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Abstract: The incidence of fungal infections is increasing at an alarming rate and has posed a great challenge for science in recent 
years. The rise in these infections has been related to the increase in immunocompromised patients and the resistance of different 
species to antifungal drugs. Infections caused by the different Candida species, especially Candida albicans, are one of the most 
common mycoses in humans, and the etiological agents are considered opportunistic pathogens associated with high mortality rates 
when disseminated infections occur. Candida lusitaniae is considered an emerging opportunistic pathogen that most frequently affects 
immunocompromised patients with some comorbidity. Although it is a low-frequency pathogen, and the mortality rate of C. lusitaniae- 
caused candidemia does not exceed 5%, some isolates are known to be resistant to antifungals such as amphotericin B, 5-fluorocy-
tosine, and fluconazole. In this paper, a detailed review of the current literature on this organism and its different aspects, such as its 
biology, possible virulence factors, pathogen-host interaction, diagnosis, and treatment of infection, is provided. Of particular interest, 
through Blastp analysis we predicted possible virulence factors in this species. 
Keywords: biological aspects, candidiasis, multidrug resistance, opportunistic pathogens, virulence factors

Introduction
Candida spp. are often part of the normal microbiota that resides in non-sterile human tissues and as a such, are often found 
as part of the respiratory, gastrointestinal, urinary, and genital tracts, in the skin, fingernails, and oral cavity.1,2 Candidiasis is 
the name given to the infections caused by members of the Candida genus, and traditionally, the most frequently isolated 
species from clinical specimens is Candida albicans, which is associated with high morbidity and mortality rates.3–7 

However, C. albicans is not the sole species of this fungal genus associated with human diseases.8,9 The emergent pathogen 
Candida lusitaniae is an opportunistic haploid yeast that has been reported as the etiological cause of infection in humans, 
most frequently in immunocompromised patients who often have comorbidities.10 Even though it is considered a low- 
frequency emerging nosocomial pathogen and susceptible to conventional antifungal therapies, C. lusitaniae has attracted 
attention because some isolates are resistant to amphotericin B, 5-fluorocytosine, or fluconazole.7,11–13 From the infections 
caused by Candida spp., C. lusitaniae is responsible for approximately 19.3% of fungemia cases in cancer patients,14 and 
approximately 1.7% of all cases of genitourinary candidiasis in ambulatory patients.15

Before the fluconazole era, C. lusitaniae infections were associated with high mortality rates; however, nowadays this is 
uncommon and mortality usually does not exceed 5%.10 Additionally to fungemia, C. lusitaniae has also been associated with 
peritonitis, meningitis, and urinary tract infections.7,10 Thus far, the basic aspects of this organism have been poorly studied, and 
there is an increasing need to develop new alternatives to diagnose and treat this species and others belonging to the Candida 
genus. With no doubt, these facts make this fungal species of interest for both applied and basic science. Here, we offer a critical 
revision of the most relevant information on both C. lusitaniae clinical and basic aspects and the caused infection.
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Basic Biological Attributes of Candida lusitaniae
C. lusitaniae is a dimorphic organism that produces ovoid, ellipsoidal, or elongated yeast cells of a size of 2–6×2–10 µm, 
similar to other Candida species, such as Candida tropicalis,16 and colonies are creamy in color and appearance, soft and 
smooth.10 At the difference of C. albicans, the most studied species of this genus, C. lusitaniae is not capable of developing 
true hyphae, only pseudohyphae, which is a blastoconidium with a constricted budding neck between conidium and the first 
compartment of the emerging germ tube.17,18 It is worthy to mention that the dimorphism in this organism has been related 
to the fungal resistance to amphotericin B.18–20 In addition, this morphological plasticity offers a possibility for a daughter 
cell to survive the host immune defenses.20 In CHROMagar, the colonies generate a pinkish to purple color, allowing their 
differentiation from C. tropicalis, since both species are morphologically similar.19

The Candida genus once thought to gather asexual species, has now revealed some species with other reproductive 
cycles. C. albicans may go through parasexual and asexual cycles, while C. lusitaniae shows asexual and sexual cycles, 
being its teleomorph Clavispora lusitaniae and assuring meiosis during spore formation.21,22 The C. lusitaniae mating- 
type (MAT) locus has been reported to be like the one found in C. albicans, and the sexual cycle is regulated by the 
biallelic locus MATa and MATα.23 The strain MATα has four out of five genes homologs to C. albicans MLTα, whereas 
the MATa locus has a translocation that differentiates it from the C. albicans MATa.21 C. lusitaniae genome contains the 
genes MATα1 and MATa2, encoding for transcription factors required for cell mating and identity, and MATa1 required 
for sporulation.21 The mating between α and a cells is performed when they are co-cultured and during stress by 
starvation.21 Then, the pheromones induce the conjugative tube, followed by cell and nuclear fusions, and finally, the 
formation of the asci that contains two spores.21

