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Background: Helicases have been classified as a class of enzymes that determine the stability of the cellular genome. There is 
growing evidence that helicases can help tumor cells resist drug killing by repairing Deoxyribose Nucleic Acid (DNA) or stabilizing 
transcription, which may contribute to the understanding of drug resistance. Currently, identifying cancer biomarkers among helicases 
and stratifying patients according to helicase activity will be able to guide treatment well.
Methods: We clustered 371 hepatocellular carcinoma (HCC) patients from The Cancer Genome Atlas (TCGA) by consensus 
clustering based on helicase expression profiles to identify potential molecular subtypes. The Multiscale Embedded Gene Co- 
Expression Network Analysis (MEGENA) algorithm was used to find core differential gene modules between different molecular 
subtypes, and single-cell analysis was utlized to explore the potential function of hub gene. Immunohistochemical (IHC) staining was 
used to verify the diagnostic value of DDX56 and its ability to reflect the proliferation efficiency of cancer cells.
Results: We identified two subtypes associated with helicase. High helicase subtype was associated with poor clinical outcome, 
massive M0 macrophage infiltration, and highly active cell proliferation features. In addition, we identified a new biomarker, DDX56, 
which has not been reported in HCC, was highly expressed in HCC tissues, associated with poor prognosis, and was also shown to be 
associated with high cell proliferative activity.
Conclusion: In conclusion, based on helicase expression profiles, we have developed a new classification system for HCC, which is 
a proliferation-related system, and has clinical significance in evaluating prognosis and treating HCC patients, including immunother-
apy and chemotherapy. In addition, we identified a new biomarker, DDX 56, which is overexpressed in HCC tissues, predicts a poor 
prognosis and is a validated index of tumor cell proliferation.
Keywords: helicases, hepatocellular carcinoma, DDX56, bioinformatics

Introduction
The most common and lethal type of primary liver cancer is hepatocellular carcinoma (HCC), which accounts for approxi-
mately 75% to 90% of all cases and is followed by cholangiocarcinoma.1–3 HCC is now the third leading cause of cancer- 
caused death worldwide, placing a heavy economic burden on healthcare systems and demonstrating that HCC is a major 
health problem.4 Although classical treatment strategies based on clinical risk stratification are currently widely used in the 
clinic, the effect of these strategies on improving the prognosis of HCC patients was recently challenged.5,6 With the 
development of precision medicine based on molecular diagnosis and treatment, more and more attention is being focused 
on providing individualized treatment strategies for patients, especially on the discovery of new stratification methods and 
biomarkers.7–9
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Recent studies have shown that there are close direct interactions between helicases and several nuclear proteins that 
maintain chromosome stability and are potentially important in cancer susceptibility.10 As a key enzyme that determines cell 
division as well as nuclear transcription, helicases are easily associated with a unique and crucial role in DNA damage 
response, DNA repair and maintenance of genomic stability.11 Considering that selective inactivation of DNA repair pathways 
can affect the efficacy of antitumor therapy, selective killing of cancer cells through inactivation of the resolvase-dependent 
biological pathway using means that regulate helicase expression or function is a feasible strategy.12,13 Overexpression of 
DDX1 has been proved to be an independent prognostic indicator of early recurrence of breast cancer.14 In addition, it has been 
shown that high levels of DDX3 are associated with poor prognosis in gallbladder and breast cancers.15,16 In contrast, there is 
little knowledge of the biological processes involved in DDX56 in cancer species. Only recently, the expression of DDX56 has 
been proved to be related to lymphatic invasion and distant metastasis in colorectal cancer,17 and it is frequently up-regulated 
in tumor tissue and osteosarcoma cell lines.18 DDX56 may be related to the early recurrence of squamous cell lung cancer, 
involving transduction of the Wnt signal pathway,19 which indicates the potential carcinogenic effect of DDX56 in cancer.

In this study, we aim to develop a helicase-related stratification strategy to predict the immune microenvironment, 
prognosis and response to immunotherapy in HCC and to further search for valuable diagnostic and prognostic markers. 
In the future, this work could help physicians make important judgments about diagnosis and treatment.

