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Background: Over the last decade, nanotechnology has provided researchers with new 

 nanometer materials, such as nanoparticles, which have the potential to provide new therapies 

for many lung diseases. In this study, we investigated the acute effects of polystyrene nanopar-

ticles on epithelial ion channel function.

Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane con-

ductance regulator (CFTR) and baby hamster kidney cells engineered to express the wild-type 

CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene 

nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Cl- 

channels alone and in the presence of known CFTR channel activators by using baby hamster 

kidney cell patches.

Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent 

increases in short-circuit current. In turn, these short-circuit current responses were found to 

be biphasic in nature, ie, an initial peak followed by a plateau. EC
50

 values for peak and plateau 

short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit cur-

rent was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene 

nanoparticles activated basolateral K+ channels and affected Cl- and HCO
3

- secretion. The 

mechanism of short-circuit current activation by polystyrene nanoparticles was found to be 

largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of 

CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney 

cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles.

Conclusion: This is the first study to identify the activation of ion channels in airway cells 

after exposure to polystyrene-based nanomaterials. Thus, polystyrene nanoparticles cannot be 

considered as a simple neutral vehicle for drug delivery for the treatment of lung diseases, due 

to the fact that they may have the ability to affect epithelial cell function and physiological 

processes on their own.

Keywords: CFTR, cystic fibrosis transmembrane conductance regulator, ion channels, 

K+ channels, lung cells, polystyrene nanoparticle

Introduction
Cystic fibrosis is an inheritable disease caused by a mutation in the cystic fibrosis 

 transmembrane conductance regulator (CFTR) gene located on chromosome 7.1 The cftr 

gene encodes a cAMP-regulated Cl- channel, CFTR, located on the apical membrane of 

epithelial cells.2 Structural analysis of the CFTR protein shows that it consists of a 1480 

amino acid backbone containing two nucleotide-binding domains, 12 transmembrane 

domains, and a unique cytoplasmic regulatory domain.3 Phosphorylation of the regula-

tory domain by cAMP-dependent protein kinase A is a  prerequisite for channel opening.4 
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ATP-induced  dimerization of nucleotide-binding domains 

also plays an important role in this process.5

There are over 1800 recognized mutations of the cftr gene 

which give rise to the disease known as cystic fibrosis.6 Lung 

disease in cystic fibrosis patients is the principal cause of 

morbidity and mortality associated with the condition, and 

is characterized by impaired mucus clearance due to altered 

ion transport by airway epithelial cells.7 Submucosal glands 

of the respiratory system have been proposed as the primary 

site for the pathology of cystic fibrosis lung disease.8 CFTR 

Cl- channels located on the apical membrane of lung epi-

thelial cells are involved in the regulation of physiological 

processes, such as cell volume control and transepithelial 

fluid transport, as well as modulating the function of other 

ion channels, eg, epithelial Na+ channels, outwardly rectify-

ing Cl- channels, and K+ channels, and thus the transport of 

Na+, K+ and Cl- ions, and H
2
O.9

Nanotechnology is providing science with a new platform 

in medicine which has the potential to provide disciplines 

such as diagnostics and clinical medicine, as well as basic 

research, with new materials in the nanometer range that 

have many far reaching applications. Nanomaterials, such 

as nanoparticles, differ from other materials due to a number 

of special characteristics, including small particle size, large 

surface area, shape, chemical composition, and charge.10 

Together these characteristics give nanoparticles numerous 

advantages over other delivery systems, and the targeted 

delivery of drugs using nanocarriers for the treatment of 

respiratory diseases is a major focus of interest.10 Many 

approaches have been undertaken for the delivery of nano-

structures, such as micelles, liposomes, and nanoparticles 

to the lungs via the use of nebulization for suspensions and 

dry powder carriers.10

In 2007, Yacobi et al investigated the effects of ultrafine 

ambient particulate suspensions, polystyrene nanoparticles, 

quantum dots, and single-walled carbon nanotubes on 

transmonolayer resistance (R
t
) and equivalent short-circuit 

current on rat alveolar cell epithelia monolayers. They found 

that R
t
 was reduced after apical exposure of rat alveolar cell 

epithelia monolayers to a variety of nanomaterials, includ-

ing ultrafine ambient particulate suspensions, positively 

charged quantum dots, and single-walled carbon nanotubes 

at varying concentrations.11 In turn, other research groups 

have investigated the interaction of silver nanoparticles on 

voltage-activated Na+ currents in hippocampal CA1 neurons, 

with results indicating that silver nanoparticles may alter the 

action potential of these neurons by reducing voltage-gated 

sodium currents.12

Even though there have been many advances in the area 

of bionanoscience, there is still very little known about the 

complex interaction of nanoparticles with the cell membrane 

on airway epithelial cells, and the effect that this interaction 

can have on many diverse cellular processes. Nanoparticles at 

the cell membrane have the potential to interact with numer-

ous cell signaling receptors, ion channels, transporters, and 

cytoskeleton machinery which work to control and regulate 

basic cellular and physiological processes. Recent studies 

have shown that gold nanoparticles coated with antibodies 

have the ability to alter signaling processes and regulate 

membrane receptor internalization in human breast cancer 

cells.13 Furthermore, titanium dioxide nanoparticles, upon 

contact with BEAS-2B human bronchial cells, can induce 

programmed cell death via the mitochondrial apoptosis 

pathway.14

Taken together, our research group was interested in 

studying the interactions of nanoparticles with ion channels 

in human airway epithelial cells, with a specific focus on 

the CFTR Cl- channel. We hypothesized that nanoparticles 

could modulate epithelial ion channel function. To this end, 

we wanted to investigate if nanoparticles could affect api-

cally located CFTR Cl- channels and/or other ion channels 

(basolateral K+ channels) and cotransporters, either directly 

or indirectly. To test this hypothesis, we used commercially 

available 20 nm negatively charged polystyrene nanoparticles 

(N20). We chose to use polystyrene nanoparticles because 

this specific type of nanoparticle is being increasingly 

characterized for use in nanosensors and drug nanocarrier 

investigations.15,16 Polystyrene nanoparticles have also been 

shown to interact with proteins to form a “protein corona” 