The recombination during the sexual cycle is SPO11 dependent. This gene encodes for a meiosis-specific topoisomerase and 
is a homolog of SPO11 found in other eukaryotes.21,23 In addition, C. lusitaniae CLS12, a dispensable gene for filamentation, is 
involved in mating and is a homolog of the Saccharomyces cerevisiae STE12, a mating, and filamentation regulator.24

Although the internal and external C. lusitaniae structures and organelles are not very well characterized, it is known that like 
other Candida species it possesses a cell wall, cell membrane, endoplasmic reticulum, ribosomes, and Golgi apparatus.25 The 
C. lusitaniae cell wall has not been analyzed by transmission electron microscopy, but in nearby species such as Candida krusei, 
Candida parapsilosis, C. tropicalis, and C. albicans, it is known that the wall is uniform and with well-defined layers with 
different compositions.26–35 The outermost layer is observed as an electron-dense material of approximately 20 nm thick, 
corresponding to mannosylated glycoproteins, then, an electron-transparent layer in the middle, which has an appearance of 
being composed of spongy material and dispersion granules, and an inner layer of around 100 nm formed by a transparent matrix 
that contains filamentous structures.27,30,36–38 This innermost layer is generally composed of chitin and β-glucans in Candida 
spp;29,31–34,39–44 while the outermost layer contains proteins modified with both N-linked and O-linked mannans.30,38,45–49 The 
C. lusitaniae mannan structure is significantly different from other Candida species and closer to that described in C. albicans, 
showing β-1,2-mannose residues as part of the N-linked mannan side chains.50 In C. lusitaniae, the structural polysaccharides β- 
1,3-glucan and chitin, as in other Candida species, are located underneath the cell wall proteins, most of which are covalently 
linked to β-1,6-glucan by glycosylphosphatidylinositol anchors.51 In terms of immunological recognition by the host, the cell wall 
is the one that fulfills the most important function, since displays molecules that have a positive role in this immune sensing but 
also can disguise the interaction with immune effectors.41,51–53

So far, the C. lusitaniae metabolism has been poorly studied and scarce information is currently available. This organism is 
known to metabolize glucose, cellobiose, and cellotriose but fails to degrade cellotetrose, a phenotypical trait that differ-
entiates this species from Candida guilliermondii.54 Moreover, C. lusitaniae can also use galactose, sucrose, maltose, lactate, 
and trehalose as carbon sources.55 Similar to other yeast-like species, it possesses a fermentative metabolism capable of 
producing ethanol from D-xylose under anaerobic conditions.55 This ability to adapt its metabolism to assimilate different 
carbon sources has been linked to the resistance to some drugs, such as amphotericin B; cells growing in lactate are about 10 
times more resistant to the drug than those growing in presence of glucose as a carbon source.56 Based on these metabolic 
characteristics, this Candida species can be identified by the assimilation of sorbose, rhamnose, and 2-keto-D-gluconate.55

The C. lusitaniae genome is distributed in eight chromosomes and belongs to the Candida CTG clade.57 This clade is 
composed of C. albicans, C. lusitaniae, Candida dubliniensis, C. tropicalis, C. guilliermondii, and C. parapsilosis, and they 
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have in common the nonconventional use of the CUG codon to encode for serine instead of leucine.57 Since C. lusitaniae has 
a sexual stage, it can go from haploid to diploid; being asexual cells often found as haploid organisms.58

The C. lusitaniae (ATCC 42720) nuclear genome sequence contains 12.11 Mbp, with a GC content of 44.5%, a total of 
6153 protein-encoding genes, and five pseudogenes.59 A recent study reported the sequencing of five C. lusitaniae strains.60 

The strain DSY4606 (P1) contains 12.08 Mbp, the GC content is 44.53%, 5676 protein-encoding genes from a total of 5882 
genes that have been predicted, along with nine rRNA genes and 197 tRNA genes.60 The other strains analyzed in this study 
were P2 to P5 and the number of the genes varied from 5869 to 5892, suggesting small variations in the gene numbers and that 
the phenotypic plasticity could be due to recombination events during sexual reproduction.60

