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Background and Aim: Early recurrence (ER) presents a challenge for the survival prognosis of patients with hepatocellular 
carcinoma (HCC). The aim of this study was to investigate machine learning (ML) models using clinical data for predicting ER 
after microwave ablation (MWA).
Methods: Between August 2005 and December 2019, 1574 patients with early-stage HCC underwent MWA at four hospitals were 
reviewed. Then, 36 clinical data points per patient were collected, and the patients were assigned to the training, internal, and external 
validation set. Apart from traditional logistic regression (LR), three ML models—random forest, support vector machine, and eXtreme 
Gradient Boosting (XGBoost)—were built and validated for their predictive ability with the area under ROC curve (AUC). Algorithms 
such as SHapley Additive exPlanations (SHAP) and local interpretable model-agnostic explanations (LIME) were used to realize their 
interpretability.
Results: The three ML models all outperformed LR (P < 0.001 for all) in predictive ability. When nine variables (tumor number, 
platelet, α-fetoprotein, comorbidity score, white blood cell, cholinesterase, prothrombin time, neutrophils, and etiology) were extracted 
simultaneously using recursive feature elimination with cross-validation, the XGBoost model achieved the best discrimination among 
all models, with an AUC value 0.75 (95% CI [confidence interval]: 0.72–0.78) in the training set, 0.74 (95% CI: 0.69–0.80) in the 
internal validation set, and 0.76 (95% CI: 0.70–0.82) in the external validation set, and it was interpreted depending on the 
visualization of risk factors by the SHAP and LIME algorithms. The predictive system of post-ablation recurrence risk stratification 
was provided on online (http://114.251.235.51:8001/) based on XGboost analysis.
Conclusion: The XGBoost model based on clinical data can effectively predict ER risk after MWA, which can contribute to 
surveillance, prevention, and treatment strategies for HCC.
Keywords: microwave ablation, hepatocellular carcinoma, recurrence, machine learning, risk stratification

Lay Summary
Microwave ablation (MWA) is an effective treatment for patients with early-stage hepatocellular carcinoma (HCC). 
However, in fact, the early hepatic recurrence rate including local recurrence and hepatic distant recurrence can reach to 
approximately 30%. Moreover, 5- or 10-mm ablative margin is always related to local recurrence, which attract the 
attention of scholars. Because of the lack of highly reliable model that predicts post-ablation recurrence, we developed an 
artificial intelligence system based on machine learning (ML) models using large clinical datasets extracted directly from 
electronic health records to predict recurrence and provide guidance for MWA. In particular, we used the SHapley 
Additive exPlanations and local interpretable model-agnostic explanations algorithms to realize the interpretability of the 
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ML model. This ML system can improve the likely success of the MWA treatment and guide clinical management after 
thermal ablation of HCC.

Introduction
Hepatocellular carcinoma (HCC), the fifth most common malignancy, results from hepatitis viral infections and causes 
considerable mortality and morbidity in China.1–3 Locoregional ablation (LA) is recommended as a first-line treatment in 
patients with early-stage HCC, as well for surgical resection (SR) and liver transplantation (LT),4–6 according to multiple 
international guidelines. In addition, LA as a primary and alternative treatment is also widely applied in patients with 
HCC who are ineligible for surgery, and is used as bridge to LT,7,8 with the advantage of less trauma, better repeatability, 
fewer complications, and better cost-effectiveness.

Microwave ablation (MWA) is an effective LA technology owing to the higher intratumoral temperature and a more 
massive region of cell necrosis, with a comparable 5-year overall survival (OS) for early-stage HCC, similar to SR,9,10 

MWA is a curative option for small HCC lesions, but the post-ablation recurrence occurred commonly by the progression 
of residual de novo carcinoma and dissemination of microscopic lesions. Unfortunately, the approximately 50% of 
5-years intrahepatic recurrence (local recurrence and distant recurrence) rate after MWA remains a great challenge in 
clinical practice. Especially, early recurrence (ER) (considered generally less than 2 year) may cause poor prognosis. 
Among them, while local recurrence rates are low in experienced hands the rate is variable, being able to predict who is 
likely to have local recurrence could allow for improved treatment options. For example, post-ablation recurrence risk 
stratification can help interventional radiologists design the ablation strategy and post-ablation medication (eg, preventive 
transcatheter arterial chemoembolization [TACE] or multi-targeted tyrosine kinase inhibitors [TKIs]).11

A large amount of clinical data can be obtained easily from an electronic medical record system. However, these data 
interfere with each other commonly and weaken the predictive power of traditional statistical methods (eg, Cox 
regression and logistic regression [LR]) because of their poor calculation ability to analyze multidimensional clinical 
features. It is difficult to accurately identify the optimal biological indicators for recurrence. Machine learning (ML) is 
a branch of artificial intelligence that employs statistical, probabilistic, and optimization techniques to train a machine 
how to learn.12,13 ML algorithms can learn from clinical data, identify patterns, and make decisions with minimal human 
intervention by automating analytical model building, which has been used to calculate the probability of the future 
outcome of a specific individual so as to obtain risk prediction models.

