.9 Similarly, 
Huang et al investigated the associations of lifestyle and body growth with LAL elongation among Taiwanese elementary school 
children aged 7–9 years and they showed that although LAL change was positively correlated with the body height change 
(p<0.001) the refractive changes were not correlated to body height changed (p=0.640). In their study, refractive changes were 
only significant in children who were engaged in a lot of near work (p<0.01). The study further concluded that while genetic 
factors such as parental myopia and body height were associated to myopia development, environment factor such as near work 
intensity was related to myopia progression.10 Using computerized tomography data, the relationships between eye shape, weight, 
age, and refraction in Koreans aged <20 years were analyzed.11 The results showed a strong correlation between the LAL and 
horizontal width (HW) of the eye, and both parameters increased with age and body weight.

The ocular shape has been reported to be associated with refractive development and has become an important area in 
refractive research.12 Magnetic resonance imaging (MRI) allows us to directly measure the entire ocular globe in three 
dimensions. Atchison et al13 studied ocular dimensions in 88 young adults aged 18–36 years, based on MRI, and reported 
that myopic eyes were elongated more in the LAL dimension, and that myopic eyes fitted the global expansion and axial 
elongation model. However, there is a limited number of MRI studies on ocular dimensions in children. Lim et al14 

studied the variations in eye volume and shape with refractive error in young Singaporean children using MRI and 
showed that increased myopic spherical equivalent (SE) was associated with greater LAL and HW, but not VH.

No studies have investigated ocular dimensions in Malaysian children using MRI. As myopia onset typically occurs 
in school-aged children, it is particularly informative to find out if eye growth is correlated with body growth in early 
childhood. This study aimed to determine the associations among ocular dimensions (longitudinal axial length [LAL], 
vertical height [VH], and horizontal width [HW], measured using MRI), spherical equivalent [SE], corneal curvature, and 
body stature (body height, body mass index [BMI], and head circumference) in Chinese children with myopia in Kuala 
Lumpur, Malaysia.

Materials and Methods
Subjects and Ethics Approval
Primary school-aged Chinese children (age 8 to 9 years old) from around the Kuala Lumpur area, who attended a primary 
eye care clinic for regular eye checkups, were recruited for this cross-sectional study. Eligible subjects were selected by 
using simple random sampling. This research was approved by the Universiti Kebangsaan Malaysia research ethics 
committee (UKM PPI-800-1/1/5 JEP-2017-422) and followed the tenets of the Declaration of Helsinki. The nature of the 
research procedures was explained to the parents and subjects, and written consent was obtained from the parents prior to 
data collection.

The inclusion criteria were as follows: spherical equivalent (SE) between −0.50 D15 and −4.00 D, astigmatism of no 
more than 1.50 D, a best corrected visual acuity (BCVA) of 0.0 logarithm of the minimum angle of resolution (logMAR) 
or better in both eyes, no anisometropia, no history of ocular or systemic diseases, no binocular vision anomalies, and not 
undergoing any myopia treatment. Children with contraindications for MRI (for example, metallic implants, braces, 
pacemakers, or claustrophobia) were excluded.

Eye Examination
Cycloplegic refraction was determined using subjective refraction. Two drops of cyclopentolate (1%) were instilled 
within a 5-min interval and refraction was measured when the pupil size was >5 mm. Visual acuity (VA) was determined 
using a logMAR chart and the anterior segment of the eye was examined using a slit-lamp biomicroscope (Righton 
MW50D LED; Tokyo, Japan).
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MRI Acquisition
Measurements were taken using MRI, by an experienced pediatric radiologist and radiographer at the Radiology 
Department of Hospital Canselor Tuanku Mukhriz (Kuala Lumpur). Each subject was scanned with a whole-body 
MRI scanner (3-Tesla Trio; Siemens, Erlangen, Germany). T2-weighted scans were performed with the following 
parameters: (1) 176 sagittal slices; 516 pixels; 512 matrices of 1-mm thickness with no gap (field of view [FOV], 
250×250 mm; repetition time [TR], 3200 ms; echo time [TE], 409 ms; flip angle, 120) and (2) 60 axial slices; 381 
pixels×384 matrices of 0.8-mm thickness with no gap (FOV, 199×199 mm; TR, 1270 ms; TE, 132 ms; flip angle, 120). 
To provide a clear image and high-contrast delineation of the edges of the eye, subjects were asked to lie still in a supine 
position and keep their eyes closed so that less motion would occur throughout the fast image acquisition process. The 
subjects were provided with earplugs and headphones to minimize the noise during the procedure and the whole duration 
of the procedure was around 10 min per eyeball.