The Virulence Factors Repertoire
Cell adhesion is essential in various biological processes and many fungi such as Candida spp. contain a family of cell wall 
glycoproteins named adhesins, which are responsible for offering unique adhesion properties.61 Adhesins are indispensable for 
fungal cell–cell interactions and to mediate the host-fungus interplay.62 The Candida spp. adhesion to host cells, in particular 
epithelial cells, is the first step in the infective process. C. lusitaniae also colonizes the host’s epithelial cells as part of the first 
events of the infection but does not cause damage like other Candida species. It was reported that C. albicans is significantly 
more adherent (61.6%) to buccal epithelial cells than C. lusitaniae (2%),63 and a similar trend was observed when the fungal 
ability to bind mucin was tested.64 These low adhesion properties correlate with the low virulence reported for C. lusitaniae. Like 
other Candida species, C. lusitaniae can also adhere to plastic surfaces, such as indwelling catheters, cannulas, and drains.65 The 
ALS gene family members, EAP1, ECM33, HWP1, IFF4, INT1, and MP65, are encoding for the major C. albicans adhesins.66 

Even though none of the putative orthologs of these genes have been characterized in C. lusitaniae, these can be found within its 
genome (Table 1), making it likely that adhesion occurs via these cell surface adhesins.

Cell surface hydrophobicity and biofilm formation are known as relevant virulence factors in Candida spp. pathogen-
esis. The wall hydrophobicity is provided by the presence of hydrophobic proteins that are embedded within the Candida 
cell wall,67 and several studies have linked the cell wall hydrophobicity with Candida adhesion to epithelial cells.68,69 

A study involving 15 C. lusitaniae isolates showed that these had a higher wall hydrophobicity (37.52%), compared to 
C. albicans cells (8.48%).68 Increased hydrophobicity has been related to cell adhesion; however, this is not the case for 
C. lusitaniae, where this species has been reported to be more hydrophobic but less adherent.68 This result could be 
explained by the fact that there are other factors apart from hydrophobicity that are related to adherence, among these, 
fungal cells can switch between hydrophobic and hydrophilic phenotypes, due to changes in the environmental condi-
tions such as the temperature, nutrient composition, growth phases, and culture medium used for cell propagation.70,71 

This phenomenon has been reported in other Candida species, such as in C. dubliniensis.68,72

Biofilm formation is an important factor that confers protection to the fungal cells, making them resistant to chemical 
or physical damage.73 A study of mixed biofilms between C. albicans and C. lusitaniae showed this was not viable, but 
between C. tropicalis and C. dubliniensis was successfully established, suggesting that the hypha production by the two 
species was required for biofilm formation.74 In another study, it was demonstrated that the ability of C. lusitaniae to 
form biofilms is influenced by the culturing media, being capable of doing so in YNB, but not in RMPI broth.57 In 
C. albicans, biofilm formation is regulated by seven principal genes BCR1, BRG1, EFG1, HSP90, NDT80, ROB1, and 
ZAP1, which are likely to be within the C. lusitaniae genome (Table 1). However, research is needed to assess the 
contribution of these genes during C. lusitaniae biofilm formation.

During the pathogenic process, hydrolytic enzymes are paramount for success, and among them are the secreted 
aspartyl proteinase (SAP), phospholipase, and lipases. In C. albicans, lipases are described in some infection models but 
their function is not clear yet.75 The putative orthologs of C. albicans genes encoding for lipases and phospholipases 
found within the C. lusitaniae genome are shown in Table 1. The SAPs have been described in C. albicans and some 
studies have focused on finding homologs in the other medically relevant Candida species. Here, Table 1 shows the 
putative SAPs orthologs found in C. lusitaniae, although the function is still unknown. SAPs help the pathogen penetrate 
the host and to evade the immune response, this way being an important element in pathogens’ virulence.76 When 
comparing the proteolytic activity of four different Candida species, C. lusitaniae showed the highest hydrolytic activity 
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Table 1 Prediction of the Most Important Virulence Factors in Candida lusitaniae

Virulence Factor C. albicans 
Protein

C. lusitaniae 
Protein*

E- value Similarity 
(%)

Putative Role

Adhesins Als1-7 and Als9 CLUG_03274 

FOB63_002933 

EJF14_40078

1e−46 

3e−74 

7e−44

47 

47 

51

Adherence of the organism to the oral mucosa.138

Ecm33 FOB63_002672 2e−150 75 Contributes to the integrity of the fungal cell wall.139

Iff4 FOB63_003688 4e−27 47 Involved in cell wall organization, hyphal growth, as well as in host-fungus interaction.140

Mp65 FOB63_004871 4e−119 78 Cell surface mannoprotein involved in cell wall glucan metabolism and adhesion.141

Biofilm formation Bcr1 A9F13_15g00066 1e−39 87 Acts as a master regulator of biofilm formation.142

Brg1 CLUG_05535 3e−47 61 Necessary for hyphal growth and biofilm formation.78

Efg1 A9F13_02g02442 2e−91 87 Transcriptional regulator required for filamentation.78

Hsp90 A9F13_09g00462 0.0 95 Regulates several signal transduction pathways and temperature-induced morphogenesis; localizes to 

the surface of hyphae.143

Ndt80 FOB63_000392 3e−81 55 Necessary for hyphal growth and biofilm formation.144