In this study, we developed and validated multiple ML models using clinical data extracted directly from electronic 
health records to predict ER risk after MWA for early-stage HCC, with the aim of building a favorable method to provide 
guidance for MWA indication selection and HCC preoperative planning.

Materials and Methods
Study Design and Patient Data
This retrospective, multi-center study protocol was approved by the Ethics Committee of all participating institutions 
(Chinese PLA General Hospital, The Third Affiliated Hospital of Harbin Medical University, The Second Hospital of 
Nanjing, and The Tianyou Hospital of Wuhan University of Science and Technology).Because this is a retrospective 
study, the requirement for written informed consent was waived after obtained the approval of each ethics committee. All 
participants in this study promised to maintain the confidentiality of all patient data and strictly abide by the Declaration 
of Helsinki.

Between August 2005 and December 2019, a total of 2423 patients with HCC who subsequently underwent 
ultrasound-guided percutaneous microwave ablation (US-PMWA) were taken from a medical database at four high- 
volume medical centers in China and reviewed. The follow-up duration was terminated in July 2020. HCC was 
diagnosed according to the guidelines of the European Association for the Study of the Liver (EASL) and the 
American Association for the Study of Liver Diseases (AASLD).14,15 Details of patient recruitment are outlined 
according to the following inclusion criteria: a) patients with HCC who achieved complete ablation; b) patients with 
an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1; c) patients with Child–Turcotte–Pugh 
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(CTP) grades A or B; d) patients with a single tumor ≤ 5 cm or a maximum diameter of tumors ≤ 3 cm when the number 
of tumors ≤ 3; e) patients without major vascular infiltration or extrahepatic metastasis. Exclusion criteria: a) patients 
who had HCC combined with other malignancies; b) patients with incomplete ablation; c) patients with previous 
treatment before MWA, excluding SR and LT; d) patients lost to follow-up > 6 months. Finally, the data of 1574 patients 
with HCC (307 females and 1267 males; mean age, 58.4 ± 11.2 years) with 2100 HCC lesions (mean diameter, 2.4 ± 
0.9 cm) in medical records were screened for eligibility. Figure 1 shows the patient enrollment pathway and the flowchart 
of building the ML model based on clinical text data. The US-PMWA procedure, post-ablation assessment, and follow-up 
protocol are described in detail in Supplementary Methods 1.1 and 1.2.

We developed and validated the predictive models for recurrence to confirm the stability and repeatability of the ML 
models applied in the study. Then, 1069 patients were assigned to the training set, and 268 were assigned to the internal 

Figure 1 The patient enrollment pathway and the flowchart of building the ML model.
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validation set based on a 4:1 ratio at hospital 1 (Chinese PLA General Hospital). Moreover, 237 patients with HCC from 
the other three hospitals (The Third Affiliated Hospital of Harbin Medical University, The Second Hospital of Nanjing, 
and The Tianyou Hospital of Wuhan University of Science and Technology) were assigned to the external validation set 
during the same period.

Variable Collection and Feature Selection
The variable data with a missing ratio greater than 20% were excluded in our study. A total of 36 variables were collected 
to develop the predictive models. First, 36 variables (Table S1) were analyzed by a univariate analysis using LR. 
Subsequently, the variables with significant differences were used to automatically adjust the number of variables through 
recursive feature elimination with cross-validation (RFECV) to obtain the best feature combination.16 RFECV includes 
two parts: elimination of recursive features and cross-validation. Given an external estimator, recursive feature elimina-
tion (RFE) selects features by recursively considering smaller and smaller sets of features. First, the estimator is trained 
on the initial set of features, and the initial importance of each feature is obtained either. Then, the least important 
features are pruned from the current set of features. The procedure is recursively repeated on the pruned set until the 
desired number of features to select is eventually reached. Cross-validation guarantees the reliability of each step of 
pruning.