upon interaction with biological fluids,17 and more recently 

studies by Salomon and Ehrhardt have found that polysty-

rene nanoparticles can affect the function of P glycoprotein/

MDR1 membrane transporters in A549 human alveolar 

epithelial cells.18

We used the Ussing chamber technique to study the 

effects of N20 on ion fluxes in human airway submucosal 

cells, ie, Calu-3. Any findings with the Ussing chamber were 

then verified with the single channel patch clamp technique 

using baby hamster kidney cells stably transfected with a 

wild-type CFTR Cl- channel. We discovered that acute apical 

exposure of lung epithelial cells to N20 promoted transepi-

thelial ion transport, affecting not only apically located CFTR 

Cl- channels but also basolateral K+ channels. The mechanism 

of short-circuit current activation by nanoparticles was found 

to be mainly dependent on calcium-dependent and cyclic 

nucleotide-dependent phosphorylation of CFTR Cl- channels. 
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Our patch clamp data reveal an exciting new phenomenon 

that nanoparticles can interact and activate CFTR Cl- chan-

nels directly. No other study to our knowledge has shown 

the direct activation of airway ion channels by polystyrene 

nanoparticles.

Materials and methods
Chemicals
Polystyrene latex beads were purchased from Invitrogen 

(carboxyl-modified 20 nm, F-8787; Carlsbad, CA) and core-

labeled with fluorophore according to the manufacturer’s 

specifications. Before all experiments, test solutions of 

polystyrene nanoparticles were dispersed using a sonicator 

(8890-MTH; Cole–Parmer, Vernon Hills, IL) to prevent 

aggregation. Forskolin (10 mM; LC Laboratories, Woburn, 

MA) was made as a 1000-fold stock solution in ethanol. 

Diphenylamine-2-carboxylate 1 M was dissolved in dim-

ethyl sulfoxide and was prepared fresh for each experiment. 

Furosemide 100 mM was sourced from Sigma-Aldrich 

(St Louis, MO) and was dissolved in distilled H
2
O with one 

drop of concentrated NaOH 5 N. XE991 (10 mM) was a 

generous gift from Dr BS Brown (DuPont, Wilmington, DE) 

and was dissolved in HCl 0.1 N. Nystatin was prepared as a 

180 mg/mL stock solution in dimethyl sulfoxide and soni-

cated for 30 seconds just before use. Clotrimazole 30 mL was 

sourced from Sigma-Aldrich and was made as a 1000-fold 

stock solution in ethanol. Carbachol 100 mM and S-nitroso-

glutathione 100 mM were purchased from Sigma-Aldrich 

and dissolved in distilled H
2
O. NG-nitro-

L
-arginine methyl 

ester (
L
-NAME) 100 mM was purchased from Alexis Bio-

chemicals (San Diego, CA). 1H-[1, 2, 4] oxadiazolol-[4, 3-a] 

quinoxalin-1-one (ODQ, 10 mM; Tocris Cookson, St Louis, 

MO) and thapsigargin 1 mM (Sigma-Aldrich) were prepared 

as 1000-fold stock solutions in dimethyl sulfoxide. All other 

items were purchased from Sigma-Aldrich.

Cell lines and culture
A Calu-3 cell line was obtained from the American Type 

Culture Collection (ATCC HBT-55) and maintained as a 

monolayer culture in plastic T-75 cm2 tissue culture flasks. 

The cells were grown in Dulbecco’s Modified Eagle’s 

Medium, a low glucose media 1 g/L also containing sodium 

pyruvate 110 mg/L and supplemented with 10% fetal bovine 

serum, gentamicin sulfate 5 µg/mL, penicillin G 6 µg/mL, 

and streptomycin 10 µg/mL. Cells were maintained at 37°C 

in a humidified atmosphere of 95% O
2
 and 5% CO

2
. When 

confluent, the cell line was detached enzymatically with 

trypsin-ethylenediamine tetra-acetic acid and subcultured 

into a new cell culture flask. The medium was replaced every 

2 days. Cells were used for experiments between passages 

21–45. For transepithelial measurements, Calu-3 cells were 

seeded at a density of 2 × 105 cells/cm2 onto SnapwellTM 

inserts (0.45 µm, 1 cm2; Corning, Cambridge, MA). For the 

first 7 days, cells were grown in liquid-covered culture, with 

the basolateral and apical media being changed every 2 days 

(2 mL media basolaterally, 500 µL apically). After day 7, 

from initial seeding on Snapwell inserts, all cells were grown 

using air interface culturing in which medium was added only 

to the basolateral side of the inserts (2 mL). Cells were used 

in transepithelial experiments on days 12–22.

size and zeta potential determination  
for polystyrene nanoparticles
The size and zeta potential for N20 was determined using a 

Zetasizer Nano ZS (Malvern Instruments, Worcestershire, 

UK). Zeta potential and size was measured at 37°C, three 

repeats per sample. Polystyrene nanoparticles were diluted in 

Krebs–Henseleit solution containing (in mM): NaCl, 116.4; 

KCl, 4.7; CaCl
2
, 1.8; MgCl

2
, 1.2; NaH

2
PO

4
, 0.78; NaHCO

3
, 

25.0; and 10 glucose (pH was 7.4 ± 0.1 when bubbled with 

95% O
2
 and 5% CO

2
). Measurements were conducted using 

a concentration of 100 µg/mL. The dielectric constant of the 

dispersant was set at 78.5, viscosity as for water at 0.8872 cP, 

and refractive index at 1.333.