Rob1 E0198_003579 1e−20 45 Transcription factor involved in biofilm formation.145

Zap1 CLUG_02564 7e−130 52 Negatively regulates the biofilm matrix production.145

Dimorphism Cph1 CLUG_02576 1e−119 60 A transcriptional regulator with a key role in controlling filamentous growth.77

Hgc1 CLUG_00968 7e−117 68 Essential for hyphal morphogenesis79

Nrg1 A9F13_05g02552 2e−32 82 Necessary for filamentation and virulence.78

Tup1 A9F13_01g07271 0.0 85 Prevents filamentous growth in the absence of appropriate signals.78

Immune evasion Hgt1 E0198_001093 0.0 81 Plays a non-canonical role by down-modulating phagocytosis and killing by human neutrophils.146

Msb2 A9F13_12g01265 1e−71 57 Signaling mucin that allows fungi survival and growth in the infected human host.147

Pra1 No found - - Encodes for an antigen associated with the cell wall, known as a fibrinogen binding protein.148
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Proteinase and 
phospholipase

Lip5-8 EJF14_20550 

E0198_001560

3e−139 

7e−141

62 

62

Required for virulence in different infection models.66

Sap1-3 
Sap5

EJF14_50044 
FOB63_000850

3e−45 

2e−45

49 
51

Necessary for active penetration of host cells, neutrophil extracellular traps (NETs)-releasing response. 
Required for proteolysis.66

Plb1-5 CLUG_01525 
FOB63_000168

0.0 
0.0

68 
75

Important for host cell penetration and virulence in a mouse model of systemic infection.149

Thermotolerance Hsp60 CLUG_00619 0.0 96 Acts as an immunogenic trigger in orchestrating Candida-related diseases under thermal stress.82

Hsp104 CLUG_01501 0.0 90 Pro-survival mediator in response to increasing temperature.82

Ssa1 CLUG_01400 0.0 94 Acts as invasin, facilitating host cell endocytosis.150

Notes: *Protein names are the accession codes of the sequences at the National Center for Biotechnology Information database (https://www.ncbi.nlm.nih.gov/). The putative protein sequence encoded by the C. albicans gene was 
subjected to a standard protein BLAST analysis at https://www.ncbi.nlm.nih.gov/. The best hit is reported in the C. lusitaniae Protein column, and this was scored with the lowest E value. The similarity column refers to the comparison of 
amino acid sequences from the C. albicans encoded protein and the best hit.
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but at the same time low enzyme secretion.76 This observation may help to understand the low virulence of this species 
and its poor ability to kill laboratory animals.

As mentioned, C. lusitaniae belongs to the genus members that are not capable of forming true hyphae, only 
pseudohyphae. Dimorphism in fungi, such as C. albicans is related to the expression of some virulence factors that 
are morphology specific.27 Among the main dimorphism regulators found in C. albicans are Cph1, a transcriptional 
regulator that controls filamentous growth; Hgc1, an essential protein for hyphal morphogenesis; and Nrg1/Tup1, 
transcriptional repressors that contribute to filamentation.77–79 According to our analysis, the C. lusitaniae genome 
contains putative orthologs of these genes (Table 1), suggesting that the process that controls dimorphism is differently 
regulated in C. albicans and C. lusitaniae.

The phenotypic switching is strongly related to C. albicans virulence, allowing the fungus to adjust to different 
environmental conditions through the expression of different and selective genes.80 C. lusitaniae undergoes phenotypic 
changes when cultured on YPD-CuSO4 agar, generating white and light brown colonies containing exclusively yeast 
cells, and dark brown colonies containing pseudohyphae.80 Light brown colonies showed a minimum inhibitory 
concentration (MIC) of 2–4 µg/mL for amphotericin B, the dark brown colonies of 8 µg/mL, and the white colonies 
of 256 µg/mL, underlining that this phenotypic switching is related to drug resistance.80

Other virulence factors that play important roles in fungi are thermotolerance and immune evasion. Thermotolerance 
is responsible for facilitating the growth and colonization of the fungal cell once entering the host tissues. The host 
temperature is usually higher than the optimal for fungal growth, thus adaptation to this stressing milieu is essential for 
cell fitness and the ability to damage the host cells and tissues. Our bioinformatic analysis suggests that the C. lusitaniae 
genome contains putative orthologs of the genes for thermotolerance HSP60 and HSP104, which encode heat shock 
proteins (Table 1). Hsp60 acts as an immunogenic trigger in the orchestration of diseases when there is thermal stress and 
Hsp104 is a survival mediator, in response to increased temperature.81,82 Immune evasion is a mechanism that involves 
many other processes, such as biofilm and protease production, morphological changes, and protein synthesis to 
overcome oxidative stress.41 Some of these processes have already been explained earlier in this section. For immune 
evasion, two possible orthologs of C. albicans Hgt1 and Msb2 were found in C. lusitaniae. However, no ortholog of the 
Pra1 gene was found (Table 1). However, the mechanisms of thermotolerance and immune evasion are probably similar 
in both fungi, due to the results obtained in our bioinformatics analysis (Table 1).