Development and Validation of ML Predictive Models
In this study, one conventional statistical method, LR, and three conventional ML classification algorithms—random 
forest (RF), support vector machine (SVM), and eXtreme Gradient Boosting (XGBoost)—were used to develop and 
validate the predictive models.17,18 These models underwent continuous parameter optimization to compare the fitting 
effects and predictive ability of each model. For each base learner, the optimized XGBoost algorithm randomly samples 
50% of the data and 80% of the features for training. Each iteration selects the feature with the largest current 
information gain as the node. When the predefined threshold is reached, this base learner is accomplished. Given 
a learning rate of 0.01, the predictive model completes the construction of 901 base learners, each of which is fitted based 
on the residual of the previous one. That is, we calculate the loss function of the current prediction and the actual value 
and minimize the Taylor expansion of the second order of the loss function. To raise the ability of model’s generalization, 
XGBoost limits the maximum tree depth to 2 and optimizes the model’s weight parameters in L1 and L2 regularization 
terms.

L tð Þ ¼ ∑
n

i¼1
l yi; y

t� 1ð Þ
i þ ft xið Þ

� �
þΩ ftð Þ (1) 

The other three predictive models are introduced in detail in Supplementary Methods 1.3 and.Figures S1–S3.
The validation queue data were used to evaluate the prediction performance of the model and calculate the area under 

receiver operator characteristic (AUC). A calibration curve was drawn, the calibration degree of the model was 
measured, and the degree of consistency between the predicted risk and the actual risk of the model was evaluated.

Interpretation Methods of the Predictive Models
Advanced ML models are usually black boxes. Although these models retain good accuracy, such metrics can be 
misleading. In this study, we used the SHAP and LIME algorithms as interpretation algorithms of the ML black box 
model.19–21

The SHAP algorithm is a game theoretical approach that explains the output of any ML model. It connects optimal 
credit allocation with local explanations using the classic Shapley values from game theory. The algorithm calculates the 
marginal contribution of a feature when it is added to the model and then considers whether the factor is different in all 
factor sequences. The marginal contribution fully explains the influence of all factors included in the model for prediction 
and distinguishes the attributes of the factors (risk factors/protective factors).

The LIME algorithm is used to locally approximate the black box model by giving weights to the disturbance input 
such that the observation model gives the basis for interpretation of the sample prediction results. In the present study, we 
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randomly sampled the validation set and used the LIME algorithm to fit the model’s predictive behavior in order to verify 
the rationality of the model’s basis for predicting results. This can greatly improve the credibility of human-computer 
interaction.

Statistical Analysis
Continuous variables were given as a median with interquartile range (IQR) and compared by the Kruskal–Wallis test. 
Categorical variables were presented as frequencies with percentages and compared by the chi-squared test. Survival 
curves were calculated using the Kaplan–Meier method and compared with the Log rank test. Univariate Cox regression 
analyses were applied to calculate the hazard ratios (HRs) and corresponding 95% confidence interval (CI) of variables 
and identify independent prognostic factors. The discrimination, predictive accuracy, and calibration of the model were 
assessed by AUC and calibration curve. Given that a quick evaluation of recurrence risk levels with cutoff values might 
be useful in routine clinical practice, based on the optimal cutoff value thresholds for the scores determined by the 
maximally selected log-rank statistics, we stratified patients into low-risk, middle-risk, and high-risk subgroups. All 
statistical analyses were conducted using R version 4.0.4. A two-tailed p-value of less than 0.05 was considered as 
statistically significant.

Results
Patient Characteristics
Over a 10-year follow-up period, the median follow-up durations were 25.7 months (IQR, 6.3, 160.7 months), 26.9 
months (IQR, 6.5, 159.2 months), and 23.7 months (IQR, 7.2, 124.8 months) in the training set, internal validation set, 
and external validation set, respectively, with no significant differences (P = 0.139). The baseline characteristics of 
patients in the three datasets are outlined in Table 1. The 512/1574 (32.5%) recurrence occurred 2 years after MWA. All 
HCC patients underwent complete ablation, and 35.1% (375/1069), 30.2% (81/268) and 28.7% (68/237) patients 
experienced recurrence at 2 years after MWA in the training set, internal validation set, and external validation set, 
respectively. Among them, local recurrence rate was 9.2% (98/1069), 7.1% (19/268) and 8.0% (19/237), respectively.

Variables Selected
By 36 risk factors for correlation analysis, the correlation coefficient matrix heat map of the features (Figure 2) showed 
that the top five features correlated negatively with the outcomes were platelet (PLT), ablation time, prothrombin activity 
(PTA), cholinesterase (CHE), and α-fetoprotein (AFP). The top five characteristics correlated positively with outcomes 
were number of tumors, Child grade, gender, etiology, and total bilirubin (Tbil). Given 36 variables might interfere with 
each other, thereby reducing the final predictive ability of the ML models, we used the univariate Cox regression to 
screen out 17 risk factors with statistical differences. The results from univariate Cox analysis for recurrence outcome are 
summarized in Table 2. We input these 17 factors into the ML algorithms to develop and validate the predictive model 
for recurrence after MWA.