Materials and Methods
Reagents
All reagents and antibodies involved in this study are listed in the Supplementary Materials (Supplementary Table S1). 
The concentrations of antibodies used are based on those used in previous studies or as recommended by the relevant 
manufacturer. Specific experimental procedures were included in the Supplementary Materials.

The Research Flowchart
The research flowchart demonstrated our study design (Figure 1).

Clinical Sample Collection and Immunohistochemical (IHC) Staining
This study was conducted in accordance with the Declaration of Helsinki and approved by the ethics committee of the 
Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine (Ethics Approval No.2022-03-14). 
Written informed consent was obtained from all patients. Inclusion/exclusion criteria for participants were provided in 
the Supplementary Material. Immunohistochemical Staining procedures and H-scoring methods have been previously 
described.20,21 The detailed description was also included in Supplementary Materials.

Cell Culture and Western Blotting
Five human HCC cell lines were used in this study. Those human hepatocarcinoma cell lines (SNU-182/SNU-387/ 
HepG2/Huh7/SK-Hep-1) came from a single supplier, Wuhan Pu-nuo-sai Life Technology Co. Ltd. (Wuhan, China). 
They were cultivated in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum 
(FBS). All the cells were maintained in a humidified 5% CO2 atmosphere at 37°C. The Western blotting protocol was 
consistent with previous studies.22 The detailed description is shown in Supplementary Materials.

Public Datasets
The RNA-seq transcriptome information and matching clinical data of 374 Liver hepatocellular carcinoma (LIHC) 
patients and 50 normal control samples were acquired from TCGA portal website.23 To ensure the reproducibility of the 
analysis results, independent datasets were downloaded from the Gene Expression Omnibus (GEO) database,24 where 
GSE14520 (n = 220) was used for independent clustering, and GSE36376 (n = 433) and GSE102079 (n = 257) datasets 
were used for validation of the differential expression analysis results. The single-cell RNA data included in this study 
were obtained based on a previous HCC study (GSE125449).25
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Consensus Clustering
The “ConcensusClusterPlus” R package was conducted to perform consensus clustering to stratify HCC patients based 
on helicases.26 The ideal cluster numbers between k = 2–6 was then assessed, and this procedure was repeated 1000 times 
to guarantee stability.

Identification of Differentially Expressed Genes in HCC
The differentially expressed genes (DEGs) were obtained by “Limma” package.27 DEGs with an absolute log2 fold 
change (FC) >2 and an adjusted P value of <0.05 were considered with statistical significance, and then were used for 
subsequent analysis.

Enrichment Analysis
The “clusterProfiler” package was used for the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis.28,29 In addition, the gene set enrichment analysis (GSEA)-based differential signaling 
pathways were also obtained by “Limma” package,30 and the Hallmark gene set data resource derived from the 
Molecular Signatures Database-MsigDB (www.broadinstitute.org/gsea/msigdb) was downloaded as a background set. 
P < 0.05 was defined as significant enrichment.

Immune Analysis
CIBERSORT was used to quantify the level of infiltration of different immune cells in HCC, and tumor immune 
dysfunction and exclusion (TIDE) score was calculated to predict the potential immune checkpoint (ICB) blockade 
response in patients with HCC.31

Figure 1 The flow chart showing the scheme of our study for hepatocellular carcinoma.
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Construction of Co-Expression Networks
The “multiscale embedded gene co-expression network analysis (MEGENA)” package in R software was conducted to 
identify a co-expression network.32 As an recently developed co-expression module analysis method, MEGENA offers 
unique advantages over traditional co-expression analysis tools in efficiently constructing large-scale co-expression plane 
filtering networks and preserving gene interactions.32 Specifically, fast planar filtered network (PFN) construction is the 
first step of MEGENA analysis, then significant gene pairs in PFN were obtained computationally, and finally the 
constructed PFNs are aggregated into multiscale clustering analysis (MCA) for subsequent analysis.33

We extracted the largest gene module from the co-expression network and converted them into a format readable by 
Cytoscape software for final analysis as well as visualization.34 Degree values were calculated and used to rank the genes 
in the module to identify potential hub genes.