The Candida lusitaniae-Immune System Interaction
Currently, the most studied fungus–host interaction is that of C. albicans. However, although there are species-dependent 
variations in the way the host immune system recognizes Candida spp., the core processes may be similar and involve the 
recognition of the microorganism through pattern recognition receptors (PRRs). To the best of our knowledge, no study has 
explored the C. lusitaniae-host interaction; however, for Candida guilliermondii, the phylogenetically closest species within 
the Candida genus (Figure 1), the characteristics of this interaction have been more studied.33 Therefore, it is possible to 
speculate that the current information we have regarding C. guilliermondii could be extrapolated to C. lusitaniae.83

Figure 1 Schematic representation of the phylogenetic relationship between species of the Candida CTG clade. The species C. rugosa, C lusitaniae, C guilliermondii, C famata, 
C parapsilosis, C tropicalis, C dubliniensis and C. albicans are part of the CTG clade of Candida. (٭) represents the species of our interest, C lusitaniae, and C. guilliermondii, which 
are phylogenetically closer to each other. The lengths of the branches are arbitrary.
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Immune detection of fungal species is an important process in establishing a protective antifungal immune response. 
For this interaction to take place, the components of the cell wall must be recognized.30,33,84 The fungal cell wall is 
a highly dynamic structure that provides protection, controls communication with the extracellular environment, main-
tains cell integrity, and functions as a molecular scaffold to display virulence factors.33,38,44,52 This structure has 
pathogen-associated molecular patterns (PAMPs), which are recognized by the immune system through PRRs, most of 
them located on the cell surface of immune cells.85–87 The main PAMPs found in the different Candida species, such as 
C. guilliermondii, are chitin, β-1,3- and β-1,6-glucans, and N-linked and O-linked mannans.51

It has been shown that during the immune response against Candida species, such as C. guilliermondii, murine 
neutrophils, and phagocytic cells can discriminate among species.88,89 Murine phagocytic cells, bone marrow cells, and 
spleen cells have a greater ability to kill C. guilliermondii when compared to the phagocytic rate of C. albicans cells.88 

Human monocytes differentially recognize some species of Candida such as C. tropicalis and C. krusei, but not 
C. guilliermondii, which is involved in increased stimulation of the complement components C3 and colony- 
stimulating factor of granulocytes and macrophages.89 C. guilliermondii shows a limited ability to stimulate tumor 
necrosis factor α (TNFα) when coincubated with peritoneal macrophages.90

Human peripheral blood mononuclear cells (PBMCs) are often used to evaluate pathogen–host interaction in different 
fungal species since they can produce different types of cytokines when the PRRs are activated by PAMPs. Although the 
different species of Candida show a similar cell wall composition, some differences could affect the interaction with 
components of innate immunity.33,44 In C. guilliermondii it has been observed that low levels of β-1,3-glucan induce 
lower cytokine levels when this polysaccharide is exposed to the cell surface.33

C. guilliermondii cells stimulate higher levels of the cytokines TNFα, IL-6, IL-1β, and IL-10, compared to C. albicans 
where stimulation is very low.33 When cells are heat-inactivated (HK), higher levels of cytokines are stimulated than 
C. guilliermondii live cells; however, differences are observed when cytokine profiles are compared with those stimulated 
by C. albicans.39,73 C. guilliermondii stimulates a lower production of TNFα, IL-1β, and IL-6 than C. albicans when the HK 
and β-elimination treatments are used, but the anti-inflammatory cytokine IL-10 is highly produced in presence of 
C. guilliermondii cells.33 It is tempting to suggest that a similar cytokine profile may be stimulated by C. lusitaniae cells.