Building and Evaluation of Four Predictive Models
The four ML models and the codes and construction processes are detailed in Table S2. Moreover, we list the 1-, and 
2-year AUC values of the three datasets of the different applied predictive models in Table 3. Censoring until 2 years 
after MWA, the AUC values of the XGBoost model were 0.74 (95% confidence interval [CI], 0.71–0.77), 0.67 (95% CI, 
0.59–0.71), and 0.73 (95% CI, 0.66–0.79) for the training set, internal validation set, and external validation set, 
respectively, which had the best predictive ability among three ML models and significantly outperformed the LR 
model (P < 0.001) (Figure 3). The robustness of the ML predictive model was further explored in a subgroup analysis. 
The screening results of RFECV showed (Figure S4) that when the 9 variables were retained, XGBoost exhibited the best 
predictive accuracy and discrimination. XGBoost sorted the nine variables according to feature values in advance and 
stored them as a block structure, which is convenient for quick query every time a node is split. The calibration plots for 
the recurrence outcome had good predictive value and were validated well in the internal validation set (Figure S5A) and 
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Table 1 The Baseline Characteristics of Patients in Three Datasets

Variables Training  
Set (n= 1069)

Internal Validation 
Set (n=268)

External Validation 
Set (n=237)

P value

Demographic and 
history
Age (years)a 58.4 ± 11.2 58.1 ± 11.5 57.5 ± 10.4 0.653

Genderb 0.168

Female 219 (20.49%) 50 (18.66%) 38 (16.03%)

Male 850 (79.51%) 217 (80.97%) 199 (83.97%)

Etiologyb 0.856

None 171 (16.00%) 51 (19.03%) 36 (15.19)

HBV 802 (75.02%) 191 (71.27%) 180 (75.95%)

HCV 91 (8.51%) 23 (8.58%) 21 (8.86%)

Alcohol-induced 5 (0.47%) 3 (1.12%) 0 (0%)

Child-Pugh gradeb 0.362

A 1039 (97.19%) 262 (97.76%) 227 (95.78%)

B 30 (2.71%) 6 (2.24%) 10 (4.22%)

Diagnosis basisb 0.631

Biopsy 492 (46.02%) 114 (42.54%) 112 (47.26%)

Image 577 (53.98%) 83 (59.71%) 125 (52.74%)

Tumor data
Number of tumorsb 0.933

1 667 (62.39%) 166 (61.94%) 150 (63.29%)

2 269 (25.16%) 62 (23.13%) 56 (23.63%)

3 133 (12.44%) 40 (14.93%) 31 (13.08%)

Maximum diameter of 
tumors (cm)a

2.4 ± 0.9 2.3 ± 1.0 2.5 ± 0.9 0.783

Abutting organsb 0.572

None 586 (54.56%) 143 (52.83%) 133 (56.6%)

Gastrointestinal tract 81 (7.62%) 18 (6.79%) 23 (9.79%)

Gallbladder 54 (5.08%) 17 (6.42%) 9 (3.83%)

Hilum hepatis 11 (1.03%) 3 (1.13%) 3 (1.28%)

Large vessels (more than 
3 mm)

94 (8.84%) 21 (7.92%) 22 (9.36%)

Bile duct (above 
secondary branch)

11 (1.03%) 2 (0.75%) 4 (1.7%)

Diaphragm 116 (10.91%) 31 (11.7%) 20 (8.51%)

Liver surface 110 (10.34%) 27 (10.19%) 14 (5.96%)

Pericardium 6 (0.56%) 6 (2.26%) 7 (2.98%)

Treatment parameter
Ablation time (s)c 480 (360.0, 780.0) 480 (360.0, 817.5) 480 (360.0, 750.0) 0.317

Ablation power (W)c 50 (50.0, 60.0) 50 (50.0, 60.0) 50 (50.0, 60.0) 0.471

Laboratory findings
ALT (U/L)c 26.8 (18.2–40.3) 28.4 (19.5–41.5) 26.15 (20.75–39.35) 0.260