Cytotoxicity
Lactate dehydrogenase assay and polystyrene 
nanoparticles
To evaluate the cytotoxicity of N20 alone on Calu-3 cells, 

104 × cells/100 µL of cell culture medium were plated 

into 96-well round-bottom plates, and the lactate dehy-

drogenase assay was performed. Extracellular lactate 

dehydrogenase release was measured using a colorimetric 

CytoTox 96® nonradioactive cytotoxicity assay kit from 

Promega  (Madison, WI) following the manufacturer’s 

instructions, with absorbance recorded at 492 nm (FLUO-

star, OPTIMA; BMG Labtech, Offenburg, Germany). N20 

was diluted in serum-free medium and was added to cells 

(in triplicate) at concentrations of 1, 10, 25, 50, 100, and 

200 µg/mL. Cell survival was determined 24 hours post-

treatment with N20 by the lactate dehydrogenase assay 

described above. To determine the percentage cytotoxicity, 

the average absorbance of the triplicate was calculated. As 

control, extracellular release of lactate dehydrogenase was 

obtained from unexposed cells (low control), and maximum 

release of lactate dehydrogenase was obtained by lysis of cells 
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with the supplied lysis buffer (high control). The following 

equation was applied to the experimental values obtained: 

percent cytotoxicity = release of lactate dehydrogenase from 

exposed cells – release of lactate dehydrogenase (low con-

trol)/release of lactate dehydrogenase (high control) – release 

of lactate dehydrogenase (low control) × 100.

MTT assay and polystyrene nanoparticles
Cytotoxicity was measured using a CellTiter 96® non-

radioactive cell proliferation assay kit from Promega fol-

lowing the manufacturer’s instructions. Calu-3 cells were 

seeded in triplicate at a density of 104 × cells/100 µL of 

cell culture medium into 96-well plates. The following day, 

Calu-3 cells were treated with N20 under serum-free condi-

tions at the following concentrations; 1, 10, 25, 50, 100, and 

200 µg/mL for 24 hours. The 3-(4,5-dimethyl-thiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) assay evaluates 

mitochondrial activity (cell growth and cell death) and is 

performed by adding a premixed optimized dye solution to 

culture wells. Absorbance is recorded at 570 nm (FLUOstar). 

The recorded absorbance is directly proportional to the 

number of live cells. To determine the percentage cytotox-

icity, the average of the triplicates was calculated for each 

concentration tested. Results were calculated as a percent-

age of the control values (unexposed cells), where percent 

 cytotoxicity = (experimental abs
570 nm

 of exposed cells/abs
570 nm

 

of unexposed cells) ×100.

Transepithelial measurements
Ussing chamber studies were carried out using the apparatus 

and methods described by Duta et al19 and Duszyk.20 Prior 

to use in transepithelial measurement studies, all Calu-3 cell 

inserts were fed with complete fresh media for 1 hour and 

were washed for 30 minutes in Krebs–Henseleit solution 

(2 mL basolaterally, 500 µL apically). Calu-3 cell mono-

layers were grown on Snapwell inserts for at least 12 days 

prior to mounting into modified Ussing chambers. The cell 

monolayers were bathed at a temperature of 37°C in Krebs–

Henseleit solution. Chemicals were added from concentrated 

stocks and all chambers were continuously mixed by bubbling 

the Krebs–Henseleit solution with 95% O
2
 and 5% CO

2
 to 

maintain a constant pH of 7.4. The transepithelial potential 

difference was clamped to zero using a DVC 1000 voltage/

current amplifier (World Precision Instruments, Sarasota, 

FL), and the resulting short-circuit current was recorded 

by Ag-AgCl
2
 electrodes, using 3 M KCl agar bridges. The 

short-circuit current was allowed to stabilize for up to 

approximately 10 minutes or more before the application of 

nanoparticles or other tested chemicals. Nanoparticles were 

always added apically. The transepithelial resistance was 

calculated using Ohm’s law, by measuring current changes 

in response to 0.5 mV pulses.

Basolateral membrane K+ currents
The effects of the nanoparticles on basolateral membrane K+ 

channels were measured after permeabilization of the apical 

membrane with nystatin 180 µg/mL and establishment of an 

apical-to-basolateral K+ concentration gradient. Apical NaCl 

was replaced by equimolar amounts of potassium gluconate 

and basolateral NaCl with sodium gluconate. The concen-

tration of calcium gluconate was increased from 2.5 mM 

to 5 mM. Under such conditions, the contribution of apical 

Cl- channels to the short-circuit current is eliminated and 

the measured short-circuit current represents K+ currents as 

these ions move down the concentration gradient through 

basolateral K+ channels.

Anion substitution studies
hCO3

- free transepithelial measurements  
and polystyrene nanoparticles
The effects of nanoparticles on the short-circuit current were 

assessed in the absence of bicarbonate ions. A bicarbonate-

free Krebs–Henseleit solution was used with apical and 

basolateral HCO
3
- ions exchanged for HEPES 10 mM. The 

overall pH was adjusted to 7.4 and the solutions were mixed 

with O
2
.

Low Cl- transepithelial measurement and 
polystyrene nanoparticles
The effects of nanoparticles on the short-circuit current were 

measured under low chloride conditions. A low chloride 

Krebs–Henseleit solution was used with apical and basolat-

eral NaCl being exchanged for sodium gluconate 116 mM 

and KCl for potassium gluconate 4.7 mM. The concentration 

of calcium gluconate was increased to 5 mM to compensate 

for the Ca2+-buffering capacity of the gluconate.

Patch clamp experiments
These experiments were carried out using baby hamster 

kidney cells stably transfected with wild-type human CFTR, 

as previously described.21 The experiments were performed 

in the excised, inside-out configuration of the patch clamp 

technique. In all experiments, the pipette solution contained 

(in mM) sodium gluconate 150, MgCl
2
 2, and HEPES 10, 

and the bath solution NaCl 150, MgCl
2
 2, and HEPES 10. 

All solutions were adjusted to pH 7.4 with NaOH 5 N. 
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The membrane potential was held at 0 mV and the junction 

potential was compensated. Following patch excision, chan-

nel activity was assessed by the addition of N20 50 µg/mL 

to the bath solution. Controls (untransfected baby hamster 

kidney cell patches) were treated with N20 50 µg/mL, as 

described earlier. This concentration was chosen based on 

Ussing chamber studies showing that N20 50 µg/mL resulted 

in maximal stimulation of transepithelial anion fluxes. In the 

second set of experiments, the patch excision was exposed 

to N20, as already discussed, in the presence of a 10–20 nM 

protein kinase as a catalytic subunit and MgATP 0.2 to 1 mM 

in the bath. Au(CN)
2
 500 µM was used as a blocker of the 

CFTR channel. Patch clamp recordings were analyzed by the 

Clampfit program, and open probability (Po) was calculated 

using standard techniques.