Single Cell Analysis
Seurat (Version 3) (http://satijalab.org/seurat/) was used to process raw gene expression matrices. The filtering thresholds 
are set as follows: 1) Genes expressed in at least three cells. 2) Cells contain 500–6000 features. 3) Mitochondrial genes 
in cells are less than 20%. The highly variable genes (HVGs) were identified with “FindVariableFeatures” function. 
Principal component analysis (PCA) was conducted to determine the principal components suitable for subsequent 
analysis,35 and uniform manifold approximation and projection (UMAP) was carried out to visualize the clusters.36 The 
“FindAllMarkers” function was applied to find marker genes for each cell cluster. Clusters were annotated to known cell 
types by “singleR” package according to well-known marker genes.

GSCA Database
GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/) was used to analyze expression, DNA methylation, CNV 
(copy number variation), and drug sensitivity about helicases. The degree of helicase activation or inhibition of the 
cancer-related pathways was also analyzed.

Rusults
The Genetic Characteristics and Transcriptional Variations of 112 Helicases
Basic information and list of all helicases was obtained from the Human Genome Organization (HUGO) portal,37 and 112 
helicases mainly include DNA helicase and RNA helicase. In order to observe the genetic variation of helicase molecules in 
cancer, we showed somatic mutations of 10 molecules with the highest mutation frequency in cancer tissues according to 
TCGA pan-cancer data. Among 4798 samples, 2125 samples carry helicases molecular mutation, with a frequency of 
44.29%. In all helicases, ATRX showed the highest mutation frequency (Figure 2A). Genetic variation was further confirmed 
to be an important factor that affects the expression of the helicases. For most helicases, there is a positive correlation 
between CNV and mRNA expression levels, while methylation and mRNA expression levels showed opposite trends 
(Figure 2B and C). Besides, we found that different helicases have very different prognostic significance in different cancer 
types (Figure S1). In the TCGA-LIHC dataset, we observed extensive and significant co-mutations between helicase 
molecules (Figure 2D). Among 363 samples, 176 samples had mutated helicase molecules, at a frequency of 48.48%. 
Among the 176 samples, DHX9 had the highest mutation frequency of up to 3% (Figure 2E), mainly missense mutation.

Two Different Helicases Level Patterns Identified by Unsupervised Learning
To fully understand the role of helicase in LIHC, we used consensus clustering to identify two unique modification 
patterns of LIHC associated with helicase. To fully understand the role of helicase in LIHC, we used consensus clustering 
to identify two unique modification patterns of LIHC associated with helicases, called Cluster 1 (C1) and Cluster (C2) 
(Figure 3A–C). Principal component analysis confirmed that these two clusters could be accurately distinguished by 
helicase expression profiles (Figure 3D). Overall, C2 showed high helicase expression levels, indicating a high-helicase 
subtype. In contrast, C1 showed low expression levels, indicating a low-helicase subtype (Figure 3E). In addition, 
survival analysis showed that the 2 helicase-based subtypes presented different clinical outcomes, with C1 having a poor 
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Figure 2 Expression variation of helicase molecules. (A) The waterfall diagram shows the somatic mutations of the 10 helicases with the highest mutation frequency in pan- 
cancer. Here, 44.29% is the proportion of 2125 samples with at least one mutation of the top 10 genes among 4798 samples with at least one mutation of 112 helicases. The 
percentage figure of each line on the right of the picture is the number of samples with the corresponding gene mutation divided by 4798 samples with at least one mutation 
among the 112 helicases. (B) The bubble chart shows the correlation between CNV of the 112 helicases and mRNA expression level. Red indicates positive correlation; blue 
indicates negative correlation. The deeper color indicates a larger correlation index. The bubble size indicates the FDR. (C) The bubble chart shows the correlation between 
methylation of the 112 helicases and mRNA expression. Red shows a positive correlation and blue shows a negative correlation. The darker color indicates a larger 
correlation index. Bubble size indicates the FDR. (D) Mutation characteristics of the 112 helicases in 374 patients with bladder cancer in the TCGA-LIHC cohort; green 
indicates co-mutation, the asterisk indicates P-value (P < 0.05, *P < 0.1). (E) Mutation frequency of 112 helicases in 374 patients in the TCGA-LIHC cohort. Each column 
represents an individual patient. The small figure above shows the TMB, the number on the right shows the mutation frequency of each regulator, and the figure on the right 
shows the proportion of each variant.
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Figure 3 (A) Heatmap depicts consensus clustering solution (k = 2) for 112 helicases in 374 LIHC samples; (B) Delta area curve of consensus clustering indicates the 
relative change in area under the cumulative distribution function (CDF) curve for k = 2–6. (C) The consensus score matrix of all samples when k = 2–6. (D) The PCA 
distribution of TCGA-LIHC cases by expression profile of helicases. Each point represents a single sample; different colors and shapes represent the C1 and C2 subtypes, 
respectively. (E) Heatmap of 112 helicases expressions in different subtypes. Red represents high expression and blue represents low expression. (F–H) Kaplan–Meier 
curves of OS (F), DSS (G), DFS (H) in C1 and C2 (TCGA-LIHC, n = 374). Log rank test was performed. (I) Relationship between two subtypes and the clinicopathological 
parameters, including gender, T, N, and M stage, pathological stage, and tumor grade (TCGA-LIHC, n = 374, *P < 0.05). (J) Oncoplot displaying mutation profile of a union 
set of the top 20 genes with highest mutation frequency in C1 and C2, respectively. (K and L) Graphs showing mutually exclusive and co-occurrence of mutational events in 
C1(K) and C2 (L), respectively (·P < 0.05, *P < 0.1). (M) Differential TIDE score between C1 and C2 (TCGA-LIHC, n = 374, **P < 0.1). Wilcoxon test was performed.
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prognosis and C2 having a favorable clinical outcome (Figure 3F, OS, P = 0.0205; Figure 3G, DSS, P = 0.0162; 
Figure 3H, disease-free survival (DFS), P = 0.134). The analysis procedure for GSE14520 was identical to TCGA-LIHC 
cohort (Figure S2). Interestingly, we observed a higher proportion of patients with advanced stage in C1 than in C2, 
especially in terms of T stage and pathological stage (P < 0.05, Figure 3I). We subsequently compare the difference in 
mutation frequency between the two subtypes and noted that TP53 was mutated much more frequently in C1 than in C2 
(Figure 3J), implying that C1 has higher genomic instability. In addition, we found more mutational co-occurrence in C1, 
such as RYR1 and RYR2 mutations (Figure 3K), while in C2, most mutational events were relatively independent and did 
not interact with each other (Figure 3L).