Blockade of receptors such as Dectin-1 with laminarin does not affect the ability of C. albicans to stimulate cytokine 
production; however, a significant reduction in cytokine levels is observed when HK cells are used.31–34,39,40,42,43,47 For 
C. guilliermondii though the presence of laminarin affects the cytokine stimulation by live or β-eliminated cells, 
indicating that a difference with C. albicans, O-linked mannans along with β-1,3-glucan sensing are key interactions 
for a strong cytokine stimulation.33

Assays with macrophages revealed that most Candida species are uptake and internalized in acid phagolysosomes; 
however, the species that experienced this process in greater proportion are C. tropicalis, C. guilliermondii, and C. krusei 
at the difference of C. albicans and C. auris.33

In addition to the responses mentioned above, complement proteins play an important role in the defense of the host 
against the pathogen, especially against members of the Candida species, since they promote phagocytosis and activate 
inflammatory responses.91,92 This system is a link between innate and adaptive immunity in such a way that a complete 
immune response against the pathogen is created.93 In addition to C. albicans, species such as C. lusitaniae, C. glabrata, 
C. parapsilosis, and C. tropicalis have also been reported to bind to complement proteins.94

Once again, due to close phylogenetic relationship between C. lusitaniae and C. guilliermondii, we suggest that the 
immune response in both species is similar; however, this must be experimentally verified.

Candida lusitaniae-Caused Candidiasis
C. albicans is the main species causing candidiasis in humans. However, other species of this genus have raised particular 
concern by exhibiting resistance to broad-spectrum antifungals commonly used to treat candidiasis.95 This is the case of 
C. lusitaniae which, despite being a rare pathogen, has aroused special interest as a nosocomial pathogen due to its increased 
prevalence in recent years, being characterized by infecting immunocompromised patients, patients receiving prolonged 
antibiotic therapy, hospitalized, patients with underlying malignancies, and undergoing chemotherapies or bone marrow 
transplants.7,10,12,96 Another risk factor for candidiasis is the use of catheters, as they are major yeast reservoirs that promote 
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fungemia, and C. lusitaniae is no exception.97,98 Case reports in the literature have demonstrated the ability of C. lusitaniae to 
form biofilms, causing endogenous infections,99,100 and like other causative agents of candidiasis, the possibility of acquiring 
this species through person-to-person contact has been reported, at least in the intensive care unit.101

In a study conducted on patients with candidemia, it was shown that 43.5% of patients were infected by non-albicans 
species. Of this percentage, most patients were found to have a neutrophil count of fewer than 500 cells/μL.95 Another 
study, conducted at a Texas cancer center between 1988 and 1999, reported that 75% of patients were neutropenic at the 
time of C. lusitaniae infection, with a mortality rate in these cases of 25%, which could be related to its high resistance to 
amphotericin B.7 In fact, most of the severe C. lusitaniae infections reported resistance to this antifungal drug.16,102–104

C. lusitaniae has been isolated most frequently from the respiratory tract, followed by urine and blood samples. It has 
also been isolated from the peritoneum, vagina, and skin.11,12,103,105 In mouse models, kidney colonization by 
C. lusitaniae was found to be indifferent to the animal’s immunocompetence.18 Unusually, cases of keratitis have been 
reported where C. lusitaniae was one of the etiological agents.106,107 The unusualness of these clinical cases was verified 
when a study published in 2012 reported that only 3 of 18 mouse models developed keratitis after being challenged with 
wild-type C. lusitaniae yeast cells.18

Clinical data on invasive infections caused by C. lusitaniae are scarce.108 However, as mentioned, previous reports have 
shown that infections caused by C. lusitaniae usually appear in patients with hematological malignancies.108,109 A patient 
with acute lymphoblastic leukemia who underwent hematopoietic cell transplantation developed catheter-associated 
C. lusitaniae candidemia while undergoing amphotericin B therapy.108 Similar to this case, there are several patients 
with malignant neoplasms, mainly leukemia, which are affected by this pathogen. Most patients have been reported to have 
both neutropenia and stem cell transplantation, known independent factors to develop this systemic infection.12,109,110 In 
2003, 55 cases of C. lusitaniae-caused candidiasis were reported, predominantly bloodstream infections.10 Three-quarters 
of the studied population had underlying medical conditions, which led to a mortality rate of 5%.10

Another study conducted by the International Pediatric Fungal Network, between 2007 and 2011, showed that 
C. lusitaniae was found in 8 out of 201 isolates collected from 196 non-neonatal pediatric patients.111 The University 
Children’s Hospital Münster obtained data on infections caused by different Candida species between 1998 and 2006. 
Among these, C. lusitaniae was found to be the causal agent of 7.1% of candidemias in patients under 20 years old.108,112 

Most of these patients were immunocompromised, had an indwelling venous catheter, and were receiving broad- 
spectrum antibiotic treatment.112 These three conditions are shared with another clinical study, where 12 patients showed 
fungemia due to C. lusitaniae.7 Ten of these patients had received cytotoxic drugs and nine patients were neutropenic.7 

A case study reported the presence of C. lusitaniae in an immunocompetent patient with intraperitoneal infection after 
undergoing laparoscopic hydrosalpinx surgery.113 Intra-abdominal infections are a morbidity cause in patients undergoing 
abdominal surgery and are commonly caused by Candida species.113