MRI Segmentation
The MRI segmentation method was based on the Chan-Vese model.16 The advantage of this method is its efficiency to 
segment regions of complex curves through numerical calculations and solve problems related to angle production and 
curvature.17,18 Initially, the sclera of the eyes, as seen from the axial view, was segmented. By browsing through the 
three-dimensional MRI ocular images, an axial slice was selected, and a rectangle was defined as the initial curve 
(Figure 1).

A commercially available graphics program (OsiriX DICOM viewer; www.osirix-viewer.com) was used to display 
and magnify the images. The axial image of the eye was displayed at 50X magnification on a computer screen, and the 
contrast was adjusted until the edges of interest were clearly defined. At this point, the left and right eyes were segmented 
by manually defining the initial curves for each eye as an initialization of the Chan-Vese level set segmentation method. 
Thereafter, a sagittal view of each eyeball was displayed for segmentation. Again, a rectangular curve was defined that 
covered the eyeball before it was guided to track the edge using the Chan-Vese level set method (Figure 2).

Following these results, the pertinent lines to be used to perform the assessment of the eyeball shape were 
automatically measured and analyzed. The details of the MRI segmentation method were reported previously.17 

A summary of the algorithm for the segmentation and measurement of LAL, VH, and HW based on the MRI images 
is shown in Figure 3.

Figure 1 Yellow rectangle- Initial selection of both eyeballs on axial view; Red line- Defining the outline of the selected eyeball shape.

Figure 2 Yellow rectangle- Initial segmentation of the Right eyeball on sagittal view; Red line- Defining the outline of the selected eyeball shape.
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Validation of MRI Measurements
To validate the MRI measurements, the LAL of all subjects was also measured using an ultrasound A-Scan (PacScan 
Plus; Sonomed Escalon, New Hyde Park, NY, USA), and the results were compared using Pearson’s correlation analysis. 
The LAL measured using the A-Scan was highly correlated (r2=0.950, p<0.001) with the LAL measured using MRI. The 
mean LAL based on MRI was 23.72±0.82 mm, compared to 23.54±0.55 mm based on ultrasound A-Scan, which is very 
similar. The corresponding scatter plot with a fitted regression line is shown in Figure 4.

Figure 3 Summary of algorithm for segmentation and measurement of the MRI images.

Figure 4 Correlation between LAL measured using ultrasound A-Scan and MRI. 
Abbreviation: LAL, longitudinal axial length.
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Body Measurements
Body height, body weight, and head circumference were measured for all subjects. Body height was determined to the 
nearest 0.5 cm in a standardized manner without shoes and with a wall-mounted measuring tape. Body weight was measured 
to the nearest 0.1 kg using a digital step-on scale (Novoscale CB501; Novoplus, Penang, Malaysia). Body mass index 
(BMI; kg/m2) was calculated based on weight (kg) and height (m). Head circumference was measured to the nearest 0.1 cm 
by passing the measuring tape around the subject’s head and placing it on the most anterior protuberance of the forehead and 
the most posterior protuberance of the back of the head to measure the maximum head circumference.

Statistical Analysis
The data were analyzed using SPSS version 21.0 (IBM Corp., Armonk, NY, USA) and only data from the right eye were 
used for all analyses. Data normality was assessed using the Shapiro–Wilk test and all data were normally distributed. 
Age, height, body weight, head circumference, BMI, SE, visual acuity, corneal curvature, LAL, VH, and HW were 
described using descriptive statistics.