Finally, we analyzed the effect of helicases on tumor immune microenvironments. We use CIBERSORT to calculate 
the level of immune cell infiltration in LIHC samples using RNA-sequencing data. There was a higher quantity of M0 
macrophage in C1 than in C2 (Figure S3A, P < 0.001), and the high infiltration of M0 macrophages was a factor in the 
poor prognosis of patients with LIHC (Figure S3B, OS, P = 0.02). Notably, all common ICPs (immune checkpoints) were 
significantly higher in C1 than in C2 (Figure S3C, P < 0.05), while the TIDE algorithm showed that patients in C1 may 
have worse immunotherapy outcomes (Figure 3M, P = 0.0051).

Identification of Differentially Expressed Genes (DEGs) and Signal Pathways in 
Different Helicases Subtypes
As the two subtypes exhibited different clinical outcomes and pathological features, we here identify key DEGs and 
signaling pathways in each subtype to understand the underlying regulatory mechanisms of the helicase phenotype. We 
found an aggregate of 921 DEGs between two clusters (Figures 4A), and the upregulated genes in C1 were mainly 
enriched in activities associated with fatty acid metabolism, spermatogenesis, hedgehog signaling, pancreas beta cells, 
KRAS signaling, inflammatory response (Figure 4B). To identify key gene modules, we constructed a MEGENA 
network using these DEGs (Figure 4C). The largest module C1_4 consisting of 358 genes was shown in Figure 4D. 
Enrichment analysis shows that this module is closely associated with nuclear division as well as genomic stability 
(Figure 4E). We subsequently conducted Matthews correlation coefficient (MCC) algorithm to identify 10 hub genes 
which had a consistent activation of the cell cycle (Figure 4F), and all hub genes significantly highly expressed in 
hepatocellular carcinoma tissues (Figure 4G, P < 0.001) and correlated with unfavorable prognosis (Figure S4, P < 0.05). 
In addition, we found that overexpression of most hub genes in the GDSC database was associated with higher drug 
sensitivity, except for KIF23 (Figure S5A). In the Cancer Therapeutics Response Portal (CTRP) database, overexpression 
of KIF18B, GINS1, CDCA5, KIFC1, KIF2C, KIF4A, and TOP2A implied insensitivity to Trametinib, a targeted drug that 
inhibits cell proliferation through MEK signaling (Figure S5B). Finally, we observed higher expression of 10 hub genes 
in C1 than in C2 (Figure 4H, P < 0.001), further suggesting that they are potential regulators of helicases subtypes 
differences.