Diagnosis of Candida lusitaniae in Clinical Samples
The effective Candida strains identification at the species level in the clinical area has become very important due to the 
high incidence of candidiasis in recent years. Different strategies have been used over time to differentiate and identify 
the different Candida species. Chromogenic agars, such as Candida ID agar and CHROMagar Candida agar,114–116 have 
been used for the detection and presumptive identification of Candida spp., especially C. albicans. Candida ID agar is 
based on a chromogenic substrate of indolyl glucosaminide that is hydrolyzed by the different Candida species and 
generates different colors in the colonies. In the case of C. lusitaniae, the colonies appear pink in this agar; however, 
although the color could be informative for identification, other species such as C. tropicalis and C. guilliermondii 
develop colonies of this same color.116 C. lusitaniae identification on CHROMagar Candida, a medium that also uses 
a chromogenic substrate of β-glucosaminidase, shows purple and white colonies, however, these colonies have the same 
colors as C. krusei and C. parapsilosis, which could not ensure the correct C. lusitaniae identification.116 In corn meal 
agar, C. lusitaniae shows ovoid yeast cells, which are arranged in pairs and chains, also, abundantly branched and curved 
pseudohyphae can be seen. Some strains of this species have rudimentary or null pseudohyphae.117

In recent years, methods have been developed to allow early identification of the different Candida species, trying to 
reduce morbidity and mortality of infected patients.118 Candida spp. identification by traditional methods such as 
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morphology analysis can take 3–5 days or even longer for unusual species.119 The design of Candida species-specific 
probes has helped identify more than 18 species of this genus, including C. lusitaniae.119 For this, universal fungal 
primers, multicopy genetic targets, and species-specific probes are used, which are directed to the ITS2 region of the gene 
that encodes rRNA.120 The API 20C carbohydrate assimilation system is also a gold standard for phenotypic character-
ization of non-albicans species.116,119

For C. lusitaniae identification, the ability of the API Candida system (bioMérieux, France) to identify isolates of this 
species has been evaluated.121 Of 52 clinical isolates that had been previously identified based on their morphology, 48 of 
these were identified as C. lusitaniae at 48 hours. Subsequently, 44 of the isolates were identified as C. lusitaniae at 24 
hours, and the other four were discarded because they assimilated cellobiose more slowly.121 The morphological 
identification determined that the strains corresponded to the species C. lusitaniae; however, this identification was 
verified using the ID 32C system, which was chosen for its extensive database.121 By this system, all the strains were 
identified as C. lusitaniae, two of these by applying complementary tests and reincubating for another 24 hours.121 Using 
the API Candida system, only 12 strains were identified as C. lusitaniae at 24 hours. In other words, the API system is 
not effective for the identification of this species and it is proposed that it is necessary to include morphological 
characteristics to avoid misidentification of C. lusitaniae as Candida famata.122 Although API Candida is considered 
a promising system for the identification of Candida species, it is not the most adequate to identify C. lusitaniae.121

Molecular taxonomic methods have also been used for C. lusitaniae identification.110 Using these methodologies, it was 
determined that the DNA bases of two clinical isolates were 45.1% guanine plus cytosine molecules from one strain, 
compared to 44.7% guanine plus cytosine molecules from the second strain. DNA/DNA reassociation experiments showed 
that there was a complementarity greater than 95% between the DNA of the two C. lusitaniae clinical isolates.110

Therapeutic Options to Treat Infections Caused by Candida lusitaniae
Four classes of antifungal drugs are currently used to treat systemic candidiasis: azoles, such as fluconazole, itraconazole, 
posaconazole, and voriconazole; polyenes, like conventional amphotericin B and its lipid formulations; the echinocandins 
caspofungin and micafungin; and the pyrimidine analog flucytosine.123 Several non-albicans Candida species are 
inherently resistant or less susceptible to various classes of antifungals, and the introduction of new azoles such as 
fluconazole has increased the frequency of multidrug-resistant strains.123

C. lusitaniae is known to develop resistance to amphotericin B; however, this species is considered susceptible to flucytosine 
and azoles.124 Although in most cases this pattern is consistent, several studies have shown that this species can develop resistance 
to flucytosine and azoles, classifying it as a species difficult to manage due to the variation in antifungal susceptibilities.7,124–127 

Echinocandins are the most widely used antifungal drugs for the treatment of C. lusitaniae-caused candidemia, which targets the 
β-1,3-D-glucan synthase encoded by the FKS genes,128 but their use has resulted in reported emerging resistance in several 
strains.129 Mutations in the FKS genes specifically FKS1 and FKS2 are responsible for the increased MIC in some species. In 
C. lusitaniae, it is reported that a nonsense mutation occurs in the FKS1 hot spot 1 at position 645 (S645F), which leads to an 
increase in the MIC for several echinocandins.129 Caspofungin resistance correlates with three new FKS1 mutations (S638Y, 
S638P, and S631Y); which correspond to positions Ser645 and Ser643 of C. albicans Fks1, and have been related to 
echinocandins resistance.127,129 Furthermore, resistance to fluconazole in this species is thought to be associated with the 
overexpression of a major facilitator gene (MFS7), and mutations in the transcriptional activator MRR1 in C. albicans.130