AST (U/L)c 26.3 (20.1–36.8) 25.6 (20.2–39.6) 27.0 (20.9–38.9) 0.271

AFP (ug/mL)c 9.88 (3.38–110.90) 12.29 (3.68–135.50) 10.54 (3.15–56.98) 0.216

γ-GT (U/L)c 43.4 (27.0–80.3) 41.5 (26.7–86.5) 41.1 (27.6–76.1) 0.227

AKP(U/L)c 14.0 (13.2–14.9) 14.0 (13.4–14.9) 13.8 (13.3–15.0) 0.203

ALB (g/L)c 39.8 (36.7–42.8) 39.5 (36.3–42.2) 40.2 (36.8–42.9) 0.367

TBIL (μmol/L)c 14.6 (11.0–19.8) 14.3 (10.4–19.9) 14.3 (10.9–20.0) 0.496

BIL (μmol/L)c 5.0 (3.5–7.2) 5.0 (3.2–7.2) 5.1 (3.4–7.5) 0.433

Cr (μmol/L)c 71.7 (62.1–82.7) 73.8 (64.8–83.1) 72.2 (63.8–83.3) 0.309

Glu (mmol/L)c 5.0 (4.57–5.81) 4.89 (4.57–5.80) 5.02 (4.49–5.66) 0.337

(Continued)
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the external validation set (Figure S5B). The XGBoost model continued to show good predictive accuracy and 
discrimination in different subgroups of patients stratified according to the nine variables (Table S3).

Risk Stratification
We identified two optimal cutoff values (34.12 and 73.35) of the XGBoost model to stratify patients into low-risk, middle-risk, 
and high-risk groups in the training cohorts. The cumulative 1-, 2-, 3-, 4-, and 5-year recurrence-free survival (RFS) rates were 

Table 1 (Continued). 

Variables Training  
Set (n= 1069)

Internal Validation 
Set (n=268)

External Validation 
Set (n=237)

P value

CHE (u/L)c 6053.6 (4726.1–7174.2) 5982.9 (4613.7–7177.7) 5841.7 (4608.2–7256.6) 0.275

HB (g/L)c 138.0 (126.0–149.0) 136.0 (125.0–146.0) 137.5 (124.7–148.0) 0.454

RBC (×1012)c 4.37 (3.98–4.78) 4.30 (3.84–4.74) 4.33 (3.92–4.76) 0.287

WBC (×109)c 4.61 (3.56–5.72) 4.49 (3.42–5.68) 4.40 (3.47–5.81) 0.354

PLT (×109)c 114.0 (79.0–156.0) 115.0 (72.0–154.0) 109.0 (73.0–155.0) 0.290

LYMc 0.355 (0.281–0.453) 0.353 (0.292–0.462) 0.346 (0.285–0.417) 0.248

NEUc 0.596 (0.516–0.688) 0.582 (0.514–0.686) 0.593 (0.522–0.666) 0.485

PT (s)c 14.0 (13.2–14.9) 14.0 (13.4–14.9) 13.8 (13.3–15.0) 0.335

PTA (%)c 86.0 (76.0–94.0) 85.0 (76.0–92.1) 87.7 (76.0–95.0) 0.079

INRc 1.1 (1.04–1.19) 1.1 (1.05–1.1) 1.1 (1.04–1.20) 0.124

Follow-up (months) 0.139

Median 25.7 26.9 23.7

Range 6.3–160.4 6.5–159.2 7.2–124.8

Notes: aData are mean ± standard deviation; bData are frequencies with percentages in parentheses; cDate are median with interquartile range 
(IQR) in square brackets; P value<0.05 indicated a significant difference. 
Abbreviations: HCC, hepatocellular carcinoma; HBV, hepatitis B virus; HCV, hepatitis C virus; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; AFP, α-fetoprotein; γ-GT, gamma glutamyltransferase; AKP, alkaline phosphatase; ALB, albumin; TBIL, total bilirubin; BIL, 
bilirubin; Cr, creatinine; Glu, glucose; CHE, cholinesterase; HB, hemoglobin; LYM, lymphocyte; NEU, neutrophils; PT, prothrombin time; PTA, 
prothrombin activity; INR, international normalized ratio.