Data analysis
Nanoparticle concentration-response was fitted with the 

following equation:

 Y =  bottom + (top-bottom)/(1 + 10 ^ [(LogEC50-X) 

× Hill Slope])  (1)

The data points show the mean ± the standard error of 

the mean. The short-circuit current is expressed in units 

of µA/cm2. All data are presented as group means ± standard 

error of the mean for the individual experiments. Statistical 

analysis of the mean difference between multiple groups was 

determined by one-way analysis of variance, followed by 

Bonferroni post hoc tests or between two groups by paired/

unpaired t-tests as appropriate. A P value of ,0.05 was 

considered statistically significant. All statistical analyses 

were performed using GraphPad Prism (v 5.00 for Windows; 

GraphPad Software, San Diego, CA).

Results
Nanoparticle characterization
N20 nanoparticles according to manufacturer’s specifica-

tions were 20 nm in size and negatively charged. Our own 

measurements have shown that N20 had a Z average (nm) 

of 45.2 ± 0.01, a zeta potential of -15.1 ± 0.8 mV, and a 

polydispersity index of 0.22 ± 0.002 in Krebs–Henseleit 

solution. Furthermore, our lactate dehydrogenase cyto-

toxicity studies showed that N20 1–200 µg/mL did not 

exert any cytotoxic effects on Calu-3 cells for up to 

24 hours (n = 4, data not shown). Also, we did not observe 

any significant changes in Calu-3 cell viability by MTT 

analysis after cells were exposed to N20 1–200 µg/mL 

over a 24-hour period (cell viability at the highest con-

centration of N20 tested was 92.5% ± 5.7% vs control, 

P . 0.05, n = 3).

Nanoparticles activate anion secretion  
in Calu-3 cells
Acute apical exposure of Calu-3 cells to N20 activated the 

short-circuit current in a concentration-dependent manner. 

Figure 1 shows the fitting of equation (1) to the experimen-

tal data. The current activated by N20 showed a biphasic 

response, ie, an initial peak followed by a plateau. Both peak 

and plateau values were used to determine the EC
50

 and Hill 

coefficient (Figures 1A and 1B,) with both values working 

at low concentrations (1457 ng/mL for peak short-circuit 

current and 315.5 ng/mL for plateau short-circuit current, 

respectively). Therefore, in our remaining anion transport 

studies, plateau and peak short-circuit current values are 

reported where appropriate to determine the effect of N20 

on the short-circuit current.

Apically located CFTR Cl- channels serve as the primary 

conductive pathway for anion secretion in Calu-3 cells and 

are the main contributors to the short-circuit current in 

transepithelial studies. To determine the mechanism(s) of 

action of nanoparticles on short-circuit current activation, a 

number of pharmacological agents were used to probe the 

actions of nanoparticles on ion channels. N20 10 µg/mL 

increased short-circuit current by 12.4 ± 0.4 µA/cm2 (pla-

teau I
sc
, Figure 2A). The subsequent addition of forskolin, 

an activator of adenylyl cyclase (10 µM), further increased 

the short-circuit current by 15.8 ± 2.9 µA/cm2 (plateau I
sc
, 

Figure 2A) and this effect was blocked by diphenylamine-2-

carboxylate, a blocker of CFTR (1 mM).22 In the absence of 

nanoparticles, forskolin activated the short-circuit current by 

16.2 ± 1.0 µA/cm2 (plateau I
sc
, Figure 2B). However, the sub-

sequent addition of N20 after forskolin resulted in a signifi-

cantly lower short-circuit current response (4.7 ± 2.4 µA/cm2) 

when compared with control responses (P , 0.05, n = 3, 

Figure 2B), showing that there is in fact an overlap between 

the mechanism of short-circuit current activation by N20 and 

forskolin. A summary of the statistical analysis of Figures 2A 

and 2B is shown in Figure 2D.

As shown on Figure 2C, diphenylamine-2-carbox-

ylate 1 mM reduced the basal short-circuit current by 

9.2 ± 1.6 µA/cm2 prior to the addition of N20 10 µg/mL. 

However, this pretreatment with diphenylamine-2-carbox-

ylate only partially inhibited the activation of short-circuit 

current by N20 (5.0 ± 2.3 µA/cm2) when compared with 

control responses of 28.72 ± 3.5 µA/cm2 (peak I
sc
, P , 0.05, 
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unpaired t-test, n = 3, Figure 2C). Furosemide, a blocker of 

the NKCC cotransporter located on the basolateral mem-

brane, exerted little effect on inhibition of the short-circuit 

current caused by N20 in the presence of diphenylamine-2-

carboxylate (Figure 2C).

Nanoparticles activate K+ channels  
in Calu-3 cells
Observations made in previous experiments (Figure 2C) 

which showed that N20 was capable of increasing the 

short-circuit current in the presence of a blocked CFTR and 

also that furosemide had minimal effect on the blocking of 

short- circuit current in the presence of diphenylamine-2-

 carboxylate, suggested that N20 in addition to CFTR has other 

ion channel and/or cotransporter targets. Thus, we began to 

investigate the interactions between basolateral K+ channels 

and nanoparticles, because these channels can also act as a 

driving force for anion secretion in Calu-3 cells.

Nystatin was used to permeabilize the apical mem-

brane in the presence of an established transepithelial 

ion gradient to measure K+ currents. In our experiments, 

permeabilization of the apical membrane with nystatin 

180 µg/mL led to an increase in the short-circuit current 

of 97.3 ± 13.4 µA/cm2. N20 10 µg/mL apical, activated 

K+ current in Calu-3 cells by a further 56.2 ± 6.7 µA/cm2 

(Figure 3A). The activation of K+ currents by N20 was 

inhibited by XE991, a potent and selective inhibitor of 

K+ channels,23 with an average reduction in the short-circuit 

current of 57.6 ± 9.0 µA/cm2.