Identification of Hub Genes Upregulation in Highly Proliferative Cells
Here, we sought to localize the hub gene at the single-cell level to investigate the biological mechanism of the helicase 
phenotype. The process of the single-cell analysis was demonstrated in Figures 5A and B with a Uniform Manifold 
Approximation and Projection (UMAP) and a t-Distributed Stochastic Neighbor Embedding (tSNE) that displayed the 
cell markers of each cell cluster. We then used singleR for automatic annotation of cell types (Figure 5C and D). The 
expression levels of CDCA5, KIF2C, KIFC1, KIF4A, HJURP, TOP2A, BUB1B, KIF18B, KIF23, GINS1, and MKI67 in 
a single-cell study are illustrated in Figure 5E and F. We observed that most hub genes are expressed in concert with 
Ki67, mainly on cells in the G2M phase (Figure 5G). Finally, in the TCGA-LIHC dataset, we further confirmed the 
significant positive correlation between MKI67 level and all hub gene levels (Figure 5H). These results suggested that the 
helicase phenotype was closely related to cell proliferation.
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Figure 4 Function analysis of helicase phenomenon. (A) Volcano map of differentially expressed genes between C1 and C2. Red indicates up-regulated genes in C1, blue 
indicates down-regulation. Data on the abscissa are differences in gene expression (log2 fold change); data on the ordinate represent the significance of these differences 
(−log10 padj) (TCGA-LIHC, n = 374). (B) Gene Set Enrichment Analysis (GSEA) of C1 and C2. (C) The DEGs between C1 and C2 in the co-expression network. Each node 
represents a gene module, with the larger nodes indicating a higher number of genes. (D) The MEGENA network showing the largest gene module. The degree value of the 
node was calculated by Cytoscape. The higher the degree value, the darker the color the larger the size. (E) GO and KEGG enrichment analysis of the largest gene modules. 
Each colored bar indicates a different biological process. (F) The correlation between the 10 hub genes in HCC and important cancer signaling pathways. The solid line 
represents activation and the dashed line represents inhibition. (G) Expression level of 10 hub genes between HCC tissues in the TCGA-LIHC cohort (n = 50) and paired 
control tissues (TCGA-LIHC, n = 50, ***P < 0.001). (H) Expression level of 10 hub genes between C1 and C2 (TCGA-LIHC, n = 374, ***P < 0.001).
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Figure 5 Single cell analysis of hub genes. (A) Heatmap depicting expressions of top 10 marker genes among 14 detected HCC cell clusters. (B) Cells were clustered into 14 types 
via UMAP and tSNE dimensionality reduction algorithm, each color represents a unique cluster. (C) SingleR was used to automatically annotate each cell, and the bar at the top of 
the graph represents the cluster and cell label, respectively. (D) The dot plot shows the situation after manual modification, with each color representing the annotated phenotype 
of each cluster. (E and F) tSNE distribution of all hub genes, including dot plot (E) and violin plot (F). (G) The cell cycle is annotated by marker genes, red for G1 phase, green for 
G2M phase and blue for S phase. (H) Heat map showing the significant correlation of all hub genes with MKI67. The top half of the graph represents the expression trend of MKI67 
and the bottom half represents the expression trend of all hub genes, with blue representing low expression and red representing high expression (TCGA-LIHC, ***P < 0.001).
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Identification of DDX56 Overexpression as a Poor Prognostic Factor for LIHC
In this part, LASSO regression of overall survival (OS), disease-free survival (DSS) and progression-free interval (PFI) 
was conducted based on 112 helicases, respectively, to identify robust markers for follow-up studies. Cross-validation 
was performed in ten rounds to prevent overfitting (Figure 6A–C). Sequential Cox regression (both univariate and 
multivariate) indicated that DHX58, DDX43, DDX56 were significantly correlated with LIHC prognosis (Figure 6D–I). 
Then, we constructed Kaplan–Meier survival curves to validate the prognostic value of DHX58, DDX43, DDX56 and the 
results showed that patients with higher DDX56 expression level had shorter PFI (Figure 6J–M, P < 0.05). In addition, we 
observed a trend of overexpression of DDX56 in almost all common tumor types (Figure 6N). These results suggested 
that DDX56 is a potential oncogene.