Figure 2 The correlation coefficient matrix heat map of all 36 variables. (A) The Correlation analysis of 18 variables including age; (B) the correlation analysis of the other 
18 variables including RBC.
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Table 2 The Results from Univariate Analysis for Recurrence Outcome

Variables ER Group  
(n= 694)

Non-ER Group  
(n= 643)

P value

Gendera 0.031

Female 123 (17.72%) 146 (22.71%)

Male 571 (82.28%) 497 (77.29%)
Etiologya 0.003

None 92 (13.26%) 130 (20.22%)

HBV 537 (77.38%) 456 (70.92%)
HCV 62 (8.93%) 52 (8.09%)

Alcohol-induced 3 (0.43%) 5 (0.78%)
Number of tumorsa <0.001

1 345 (49.71%) 488 (75.89%)

2 213 (30.69%) 118 (18.35%)
3 136 (19.60%) 37 (5.75%)

Abutting organsa 0.030

None 370 (53.31%) 359 (55.83%)
Gastrointestinal tract 63 (9.08%) 36 (5.60%)

Gallbladder 48 (6.92%) 23 (3.58%)

Hilum hepatis 4 (0.58%) 10 (1.56%)
Large vessels 51 (7.35%) 64 (9.95%)

Bile duct 8 (1.15%) 5 (0.78%)

Diaphragm 75 (10.81%) 72 (11.20%)
Liver surface 68 (9.80%) 69 (10.73%)

Pericardium 7 (1.01%) 5 (0.78%)

Tumor locationa 0.013
Left 157 (22.62%) 146 (22.71%)

Right 537 (77.38%) 497 (77.29%)

Comorbidity scorea 0.034
Low 432 (62.25%) 426 (66.25%)

High 262 (37.75%) 217 (33.75%)

AST (U/L) 0.013
>40 454 (65.40%) 321 (49.90%) <0.001

≤40 240 (34.60%) 322 (51.10%)

AFP (ng/mL) <0.001
>400 305 (62.25%) 156 (66.25%)

≤400 389 (37.75%) 487 (33.75%)

γ-GGT (U/L) 0.003
>60 415 (59.80%) 332 (51.60%)

≤60 279 (40.20%) 311 (48.40%)

AKP (U/L) <0.001
>150 521 (75.10%) 211 (32.80%)

≤150 173 (24.90%) 432 (67.20%)

TBIL (umol/mL) <0.001
>17.1 483 (69.60%) 335 (52.10%)

≤17.1 211 (30.40%) 308 (47.90%)

BIL (umol/mL) 0.049
>7.0 384 (55.00%) 388 (60.30%)

≤7.0 314 (45.00%) 255 (39.70%)

CHE (U/L) <0.001
>4000 512 (73.80%) 387 (60.20%)

≤4000 182 (26.20%) 256 (39.80%)

(Continued)
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55%, 42%, 13%, 7%, and 3% in the low-risk group, 74%, 62%, 34%, 25%, and 19% in the middle-risk group, and 97%, 85%, 
59%, 48%, and 30% in the high-risk group, respectively, which had a significant statistical difference among the three groups 
(P < 0.001) (Figure 4A). Both in the internal validation (cutoff value, 62.31 and 112.21) and external validation cohort (cutoff 
value 60.98 and 117.30), the cumulative 1-, 2-, 3-, 4-, and 5-year RFS rates among the high-risk, middle-risk, and low-risk 
groups also had a significant statistical difference (both, P < 0.001) (Figure 4B and C). An AI system for recurrence prediction 
after MWA accessed online is available at http://114.251.235.51:8001/ (Figure S6).

Interpretation of the XGBoost Model
We used the SHAP and LIME algorithms to visualize the influence of each variable in the XGBoost model on the 
outcome variable in Figure 5. Based on the SHAP algorithm, the influence of nine variables on the outcome in the 

Table 2 (Continued). 

Variables ER Group  
(n= 694)

Non-ER Group  
(n= 643)

P value

WBC (X109) 0.004

>4.0 488 (70.30%) 404 (62.80%)
≤4.0 206 (29.70%) 239 (37.20%)

PLT (X109) <0.001

>100 492 (62.25%) 418 (66.25%)
≤100 202 (37.75%) 225 (33.75%)

NEU (X109) 0.021

>400 432 (70.90%) 426 (65.00%)
≤400 262 (29.10%) 217 (35.00%)

PT (s) 0.004

>15 468 (67.40%) 385 (59.90%)
≤15 226 (32.60%) 258 (40.10%)

Notes: aData are frequencies with percentages in parentheses; P value<0.05 indicated a significant 
difference. 
Abbreviations: HCC, hepatocellular carcinoma; IR, intrahepatic recurrence; HBV, hepatitis B virus; 
HCV, hepatitis C virus; AST, aspartate aminotransferase; AFP, α-fetoprotein; γ-GT, gamma glutamyl-
transferase; AKP, alkaline phosphatase; TBIL, total bilirubin; BIL, bilirubin; CHE, cholinesterase; NEU, 
neutrophils; PT, prothrombin time.