To investigate if this effect of nanoparticles on 

K+ channels was cAMP-dependent, Calu-3 cells were 

pretreated with forskolin 10 µM both sides. Forskolin 

increased the short-circuit current by 39.3 ± 9.2 µA/cm2 

and abolished the effects of N20 10 µg/mL on K+ currents 

(Figure 3B). Moreover, forskolin-induced activation of 

K+ channels was XE991-sensitive, decreasing the short-

circuit current by 114.2 ± 17.6 µA/cm2, thus again show-

ing that N20 activates K+ currents in a cAMP-dependent 

manner (Figure 3B). Further confirmation that N20 acts 

through the cAMP-pathway came from data showing that 

N20-activated K+ currents in Calu-3 cells were not sensi-

tive to clotrimazole, a known inhibitor of Ca2+-regulated 

K+ channels (Figure 3C).

Anion substitution studies
In airway epithelial cells such as Calu-3, the primary baso-

lateral entry pathways for Cl- and HCO
3

- anions are through 

the NKCC and Na+-HCO
3

- cotransporters, respectively. 

Both anions have been shown to leave the cell via CFTR 

Cl- channels. We wanted to examine if either one of these 

two anions (Cl- or HCO
3

-) is preferentially secreted by 

Calu-3 cells upon stimulation by N20. In these experiments, 

we decided to use forskolin short-circuit current responses 

as a point for comparison with N20-induced short-circuit 

current responses.

When we compared the responses of forskolin and N20 on 

the short-circuit current in normal Krebs–Henseleit solution, 

we found no significant differences between their stimula-

tion of short-circuit current; 36.3 ± 1.5 vs 29.8 ± 4.8 µA/

cm2, respectively (peak I
sc
, P . 0.05, n = 3). However, when 

we compared the response of N20 (11.7 ± 2.0 µA/cm2) on 

short-circuit current under conditions free of HCO
3
- with that 

60 40
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20

0
0 2 4 6 0 2 3 4

A B
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m
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Figure 1 Concentration-response curves for short-circuit current activation by N20 in Calu-3 cells. A) Peak eC50 = 1457 ng/mL and a Hill coefficient of 0.52 ± 0.035 (n = 4). 
B) Plateau eC50 = 315.5 ng/mL and a Hill coefficient of 0.54 ± 0.045 (n = 4).
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of forskolin (35.7 ± 8.8 µA/cm2) under the same conditions, 

we found a significant decrease in N20-induced short-circuit 

current responses (peak I
sc
, P , 0.05, n = 4). Similarly, we 

observed a reduction in N20-induced short-circuit current 

responses under low Cl- conditions (26.1 ± 3.5 µA/cm2) when 

compared with forskolin (58.8 ± 0.7 µA/cm2, peak I
sc
, P , 0.05, 

n = 4). A summary of these results is shown in Figure 4. In 

all experiments, the addition of diphenylamine-2-carboxylate 

1 mM apical reduced the activated short-circuit current to 

baseline levels (data not shown).

For each set of experiments carried out using either 

normal KH, HCO
3
- free, or low Cl- solutions, the ratio for 

the N20-activated short-circuit current as a factor of the 

forskolin-activated short-circuit current was calculated (N20-

induced short-circuit current/forskolin induced short-circuit 

current). The ratio value under normal Krebs–Henseleit 

solution conditions was found to be 0.82 ± 0.1. The ratio 

value we obtained under HCO
3
- free and low Cl- conditions 
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Figure 2 The effect of N20 on transepithelial anion secretion in Calu-3 cells. A) Activation of the short-circuit current by N20 10 µg/mL apical. Forskolin 10 µM both sides 
further increased short-circuit current in N20 pretreated cells. B) Activation of the short-circuit current by N20 was significantly reduced when cells had been prestimulated 
with forskolin. C) Pretreatment of cells with diphenylamine-2-carboxylate 1 mM apical reduced the effects of N20. Furosemide 1 mM basolaterally inhibited the effect of N20 
on the short-circuit current. D) statistical analysis of the effects of N20 on the short-circuit current in the presence and absence of forskolin. 
Note: *P , 0.05 (n = 3, one-way analysis of variance).

was 0.32 ± 0.06 and 0.42 ± 0.08, respectively. Therefore, 

N20-induced short-circuit current responses are dependent 

on both HCO
3

- and Cl- transport by airway cells.

Nanoparticles affect Ca2+-mediated anion 
secretion in Calu-3 cells
In these studies, we used carbachol and thapsigargin (an 

endoplasmic reticulum Ca2+-ATPase inhibitor), both known 

agonists of Ca2+-dependent signaling, to probe the actions 

of nanoparticles on Ca2+-mediated short-circuit current 

responses in Calu-3 cells. Carbachol, a cholinergic agonist 

which causes the release of Ca2+ ions from intracellular 

stores (100 µM basolateral), increased short-circuit current 

by 12.4 ± 0.6 µA/cm2 (peak I
sc
, data not shown). The sub-

sequent addition of N20 10 µg/mL apical further increased 

the short-circuit current by 57.3 ± 1.8 µA/cm2 (peak I
sc
), and 

this effect was blocked by BaCl
2
 5 mM, basolateral a blocker 

of K+ channels, by 30.8 ± 1.0 µA/cm2 (data not shown). 
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On the other hand, in the absence of carbachol, N20 activated 

the short-circuit current by 37.9 ± 5.8 µA/cm2 (peak I
sc
, 

Figure 5A). Furthermore, the addition of carbachol after 

N20 significantly increased the short-circuit current by 

123 ± 22.6 µA/cm2 (peak I
sc

, Figure 5A). As expected, 

BaCl
2
 5 mM, basolateral reduced the short-circuit current by 

29.7 ± 3.8 µA/cm2 (Figure 5A). A summary of the statistical 

analysis is shown in Figure 5B.