Repeated-measures analysis of variance (ANOVA) was used to assess the differences among the ocular dimensions 
(LAL, VH, and HW). This was followed by Bonferroni-corrected t-tests, to compare the pairwise differences in LAL, 
VH, and HW.

Pearson’s correlation analysis was used to determine the correlations among ocular dimensions, SE, and body stature 
(body height, BMI, and head circumference).

Multivariate linear regression was used to assess the increase in ocular dimensions, SE (refractive error), and corneal 
curvature with increasing body height, BMI, and head circumference (all three were included in each model). The 
differences were considered statistically significant when p<0.05.

Results
Of the 80 children that underwent MRI scans, 70 (87.5%) children (35 females and 35 males; mean age, 8 years; range, 
8–9 years) were included in the analyses. Ten (12.5%) children were excluded due to having blurred MRI images. Mean 
SE was −2.77±1.10 D (range, −0.75 to −4.59 DS), mean BCVA was −0.01±0.07, and mean corneal curvature was 43.43 
±1.21 D. Mean body height was 125.24±7.54 cm, mean body weight was 26.67±5.74 kg, and mean head circumference 
was 50.46 ±0.94 cm. Mean BMI was 16.95±2.89 kg/m2. No significant differences were observed in age (p=0.393), body 
height (p=0.167), body weight (p=0.295), head circumference (p=0.830), BMI (p=0.132), SE (0.241), visual acuity 
(0.181), or corneal curvature (0.362) between genders. Regarding the mean ocular dimensions, LAL was 23.72 
±0.82 mm, VH was 23.40±0.82 mm, and HW was 23.16±0.80 mm. No significant differences were noted in ocular 
dimensions between genders (p>0.05). The demographic characteristics of the subjects (by gender) are shown in Table 1.

Repeated-measures ANOVA showed that there was a significant difference in the ocular dimensions in the myopic 
children. LAL was the largest ocular dimension (23.72±0.82 mm), followed by VH (23.4±0.73 mm), and HW (23.16±0.8 mm) 
(p<0.001 for all). Bonferroni-corrected pairwise t-tests confirmed that LAL was significantly longer (mean difference, 
0.318 mm) than VH, which was in turn significantly longer (mean difference, 0.245 mm) than HW (Table 2).

Pearson’s correlation analysis was used to determine the associations of ocular dimensions, SE, and corneal curvature 
with body stature. LAL (r2=0.497, p<0.001) and SE (r2=−0.597, p<0.001) were significantly positively and negatively 
correlated, respectively, with body height, but they were not correlated with BMI or head circumference (Figures 5 and 
6). Multivariate linear regression confirmed that increased body height was associated with longer LAL (R2=0.260, 
p<0.001) and a more negative SE (R2=0.349, p<0.001). For every 1-cm increase in body height, there was a 0.056 mm 
increase in LAL (p<0.001) and a −0.081 D increase in SE (leading to a more negative SE) (p<0.001) (Table 3).

Discussion
There were significant differences among the ocular dimensions in the myopic children in this study. The longest ocular 
dimension was LAL, followed by VH and HW. This indicates that myopia involves a prolate shape, which is consistent 
with previous studies.13,14
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Atchison et al compared the shape of the retinal surface in 21 emmetropic and 66 myopic eyes in subjects aged 18–36 
years.13 They found that almost all emmetropic eyes are oblate in shape, with the axial dimensions being smaller than the 
vertical and horizontal dimensions. As myopia increased, all ocular dimensions increased, with the axial dimension 

Table 1 Demographic Characteristics of Subjects

Parameter Males Females Total p

Sample size (n) 35 35 70
Age (years) 8.4 ± 0.5 8.3 ± 0.4 8.3 ± 0.5 0.393

Height (cm) 124.03 ± 6.91 126.53 ± 8.05 125.24 ± 7.54 0.167

Body weight (kg) 25.96 ± 5.67 27.41 ± 5.8 26.67 ± 5.74 0.295
Head circumference (cm) 50.48 ± 0.95 50.44 ± 0.94 50.46 ± 0.94 0.830