Table 3 Summary of Predictive Performance of Multiple Models

Prediction Models 1-Year AUC (95% CI) 2-Year AUC (95% CI) P value

Training set
XGBoost 0.75 (0.73, 0.79) 0.74 (0.71 0.77) -

SVM 0.67 (0.62, 0. 72) 0.66 (0.59, 0. 71) 0.028
RF 0.70 (0.66, 0.74) 0.70 (0.67, 0.73) <0.001

LR 0.57 (0.53, 0.61) 0.56 (0.52, 0. 59) <0.001

Internal validation set
XGBoost 0.68 (0.64, 0.72) 0.67 (0.60, 0.73) -

SVM 0.53 (0.48, 0.62) 0.50 (0.44, 0.57) 0.022

RF 0.74 (0.67, 0.81) 0.72 (0.65, 0.78) 0.216
LR 0.60 (0.52, 0.69) 0.58 (0.51, 0.65) <0.001

External validation set
XGBoost 0.74 (0.70, 0.83) 0.73 (0.66, 0.79) -
SVM 0.53 (0.49, 0.61) 0.52 (0.44, 0.60) <0.001

RF 0.66 (0.57, 0.75) 0.70 (0.63, 0.78) 0.130

LR 0.60 (0.52, 0.69) 0.58 (0.51, 0.65) 0.010
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XGBoost model is shown in Figure S7. The feature-importance ranking was as follows (Figure S8): number of tumors, 
PLT, AFP, comorbidity score (CS), WBC, CHE, PT, NEU, and etiology. The number of tumors, PLT, and CS had 
approximately linear effects on the outcome; the number of tumors and CS were positively correlated with the outcome. 
It is worth noting that the CS stabilized after five points; PLT was negatively correlated with the outcome; when the value 
was greater than 150, the impact became stable The effects of AFP, WBC, and CHE on the outcome all had peaks and 
troughs, and beyond the SHAP value, gradually stabilized. The influence of PT and NEU on the outcome was slightly 
more complicated. The SHAP value of etiology was near 0, which had little effect on the outcome. The LIME algorithm 
explained the predictions of the XGBoost model on each sample and summarized the predictions of the model in the 
training set, internal validation set, and external test set, showing the distribution of four types of results: true positive, 

Figure 3 The ROC curves of four models in three datasets, (A) the training set; (B) the internal validation set; (C) the external validation set.

Figure 4 The risk stratification of the XGBoost Model. (A) The training set; (B) the internal validation set; (C) the external validation set.
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true negative, false positive, and false negative. Overall, the number of samples predicted to be true positive and negative 
both accounted for 70%, indicating that the performance of the XGBoost prediction model is relatively stable In addition, 
we randomly selected four types of samples (true positive, true negative, false positive, false negative) and visualized 
them separately. When the prediction probability of the model is far from 0.5, the physician only needs to judge whether 
the prediction result is reasonable based on the model prediction basis given by LIME. If the model prediction basis is 
unreasonable, the result will not be adopted; when the predicted probability of the model is close to 0.5, such samples are 
usually clinically difficult to judge.

Discussion
In this study, we developed and validated ML models using clinical data extracted directly from electronic health records 
to predict individual ER outcomes after MWA based on a long-term follow-up cohort comprising 1574 patients with 
early-stage HCC who were recommended as MWA candidates. These analysis results suggest that the XGBoost model 
has more favorable performance and discrimination than the other three predictive ML models, which identify three ER 
risk strata and help further clinicians analyze HCC patient survival benefit.

A real world study based on a consecutive multi-center cohort was performed, with a large sample size from four 
high-volume medical centers by setting three cohorts, which ensured the stability of the ML algorithm.The clinical data 
available on biomarkers for prediction of ER were obtained. Previously identified risk factors for hepatic ER after LA 
mainly included tumor size, number, and AFP level.21–23 However, these clinical variables that predict post-ablation 
recurrence remain controversial because of individual differences in patients and tumor heterogeneity. Moreover, 
traditional staging systems, such as tumor-node-metastasis (TNM), Barcelona Clinic Liver Cancer (BCLC) grade, and 
Okuda score, were used to try to predict HCC outcomes,24 but they had insufficient predictive ability on postoperative 
recurrence. Aggressive pathological factors, including microvascular invasion (MVI), microsatellite lesions, and patho-
logical grade, could provide valuable information on tumor invasion ability, which is associated with early recurrence 
after SR.25,26 However, preoperative diagnosis mainly relies on biopsy during MWA procedure, and complete patholo-
gical tissue cannot be obtained, so it was difficult to collect effective pathological information for MWA.