To elucidate further the mechanisms by which N20 syner-

gistically increased short-circuit current responses in the pres-

ence of carbachol, we used thapsigargin to investigate if N20 

was affecting Ca2+-dependent cell signaling directly via the 

involvement of intracellular Ca2+ stores. Thapsigargin 1 µM 

bilaterally was found to increase the short-circuit current 

by 16.5 ± 3.6 µA/cm2 in Calu-3 cells (peak I
sc
,  Figure 5C). 

The subsequent addition of N20 10 µg/mL apical further 

increased the short-circuit current by 53.5 ± 5.2 µA/cm2 

(peak I
sc
, Figure 5C) and this effect was blocked by furo-

semide 1 mM basolateral, decreasing the stimulated short-

circuit current by 44.5 ± 4.8 µA/cm2, and BaCl
2
 5 mM 

basolateral transiently reduced the short-circuit current by 

a further 13.3 ± 0.5 µA/cm2. In the absence of thapsigargin, 

N20 activated the short-circuit current by 49.4 ± 3.4 µA/cm2 

(peak I
sc
, Figure 5D). Furthermore, the addition of thapsi-

gargin after N20 increased the short-circuit current by 

65.8 ± 3.6 µA/cm2 (peak I
sc
, Figure 5D). Furosemide 1 mM 

basolateral and BaCl
2
 5 mM basolateral both reduced the 

short-circuit current by 49.4 ± 11.4 and 10.5 ± 0.1 µA/cm2, 

respectively (Figure D). The statistical analysis of results in 

Figures 5C–5D is shown in Figure 5E. Overall, these results 

indicate that N20 can act upon Ca2+-dependent cell signaling 

to drive anion secretion, and that intracellular calcium stores 

may be the source of this cation in Calu-3 cells.

Nanoparticles affect soluble guanylyl 
cyclase-cgMP cell signaling involved in 
anion secretion
The nitric oxide-soluble guanylyl cyclase-cGMP pathway 

is an important pathway for anion secretion in respiratory 

cells.20,24 Therefore, we wanted to investigate the effect 
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of N20 on the short-circuit current in the presence and 

absence of the nitric oxide donor, S-nitrosoglutathione. In 

the absence of S-nitrosoglutathione, N20 10 µg/mL apical 

activated the short-circuit current by 11.8 ± 3.3 µA/cm2 

(peak I
sc
). In the presence of S-nitrosoglutathione 100 µM 

both sides, N20 increased the short-circuit current by only 

2.4 ± 0.7 µA/cm2 (peak I
sc
, data not shown). S-nitrosoglu-

tathione-induced short-circuit current responses (peak I
sc
), 

in the presence and absence of N20, were 39.1 ± 1.6 and 

26.1 ± 2.5 µA/cm2, respectively. These responses were 

found to be significantly different from each other (peak I
sc
, 

P , 0.05, n = 3, data not shown).

Next, we examined the response of N20 in the presence 

of L-NAME, a nitric oxide synthase inhibitor which inhibits 

the generation of endogenous nitric oxide. The application 

of L-NAME 1 mM both sides caused a transient reduction 

in the basal short-circuit current (Figure 6A). The subse-

quent addition of N20 10 µg/mL apical increased the short-

circuit current by 9.4 ± 1.2 µA/cm2. Finally, the addition of 

diphenylamine-2-carboxylate 1 mM apical and BaCl
2
 5 mM 

basolateral reduced the short-circuit current by 6.6 ± 0.4 and 

1.3 ± 0.4 µA/cm2, respectively (Figure 6A). This increase 

in short-circuit current as a result of N20 was found not to 

be significantly different from the effects detected in the 

absence of L-NAME (control, P . 0.05, unpaired t-test, 

n = 3). In controls, the short-circuit current was inhibited 

by the addition of diphenylamine-2-carboxylate 1 mM 

apical (5.4 ± 0.2 µA/cm2) and BaCl
2
 5 mM basolateral 

(1.01 ± 0.3 µA/cm2, Figure 6A).

The effects of nitric oxide on short-circuit current in 

Calu-3 cells are known to be mediated by the activation 

of soluble guanylyl cyclase enzymes through increases in 

cGMP.20,25 To determine whether this pathway was involved in 

short-circuit current activation by N20, Calu-3 cells were pre-

treated with a selective inhibitor of soluble guanylyl cyclase, 

ODQ 10 µM both sides. ODQ caused a transient reduction in 

short-circuit current and prevented the activation of the short-

circuit current by N20 10 µg/mL apical (P , 0.05, unpaired 

t-test, n = 3, Figure 6B). As expected, the short-circuit current 

was inhibited by the addition of diphenylamine-2-carboxylate 

1 mM apical (6.9 ± 1.8 µA/cm2) and BaCl
2
 5 mM basolateral 

(3.1 ± 0.5 µA/cm2,  Figure 6B). These results indicate that 

soluble guanylyl cyclase and downstream cGMP signaling 

plays a crucial role in N20-mediated short-circuit current 

activation in Calu-3 cells.

excised inside-out patch clamp 
recordings of N20-stimulated CFTr 
activity
Figure 7A shows that the addition of N20 50 µg/mL to the 

bath of the membrane patch activated CFTR Cl- channels 

with a Po value of 0.22 ± 0.031 (n = 3). The channel activity 

could be blocked by 500 µM Au(CN)
2

-, ie, a blocker of the 

CFTR channel. Figure 7B shows the stimulation of CFTR 

channels by 20 nM protein kinase A and 1 mM MgATP. The 

subsequent addition of N20 50 µg/mL to the bath further 

increased the channel activity. In other studies, stimulation 

of the cAMP pathway by protein kinase A/MgATP resulted 

in the activation of CFTR channels with P
o
 = 0.07 ± 0.05 

(n = 3). Subsequent addition of N20 50 µg/mL to the bath 

further increased CFTR activity to P
o
 = 0.34 ± 0.09 (P , 0.05, 

paired t-test, n = 3). Control baby hamster kidney cell patches 

lacking expression of wild-type CFTR Cl- channels showed 

no response when stimulated with N20 50 µg/mL (data not 

shown).