Expression Analysis of DDX56 in LIHC
We first found that DDX56 was highly expressed in C1 with relatively poor prognosis (P = 1.7e-14, Figure 7A) and 
confirmed the overexpression of DDX56 in tumor tissue in paired TCGA samples as well as in other two independent 
datasets (p < 0.001, Figure 7B and C). We next examined the expression of DDX56 in several common hepatocellular 
carcinoma cell lines, and the results were consistent with those predicted in The Cancer Cell Line Encyclopedia (CCLE) 
database (Figure 7D and E). IHC sections from the Human Protein Atlas (HPA) database source showed that DDX56 is 
overexpressed at the protein level in cancerous tissues (Figure 7F), and we confirmed this result through our own samples 
(P < 0.001, Figure 7G and H).

Single-cell analysis revealed that DDX56 are ubiquitously expressed by all cell types (Figure 7I and J). Considering the 
strong correlation between helicase phenotype and cell proliferation, we further found that the level of DDX56 was highly 
positively correlated with the level of MKI67 based on TCGA-LIHC calculation (R = 0.395, P < 0.001). Since both DDX56 
and Ki67 are nuclear proteins, we found that they also converge in expression at the protein level by sequential comparison of 
IHC staining results (Figure 7L and M, R = 0.426, P = 0.002). Subsequently, we analyzed the relationship between DDX56 
and clinicopathological parameters and found that the level of DDX56 increased with tumor grade as well as with vascular 
invasion (Figure 7N, P < 0.01). Finally, our calculations showed that the level of DDX56 significantly and negatively 
correlated with the abundance of most immune cells, including TGD cells, natural killer (NK) cells, dendritic cells (DC) and 
cytotoxic cells, among others (Figure 7O, P < 0.01). This part of the results indicates that DDX56 is highly expressed in 
hepatocellular carcinoma tissues and is a proliferative marker that is associated with immunosuppression.

Discussion
Helicases are essential for all living organisms, and their main function is to unpackage the genes of the organism.3 They 
act as linear molecular engines, specifically, moving directionally along the nucleic acid phosphodiester backbone and 
using the energy generated by ATP hydrolysis to separate two annealed nucleic acid strands, including DNA, ribonucleic 
acid (RNA) or RNA-DNA hybrids.38–40 Thus, whenever cellular processes involving the separation of nucleic acid 
strands, such as DNA replication, transcription, translation, recombination, DNA repair and ribosome biogenesis, are 
closely associated with helicases, ultimately determining cell fate.41,42

We examined the genetic and transcriptional profiles of 112 helicase molecules and found extensive mutational 
covariation among them, and not only that we also observed that the vast majority of helicases are overexpressed in 
almost all common cancer types. One of the essential features of tumor cells is their rapid proliferation accompanied by 
DNA damage response and chromosomal instability, therefore enhanced activity of resolvases is currently considered 
necessary for tumor cells to cope with endogenous or exogenous stress in order to maintain cellular homeostasis.43–45 In 
addition, considering the frequent DNA damage caused by chemotherapy or radiotherapy, it has also been shown that 
DNA helicases play a key role in resistance to conventional clinical anti-cancer therapies, and Nicola J Curtin’s work 
suggested that the activity level of individual DNA damage response genes, including the decapping gene, can be used as 
a predictive biomarker for personalized cancer therapy.46,47