Body mass index (kg/m2) 16.45±2.91 17.49 ± 2.83 16.95 ± 2.9 0.132

SE of refraction (D) −2.62 ± 1.05 −2.93 ± 1.13 −2.77 ± 1.1 0.241
Visual acuity (logMAR) 0 ± 0.06 −0.02 ± 0.08 −0.01 ± 0.07 0.181

Corneal curvature (D) 43.56 ± 1.23 43.29 ± 1.19 43.43 ± 1.21 0.362
LAL (mm) 23.62 ± 0.91 23.82 ± 0.71 23.72 ± 0.82 0.304

VH (mm) 23.27 ± 0.78 23.54 ± 0.66 23.40 ± 0.73 0.130

HW (mm) 23.12 ± 0.84 23.19 ± 0.77 23.16 ± 0.8 0.729

Abbreviations: LAL, longitudinal axial length; VH, vertical height; HW, horizontal width; SE, spherical equivalent.

Table 2 Summary of Ocular Dimensions 
in Myopic Children

Parameter Mean ± SD

LAL (mm) 23.72 ± 0.82
VH (mm) 23.4 ± 0.73

HW (mm) 23.16 ± 0.8

p <0.001*

Note: *Bonferroni-corrected pairwise t-tests: LAL 
> VH > HW. 
Abbreviations: LAL, longitudinal axial length; VH, 
vertical height; HW, horizontal width.

Figure 5 Correlation between body height and LAL. 
Abbreviation: LAL, longitudinal axial length.

https://doi.org/10.2147/OPTO.S368672                                                                                                                                                                                                                               

DovePress                                                                                                                                                                       

Clinical Optometry 2022:14 106

Mohd-Ali et al                                                                                                                                                        Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


increasing more than the vertical or horizontal dimensions, indicating a decrease in oblate profile. Our results agree with 
this observation. In our myopic children, the growth of the ocular dimensions had occurred to different degrees; LAL was 
the largest dimension, followed by VH and then HW, leading to a prolate shape. Lim et al evaluated three-dimensional 
variations in the eye dimensions and shapes of 134 eyes from 67 young Singaporean Chinese boys (mean age, 77.9±3.9 
months) enrolled in the population-based Strabismus, Amblyopia, and Refractive error study.14 Their results showed that 
refractive error was significantly associated with eye surface area, SE was correlated with LAL (p<0.001) and HW 
(p<0.001) but not VH (p=0.70).

Previous reports have shown an association between LAL and body height in children.19–21 Similarly, we found that 
each centimeter increase in body height was associated with a longer LAL (0.056 mm) and a more negative SE (−0.081 
D), with an adjusted R2 of 0.226 and an R2 of 0.319. In a longitudinal study in China, Wang et al found a positive 
correlation between body height and LAL in school children aged 7–15 years.19 However, detailed information about the 
association was unavailable. In a school-based study of 1449 Chinese children aged 7–9 years in Singapore, Saw et al20 

showed that taller children were more likely to have eyes with longer LAL (+0.46 mm, p<0.01) and refraction that 
trended towards myopia (−0.47 D, p<0.01).

Figure 6 Correlation between body height and refractive error. 
Abbreviation: SE, spherical equivalent.

Table 3 Multivariate Linear Regression Analyses of the Associations of Body Stature Variables with Ocular Dimensions, Corneal 
Curvature, and SE

Variable LAL VH HW Corneal Curvature SE

B (95% CI) p B (95% CI) p B (95% CI) P B (95% CI) P B (95% CI) p

Body height 0.056  
(0.033–0.079)

<0.001 0.014  
(−0.01–0.037)

0.257 0.015  
(−0.011–0.041)

0.252 −0.004  
(−0.043–0.036)

0.854 −0.081  
(−0.11–-0.052)

<0.001

Head 
circumference

−0.097  
(−0.285–0.091)

0.305 −0.052  
(−0.243–0.14)

0.591 −0.126  
(−0.336–0.084)

0.236 0.187  
(−0.132–0.506)

0.247 −0.144  
(−0.381–0.092)