Discussion
We investigated a hypothesis that polystyrene nanoparticles 

have the ability to act as modulators of ion channel function 

in human airway epithelial cells. The main novel findings 

of this study were that acute exposure of epithelial cells to 

N20 led to the activation of transepithelial anion transport, 

an effect inhibited by diphenylamine-2-carboxylate, a CFTR 

Cl- channel blocker. The effectiveness of N20 to activate 

CFTR Cl- channels was comparable with that of the cAMP 

elevating agonist, forskolin. N20 activated cAMP-dependent 

basolateral K+ channels and affected three distinct cell sig-

naling systems concerned with ion channel activation in 

respiratory cells, ie, the cAMP, Ca2+, and soluble guanylyl 
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cyclase-cGMP pathways. Our patch clamp studies also show 

the direct activation of single CFTR Cl- channels by N20.

We know that nanoparticle characteristics, including size, 

surface modification, and charge, are major factors influenc-

ing biological interactions with nanomaterials. Such charac-

teristics can exert a profound effect on respiratory tissues, 

and thus be an important criterion for short-circuit current 

activation in Calu-3 cells. Nanoparticle surface modifications 

could influence the affinity of N20 to the plasma membrane. 

Wang et al examined the effects of polystyrene nanoparticles 

on single-component phospholipid bilayers using fluores-

cence and calorimetry experiments after mixing together 

either positively or negatively charged nanoparticles of 

approximately 20 nm in size in suspension with liposomes.26 
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The findings of their study showed that there was surface 

reconstruction where the nanoparticles absorbed onto the 

bilayer membrane, with negatively charged nanoparticles 

inducing local gelation in fluid bilayers and positively charged 

nanoparticles inducing gelled membranes to fluid locally.26 

In 2010, Yang and Ning investigated the interactions between 

charged nanoparticles (positive, negative, and uncharged) and 

charge-neutral phospholipid membranes by coarse-grained 

molecular dynamic simulations.27 Their results were dis-

cussed in terms of free energy, entropy, and enthalpy, where 

they describe an energy barrier existing between lipids and 

charged nanoparticles. They concluded that electrostatic 

attractions help to improve the adhesion of charged nano-

particles to phospholipid membranes, and that increases in 

electrostatic energy can result in charged nanoparticles being 

almost fully wrapped by membrane.27 Chen et al showed 

using whole cell patches that cationic nanoparticles working 

at noncytotoxic concentrations can cause nanoscale defects 

in the plasma membrane of human embryonic kidney and 

human epidermoid carcinoma cells.28 Thus, membrane fluid-

ity may be affected by nanoparticle charge.

Polystyrene nanoparticles have been shown specifically 

to affect processes and membrane structure dynamics on 

airway epithelial cells. Salomon and Ehrhardt showed that 

small carboxylated and sulfated polystyrene nanoparticles 

reduced P glycoprotein-mediated effluxes of Rh123 from 

alveolar airway cells, A549.18 They hypothesized that this 

effect was due to the direct interaction and interference of 

polystyrene nanoparticles with P glycoprotein function. 

Brandenberger et al29 exposed human pulmonary epithelial 

cells to fluorescent polystyrene nanospheres (41 nm) with-

out surface charge modifications. They found that these 

particles induced changes in the apical plasma membrane 

surface area as measured by design-based stereology. They 

concluded that this observed enlargement was dependent 

on particle surface area dose.29 Interestingly, our own data 

show that short-circuit current activation by N20, working 

at noncytotoxic concentrations, occurs in a concentration-

dependent manner in Calu-3 cells. Therefore, nanoparticle–

membrane interactions with  subsequent secondary activation 
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of cell signaling pathways may play an important role in our 

observed effects.

We found that the effects of N20 on CFTR-driven short-

circuit current responses in Calu-3 cells were abolished by 

ODQ, a selective inhibitor of soluble guanylyl cyclase,30 

implicating the soluble guanylyl cyclase-cGMP pathway 

and cGMP-dependent phosphorylation of CFTR Cl- chan-

nels in the actions of N20. Pretreatment of epithelial cells 

with an inhibitor of nitric oxide synthase, ie, l-NAME, did 

not modify the activator effects of N20. Because nitric oxide 

synthase is present and active in Calu-3 cells regulating 

anion secretion,20 these data together indicate that soluble 

guanylyl cyclase, but not nitric oxide synthase-dependent 

responses, are targeted by N20. Our experiments using 

agonists of adenylate (forskolin) and guanylyl (S-nitroso-

glutathione) cyclase showed that prestimulation of either 

system largely abolishes the effects of the nanoparticles. 

Similarly, the inhibition of soluble guanylyl cyclase by 

ODQ abolished nanoparticle-driven short-circuit current 

responses.

There are a number of levels where the cAMP and 

cGMP systems can cross-talk with each other. This includes 

activation of respective protein kinases (A and G) involved 

in channel gating, as well as cGMP-mediated inhibition of 

cAMP breakdown by the family of phosphodiesterases.31 In 

turn, nanoparticle-stimulated increases in cyclic nucleotide 

levels will increase protein kinase-controlled protein phos-

phorylation and the subsequent phosphorylation of sites on 

the regulatory domain of CFTR Cl- channels, which in turn 

will facilitate the exit of Cl- through apically located CFTR 

Cl- channels, an effect supported by an increased bioavail-

ability of Ca2+.20,32

Other groups have also found that nanomaterials can 

affect Ca2+ and cAMP-signaling systems in neuronal and 

fibroblast cell models. Tang et al showed that nanoparticles 

can affect intracellular Ca2+ levels in mammalian cells.33 They 

demonstrated that unmodified cadmium selenium quantum 

dots elevate cytoplasmic calcium levels in primary cultures 

of rat hippocampal neurons. The mechanism for this activa-

tion is still unknown, although the group did identify that the 

increase in cytoplasmic calcium involved both extracellular 

Ca2+ influx and internal Ca2+ release. Also, extracellular 

influx of Ca2+ could only be partially inhibited by a Ca2+ 

channel antagonist (eg, verapamil), whereas internal Ca2+ 

release was abolished by treatment of cells with clonazepam, 

a specific inhibitor of mitochondrial Na+-K+ exchangers, and 

with antrolene, an antagonist of ryanodine receptors in the 

endoplasmic reticulum.33

Many research groups are interested in the manipulation 

of magnetic nanoparticles, such as magnetic tweezers or 

ligand-coated magnetic nanoparticles which are capable of 

mechanical activation of cell receptors.34 Magnetic particles 

used to investigate mechanotransduction, such as integrin-

bound collagen-coated ferric oxide beads, have revealed that 

tension applied on human fibroblasts can cause Ca2+ spikes 

which can modulate cellular functions.35 Meyer et al, using 

suspended bovine endothelial cells and a magnetic twisting 

device demonstrated that, when a controlled twisting (shear) 