The imaging feature commonly reflects the aggressive characteristics of a tumor; therefore, several radiomics models 
were built in prediction of HCC recurrence in the last 5 years. Among them, two radiomic predictive models of post- 

Figure 5 Interpretation of the XGBoost model. (A–C) SHAP algorithms to visualize the influence of each variable in the XGBoost model; (D and E) LIME algorithms to 
visualize the influence of each variable in the XGBoost model.
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ablation recurrence were developed. Yuan et al reported that a radiomics nomogram based on a contrast-enhanced CT was 
developed to predict the early recurrence of HCC cases eligible for curative ablation, and the C-index of the radiomics 
model and radiomics, combined with a clinical model, were 0.72 and 0.79, respectively.27 Shen et al reported that 
a radiomics model based on a post-treatment CT image was built to predict the early recurrence after ablation, and the 
AUC value was 0.89.28 As the abovementioned radiomics model takes 200–300 cases, it is not enough to provide big-data 
information and verification, causing inadequate stability and robustness. In addition, feature extraction is complicated and 
dependent on the model, which is difficult to apply and lacks image visualization. As a cost-effective and non-invasive 
manner, clinical text data are a better choice. Therefore, we decided to establish a ML model for ER risk prediction based on 
clinical text data.

The predictive models based on the XGBoost algorithm, with advantages including efficient computing power and the 
ability to handle missing values, were built and tested via two validation sets, which further ensured the stability. In our 
study, the XGBoost model could reduce eigenvalues from a great number of electronic health records compared with the 
other models. In terms of missing value processing, the XGBoost algorithm could handle missing data automatically by 
adding a default direction based on learning during the training procedure in each tree node. When a value was missing in 
the validation data, the instance was classified into the default direction. In this study, 36 variables were input into the 
XGBoost model, and 9 variables were output to develop the optimal predictive performance in this study, with AUC 
values of 0.74 and 0.73 in the training and validation datasets, respectively. ML has remarkable computing power and 
will not be affected by large samples or multi-dimensional data. Development of the predictive model using ML to help 
physicians formulate follow-up treatment plans in clinical practice has been increasing.29,30 For example, a precise 
prognostic assessment of COVID-19 in an ICU was built by ML methods that can accurately screen out high-risk groups 
and guide physicians in effectively prevention and treatment.31 In addition, an ML model to predict kidney outcomes in 
IgA nephropathy was developed in multiple centers, which can help physicians in rational use of drug according to these 
predictive results.32 Similarly, our XGBoost algorithm model showed the ability to generalize across populations and 
screening protocols. This suggests that in future clinical deployments, the XGBoost model offers strong baseline 
performance but may benefit from fine-tuning with local data. Interventional radiologists can use preventive TACE or 
neoadjuvant chemotherapy treatment (NCT) for high-risk recurrence HCC cases based on ML model prediction and can 
reduce the recurrence risk after MWA further, thereby “nipping it in the bud”, as the saying goes.

In this study, we used the SHAP and ITME algorithms to explain the XGBoost model because the black boxes used 
to understand the principles behind ML model could be accessed online conveniently. After full explanation by the 
SHAP and LIME algorithms, the XGBoost model showed accurate and stable prediction ability in recurrence. However, 
parts of clinical variable data that should not be used may have accidentally leaked into the training data. The SHAP 
algorithm calculates the marginal contribution of a feature when it is added to the model and then considers whether the 
variables are different in all variable sequences. The marginal contribution fully explains the influence of all variables 
included in the model prediction and distinguishes the attributes of the factors (risk/protective factors). Moreover, we 
randomly sampled the test set and used the LIME algorithm to fit the model’s predictive behavior to verify the rationality 
of the model’s basis for predicting results. This approach can greatly improve the trust value of human–computer 
interaction.

There are some limitations to our study. First, the risk of selection bias is unavoidable in observational studies. 
However, this risk was minimized by the inclusion of all consecutive patients and a large cohort of early HCC cases for 
MWA to date. Second, the cohort was not from a prospective therapeutic trial because of the nature of retrospective 
research; therefore, part of the data was lacking. Fortunately, the XGBoost model had the ability to deal with missing 
values in this study. Third, the prediction model based on clinical text prediction is effective and convenient, but if it is 
combined with imaging information, more accurate results may be obtained; a prospective randomized trial is underway 
to confirm this hypothesis.

In conclusion, with an easy-to-use XGBoost model consisting of nine clinical variables, the model exhibited adequate 
performance and individualized predictive ability that could stratify patients into three ER risk groups with a referable 
cumulative recurrence rate. Therefore, the visual XGBoost model may help physicians with decision-making before 
MWA for HCC in clinical practice and trials.
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