0.226

BMI −0.004  
(−0.064–0.056)

0.894 0.04  
(−0.021–0.101)

0.195 −0.003  
(−0.07–0.064)

0.925 −0.03  
(−0.132–0.072)

0.556 0.031  
(−0.044–0.106)

0.413

Note: Increased body height was associated with longer LAL (p<0.001) and a more negative SE (p<0.001). 
Abbreviations: LAL, longitudinal axial length; VH, vertical height; HW, horizontal width; SE, spherical equivalent.
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Tideman et al determined the correlations of MRI-derived ocular height, width, and posterior segment length with refractive 
error, birth weight, and body height in European children in the population-based birth cohort study Generation R.21 Their results 
showed that refractive error had the highest correlation with posterior segment length (p<0.001), whereas the correlation with 
body height was highest for ocular height (p<0.01) and the correlation with birth weight was highest for ocular width (p<0.01). 
Similarly, in the present study of children with myopia, LAL was longer than VH and HW (p<0.001). However, when comparing 
the associations between ocular dimensions and body stature, VH and HW showed no association with body height, BMI, or 
head circumference in our study. The discrepancies in the results may be due to differences in ethnicity and the SE in their study 
being lower than in our study.

Positive associations of anthropometric indicators (height, weight, and BMI) with both refraction and ocular 
biometrics in Chinese school children have been reported in Tianjin, China. Ye et al22 showed that higher body 
heights and heavier weights were associated with longer LAL and more negative refraction. The authors concluded 
that a shared mechanism may regulate the coordinated growth of body and eye size in children, and our results 
concurred with this hypothesis. Our results showed a significant association of LAL with body height but not BMI. 
This was probably due to the small sample size and narrow age range of the subjects. Although the exact underlying 
biological mechanism remains unknown, studies have reported that some systemic hormones can regulate long-
itudinal bone growth factors during childhood which are also involved in the development of myopia.22,23 Earlier 
epidemiological studies have also reported that children with growth hormone deficiency have shorter body stature 
and LAL than usual.24 Therefore, physical growth and the development of refractive error may be regulated by 
similar mechanisms.

It is evident that LAL plays a role in myopia development, with several studies reporting that the prolate ocular shape is 
associated with myopia progression.12–15,25 Due to the prolate shape, peripheral light rays are progressively focused behind 
the central retina. The prolate shape induces a relative hyperopic defocus in the peripheral refraction compared to the central 
fovea, making it a potential trigger for myopia progression. Nevertheless, although AL increases at the same time as body 
height in children, studies have proven that those with a high genetic risk in addition to a high level of education and high 
near work intensity have a greater risk of myopia progression.9,10 A large European study, has revealed a significant 
relationship between higher education level and greater prevalence of myopia.26 Other studies have reported that recent 
indoor confinement and prolonged home- based online classes due to coronavirus disease 2019 appeared to be associated 
with a substantial myopic progression in children.27 When comparing the prevalence of myopia in children to the previous 
years, the prevalence of myopia in 2020 is higher than in between 2015 to 2019 for children between the age of 5 to 8 years 
old.28 Increased in myopia progression and axial length elongation was associated with significant decrease in outdoor time 
and increase in screen time among schoolchildren in Hong Kong during the COVID-19 pandemic.29

A potential limitation of this study should be mentioned. The most significant limitation of this study is the small 
number of participants. A larger sample size followed for a long period would elicit more variability and allow factors 
such as age and sex to be explored in more detail with respect to the observed association between the changes in ocular 
dimensions and body growth during myopia progression. Further studies with a larger sample size and longer follow-up 
period are necessary to confirm the results.

Conclusion
The results of this study showed that one of the ocular dimensions (LAL) and refractive error are associated with body 
height in myopic children. Myopic eyes tend to elongate more in the axial dimension, and the correlation between LAL 
and body height was positive. This indicates that LAL elongation needs to be monitored in children undergoing rapid 
body height growth spurts. To the best of our knowledge, this is the first study that investigated the relationship between 
body growth and ocular dimensions using MRI measurements.
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