stress of 15.6 dyne per cm-2 was applied to ligand-coated 

magnetic microbeads in contact with these cells, cAMP 

production was increased due to adenylyl cyclase activation.36 

Thus, the literature shows that mechanical stress applied to 

the cell surface can alter both Ca2+ and cAMP signaling.

N20 had distinct targets other than CFTR Cl- channels. 

K+ ions are recycled across the basolateral membrane by 

K+ channels which work to maintain the negative potential 

difference of the cell interior. The opening of basolateral K+ 

channels in epithelial cells is an important process for anion 

secretion because it causes the cell to become hyperpolarized 

which, in turn, increases the electrical gradient for Cl- ions to 

exit across the apical surface of the epithelium.37 Our studies 

show that N20 can also activate cAMP-dependent basolateral 

K+ channels. The evidence for this comes from experiments 

which show that N20-activated K+ currents were inhibited by 

XE991, an inhibitor of cAMP-sensitive basolateral K+ chan-

nels, and that the effects of N20 on basolateral K+ currents 

were abolished by pretreating cells with forskolin. It is likely 

that stimulation of cAMP, along with significant cross-talk 

between membrane systems,38 can lead to indirect activation 

of cAMP-regulated K+ channels upon apical exposure of 

Calu-3 cells to N20.

The NKCC1 cotransporter isoform is expressed on the 

basolateral membrane of secretory epithelia, where it acts 

in concert with other transporters and ion channels, such 

as CFTR, basolateral K+ channels, and Na+-K+ pumps, to 

produce transepithelial Cl- secretion. NKCC is expressed 

on virtually all mammalian cells, where it functions to main-

tain cell volume.39 The observed effects of N20 on Cl- and 

HCO
3

- transport are most likely indirect consequences of 

short-circuit current activation, eg, the NKCC cotransporter 

is activated to restore intracellular chloride levels due to the 

efflux of Cl- from cells by activated CFTR Cl- channels and, 

in turn, HCO
3

- transport is more likely linked to the activa-

tion of basolateral K+ channels.37 Finally, the cyclic forsko-

lin response observed after stimulation of cells with N20 

(Figure 2A) could be the result of Cl- bursts out of the cell 
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due to the unsynchronized effects of NKCC  cotransporters 

and CFTR Cl- channels working to restore depleted intracel-

lular chloride levels.

We used the inside-out configuration of the patch clamp 

technique because it allowed us to study the interaction 

of nanoparticles with the intracellular domains of CFTR 

Cl- channels. No other research group to our knowledge has 

investigated the effect of nanoparticles on ion channel func-

tion using this configuration of the technique. In 2009, Zhao 

et al showed using the whole cell patch clamp technique that 

zinc nanoparticles enhanced the current amplitudes of sodium 

and potassium by a mechanism mainly relying on increasing 

the opening number of sodium channels and delaying rectifier 

potassium channels.40 Overall, that study showed that zinc 

nanoparticles have the ability to affect ionic homeostasis and 

physiological processes in rat hippocampal CA3 pyramidal 

neurons. We have shown in baby hamster kidney cells that 

N20 can directly activate CFTR Cl- channels both in the 

presence and absence of ATP and protein kinase A. Studies 

using nucleotide binding domain mutants of CFTR Cl- chan-

nels, such as G551D and G1349D, demonstrate that most 

CFTR activators have decreased affinity for activating mutant 

CFTR Cl- channels.41 Therefore, putative binding sites 

on the nucleotide-binding domains of CFTR Cl- channels 

are proposed to be target(s) for many CFTR activators.42,43 

However, our data indicate that the primary mechanism of 

single CFTR Cl- channel activation by N20 may not involve 

the nucleotide-binding domains or regulatory domain of 

CFTR, because these sites have been previously stimulated 

by ATP and protein kinase A. Therefore, we cannot rule out 

the possibility that N20 may in some way influence structural 

changes in the transmembrane domains of CFTR Cl- chan-

nels, resulting in channel activation.

Altogether, our data demonstrate that polystyrene nanopar-

ticles can affect processes at the plasma membrane on airway 

epithelial cells specifically with regard to ion channel function 

and ionic homeostasis. Furthermore, once inside airway cells, 

our patch clamp data demonstrate that polystyrene nanopar-

ticles could potentially affect CFTR Cl- channel function 

directly. This is an exciting observation because it gives us an 

insight as to how nanoparticles might behave once inside the 

cell. More experimental data is needed to clarify the precise 

sequence of molecular events following the exposure of epi-

thelial cells to nanoparticles and also the interesting data that 

reveal the selectivity for the stimulation of cAMP-regulated 

K+ channels in comparison with Ca2+-regulated ones on the 

basolateral membrane. Finally, experimental validation with 

regard to other nanoparticle types, eg, silica, titanium, and zinc, 

would have to be done in future studies to establish if NP 

composition is an important factor underlying the ability of 

polystyrene nanoparticles to activate CFTR Cl- channels and 

affect ion transport in airway epithelial cells.

Conclusion
Our studies demonstrate that polystyrene nanoparticles 

cannot be considered as a simple neutral vehicle for drug 

delivery. Polystyrene nanoparticles in the respiratory system 

may influence cell signaling systems (cyclic nucleotide and 

calcium) as a result of nanoparticle-membrane  interactions. 

Finally, after endocytosis by epithelial cells lining the air-

ways, polystyrene nanoparticles have the potential to interact 

directly with ion channels such as CFTR.
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