To further understand the significance of helicases in LIHC, we pooled the expression profiles of helicase-encoding genes 
based on TCGA-LIHC and classified LIHC patients into two clusters (C1, C2) by consensus clustering, and patients in C1 
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Figure 6 Identification of DDX56 as an independent prognosis factor. (A–C) least absolute shrinkage and selection operator model (LASSO) fitting based on OS (A), DFS (B), PFI (C). 
Each curve represents a gene. The profiles of coefficients were plotted versus log(λ). Vertical lines indicate the positions of all genes with coefficients greater than 0 determined by 10- 
fold cross-validation. λ was determined from 10-fold cross-validation. The x-axis represents log(λ); the y-axis represents binomial deviance. Optimal values calculated from minimum 
criteria and one standard error of the criteria are indicated by the dotted vertical lines. (D–I) Univariate (D–F) forest plot and multivariate (G–I) forest plot showing association 
between 6 candidate genes expression and OS (D and G), 8 candidate genes and DSS (E and H), 5 candidate genes and PFI (F and I) in HCC. (J–M) OS about DHX58, DSS about 
DDX43, PFI about DDX56, and DSS about DHX58 based on TCGA-LIHC (TCGA-LIHC, n = 374, Log rank test). (N) The mRNA expression of DDX56 between tumor and normal 
control tissues in pan-cancer was assessed from TCGA database. (TCGA-LIHC, n = 374; NS: not significant, *P < 0.05, ***P < 0.001).

Journal of Hepatocellular Carcinoma 2022:9                                                                                      https://doi.org/10.2147/JHC.S378175                                                                                                                                                                                                                       

DovePress                                                                                                                         
895

Dovepress                                                                                                                                                               Yin et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Figure 7 Expression analysis of DDX56 in LIHC. (A) Differential expression of DDX56 between C1 and C2 clusters based on TCGA-LIHC databases (n = 374, ****P < 
0.0001). (B) Expression level of DDX56 between the tumor and paired normal tissues in the TCGA-LIHC databases (n = 50, ***P < 0.001). (C) Differential expression of 
DDX56 between normal tissue and HCC tissue by using public datasets from Gene Expression Omnibus GSE36376 (n = 433, ****P < 0.0001) and GSE102079 (n = 257, 
****P < 0.0001). (D and E) DDX56 protein expression in different HCC cell lines (**P < 0.01, ***P < 0.001). (F) Immunohistochemical analysis of DDX56 in HCC tissues 
and normal tissues based on Human Protein Atlas database (HPA). (G and H) Representative images of different immunohistochemical staining intensities for DDX56 based 
on our own HCC samples and statistical comparison of DDX56 expression levels (H-SCORE) in HCC tissues and normal tissues (n = 50, ***P < 0.001). (I) UMAP plots 
showing expression of DDX56 clusters. (J) The cell type assignment of each cluster is based on the DDX56 expression. (K) Correlation of the DDX56 expression levels with 
MKI67 based on TCGA-LIHC (n = 374). (L and M) Correlation between DDX56 and Ki67 based on immunohistochemical H-score calculation (n = 50). (N) Association of 
DDX56 mRNA expression with T/N/M stages, pathological stage, histologic grade and vascular invasion in HCC patients based on TCGA-LIHC (n = 374, NS: not significant, 
*P < 0.05, **P < 0.01, ***P < 0.001). (O) Analysis of differentially immune infiltration level with DDX56 high and low expression in TCGA-LIHC (NS: not significant, *P < 
0.05, **P < 0.01, ***P < 0.001).
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versus C2 showed large differences in survival and clinical characteristics. Notably, levels of almost all helicases were 
observed to be significantly higher in C1 than in C2, and mutational profiling showed that TP53, a “star” gene currently found 
to prevent tumor cell division, induce apoptosis, and repair normal DNA damage,48,49 was mutated much more frequently in 
C1 than in C2. Further, we found far more mutational co-occurrence events in C1 than in C2. This together with the above 
results suggested that C1 patients may be characterized by stronger genomic instability compared with C2. GSEA based on 
differential genes of two subtypes showed that KRAS signaling and hedgehog pathway activity were significantly upregulated 
in C1. To effectively explore deeper biological mechanisms, we identified key co-expressed gene modules in differential genes 
by MEGENA algorithm, and enrichment analysis showed that co-expressed gene modules are closely associated with cell 
cycle and division. Subsequently, we further calculated to obtain 10 hub genes, which have potential promotive effects on cell 
cycle. Interestingly, the levels of these 10 hub genes, including CDCA5, KIF2C, KIFC1, KIF4A, HJURP, TOP2A, BUB1B, 
KIF18B, KIF23, and GINS1, were significantly higher in tumor tissues than in paired normal tissues, and a similar 
phenomenon was observed between C1 and C2. These results show their potential oncogene function and possible relevance 
to nuclear division. We note that most of them belong to the kinesin family, and kinesins are now widely recognized as 
ATPases that move along microtubule filaments involved in the transport of cellular cargo and provide support for several 
cellular functions, including mitosis and meiosis.50–52 The biological significance of kinesins in tumors is currently receiving 
increasing attention, and it has been demonstrated that KIF2C is a direct target of the Wnt/β-catenin pathway and mediates 
crosstalk between Wnt/β-catenin and mTORC1 signaling by interacting with TBC1D7.53 In addition to these, the value of 
CDCA5 as a cell cycle-associated protein for nuclear division needs no elaboration,54,55 while other hub genes including 
TOP2A, HJURP, BUB1B, and GINS1 have been widely reported to be risk factors for poor cancer prognosis, and their 
potential mechanisms are widely involved in interfering with DNA topology, mitotic checkpoint signaling, spindle assembly, 
and other biological processes that maintain genomic and chromosomal stability.56–58