Clinical cases of neonates with kidney infections caused by C. lusitaniae have shown that changes in colony morphology 
are associated with resistance to amphotericin B and azoles.126 Previous reports have indicated that initial therapy is based on 
the use of amphotericin B and that it is used mainly as monotherapy.131 However, due to increased resistance to this antifungal, 
therapy began to be replaced by fluconazole or combined therapy. This therapy seemed to work in 85% of patients, who were 
cured, and the mortality rate decreased, presenting only 12% mortality in patients treated under this scheme.7 The response 
appears to be different for clinical cases, and largely depends on the patient’s immunity. In a study of 46 patients, one-third 
were cured with amphotericin B, one-third with fluconazole, and one-third with flucytosine.126 Although exclusive therapy 
with amphotericin B is not ruled out, an initial combination with flucytosine is recommended.126 Fluconazole therapy is 
effective in many cases and is recommended for treating disseminated candidiasis caused by C. lusitaniae.7,132 However, it is 
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necessary to carry out in vitro tests as soon as the presence of this species is identified, to determine the most appropriate 
treatment for each patient.126

Clinical reports have described that C. lusitaniae can generate multiresistant isolates when fluconazole antifungals are 
combined with amphotericin B.129 This type of combined treatment can be counterproductive and it is suggested that should 
be avoided, especially when C. lusitaniae is involved in deep-seated infections in immunocompromised patients.126,129

Something that has attracted attention in this species is the phenotypic change that it can develop in the culture 
medium. Two colony color variations have been demonstrated in CHROMagar Candida, causing the phenotype of full- 
size colonies and small colonies, both of which are included in the MATa genotype.20,126,133,134 These phenotypical 
switching affected susceptibility to amphotericin B.20,126 Moreover, changes in phenotype are observed when cross- 
resistance to fluconazole and itraconazole develops. This phenomenon had been already reported in different clinical 
cases that had documented acquired resistance to amphotericin B.135 It seems that this change is influenced by the 
adaptation of the organism to environmental changes.126 Similar findings have been reported also in Candida 
glabrata.133 These events of resistance to antifungals such as amphotericin B appear to be correlated with decreased 
ergosterol levels as a result of a defect in sterol isomerase.136 Although it is not ruled out that the resistance may be 
mediated by other mechanisms, such as the alteration of other steps in the biosynthesis of sterols, changes in the 
plasmatic membrane phospholipids, modifications in the cell wall structure, and the increase in the catalase activity.137

Finally, the correct treatment of infections caused by C. lusitaniae requires early control of susceptibility to antifungal 
drugs and an exhaustive examination of cultures to evaluate the possible morphological changes above mentioned.

Concluding Remarks
In recent years, research on candidiasis has been increasing but most of the work has been focused on understanding the 
biological, epidemiological, clinical, and biological aspects of species such as C. albicans and to a lesser extent on other 
species such as C. parapsilosis, C. glabrata, C. tropicalis, and C. krusei.27 C. lusitaniae is perhaps a forgotten pathogen 
because of the low frequency of isolation in healthcare centers. However, the infection caused by this species can be fatal 
in immunocompromised patients and the microorganism can develop resistance to antifungal drugs such as amphotericin 
B, and azoles, making it a difficult species to treat.

Bioinformatic tools have been key to understanding basic aspects of neglected species like this one since they allow us to 
generate gene predictions, which help to detect differences and similarities in terms of virulence, drug resistance, and relevant 
biological information when compared to thoroughly studied species like C. albicans and C. tropicalis. This information could 
be useful to develop new techniques for diagnosis, and treatment and to find other therapeutic targets against C. lusitaniae.

The information collected in this work highlights that there is still a lack of information about this species, which 
could be an opportunity area to develop more exhaustive studies that allow the scientific community to elucidate 
important aspects of this species’ biology. It would be interesting to develop new methodologies that allow the rapid 
and efficient identification of C. lusitaniae strains since the methodologies currently used are not very specific and could 
give false negatives or false positives, as is the case of the morphological evaluation in Candida ID agar and 
CHROMagar Candida. Finally, the study of the interaction with humoral and cellular components of the host immunity 
results paramount to understanding the C. lusitaniae-host interaction and proposing immunomodulatory options to treat 
the caused infections by this Candida species.
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