To distinguish in more detail the biological differences between the two helicase subtypes, we proceeded to examine the 
expression characteristics of these 10 hub genes at the single cell level. Considering the significant difference in the degree of 
mitotic activity between the two subtypes, we used the tumor proliferation index Ki67 as a reference to analyze the relationship 
between 10 hub genes and cell division. We observed a cluster of hepatocellular carcinoma cells at the G2M stage, enriched in 
Ki67-encoding genes, indicating that they were in a proliferative phase. Interestingly, most of the single-cell localizations of 
hub genes are consistent with Ki67, especially TOP2A, a cell proliferation marker that exerts a strong anti-apoptotic effect by 
frequently amplifying in tumor tissues.59 In addition, KIFC1 was also observed to be abundantly expressed on proliferating 
cells, and some investigators observed reduced levels of Ki67 and PCNA after knockdown of KIFC1 in Hep3B and SNU-475 
cell lines, tentatively confirming a potential positive correlation between KIFC1 and HCC proliferation.60

The above work confirms the existence of two subtypes with significantly different proliferative activity in LIHC patients, 
and since this subtype is established based on the helicase expression profile, it is clear that the helicase activity itself may be 
a potentially critical factor. We identified three independent prognostic factors, DHX58, DDX43, and DDX56, through the 
development of the LASSO-COX model. Survival analysis showed that DDX56 was strongly associated with poor prognosis 
and that DDX56 was overexpressed in most tumor types.61,62 We then focused on the significance of DDX56 at LIHC and 
further confirmed the high expression of DDX56 in 2 independent datasets and obtained consistent results at the protein level. 
Several studies have indicated that DDX56 interacts with the mitotic regulator serine/threonine phosphoprotein phosphatase 
(PP) 1 and the oncoprotein DEK to regulate tumor progression, and its high expression has been reported in breast and 
colorectal cancers.62–64 Based on this, we compared the correlation between DDX56 and MKI67 and a significant positive 
correlation was observed at both transcriptome and protein levels. Finally, we also found that DDX56 levels negatively 
correlated with the abundance of most immune cells, which may be due to immunosuppressive effects caused by malignant 
proliferation of tumor cells.

Conclusions
In conclusion, our study highlights the relationship between helicase subtypes and proliferative features of LIHC. In 
conclusion, our study highlights the relationship between helicase isoforms and proliferative features of LIHC. These 
observations may be beneficial for conventional chemotherapy-based treatment of LIHC patients, especially for apop-
tosis-inducing and cell cycle-blocking-related interventions. We also identified DDX56 as an independent prognostic 
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factor in patients with LIHC, and DDX56 was overexpressed in HCC tissue and significantly positively correlated with 
Ki67, indicating a high proliferation rate of tumor cells. The main limitation of this study was the small sample of clinical 
cases. The number of clinical cases was limited, mainly because of the death cases during the follow-up. Besides this, 
changes in living systems involve multi-scale regulatory processes in time and space. Various intracellular response 
mechanisms are finely regulated through complex signaling pathways, and the different pathways are intertwined with 
each other. DDX56, which has not been previously reported in hepatocellular carcinoma. The underlying mechanisms 
merit further explorations.
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