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Abstract: Pharyngocutaneous fistula is the most common complication after total laryngectomy and is difficult to heal. Although 
conservative treatment and surgical repair are effective, they often take longer and additional trips to the operating room, which 
undoubtedly increases the financial burden on patients. Especially in combination with diseases such as diabetes and hypertension, 
which affect the efficacy of surgery. Adding growth factors into the repair material can promote fibroblast proliferation, angiogenesis, 
and accelerate wound healing. A substantial number of studies have shown that a type of nanoscale extracellular vesicle, called 
exosomes, facilitates organization repair by promoting blood vessel production, protein polysaccharides, and collagen deposition, 
thereby representing a new type of cellular therapy. At present, there is little research on the application of exosomes in pharyngo-
cutaneous fistula regeneration after total laryngectomy. In this review, we summarize the biological characteristics of exosomes and 
their application in biomedical science, and highlight their application prospects in pharyngocutaneous fistula regeneration after total 
laryngectomy. 
Keywords: exosomes, extracellular vesicle, head and neck squamous cell carcinoma, pharyngocutaneous fistula, tissue repair and 
regeneration, bioengineering

Introduction
Pharyngocutaneous fistula (PF) occurs when saliva stored under the skin or under the incision of tissue forms a pus cavity 
to break to the skin or incision edge, so that the pharynx, esophagus, and skin connect into a sinus tract. PF is a common 
complication of total laryngectomy, with an incidence rate of 3–65% because of marginal vascular damage according to 
recent reports (Figure 1).1 Usually, wound healing occurs in four phases, including hemostasis, inflammation, repair, and 
shaping (Figure 2) and requires a series of complex molecules and cellular events, including cellularization, cell 
proliferation, angiogenesis, extracellular matrix deposition, and tissue remodeling.2–4 Most scholars believe that infection 
is the root cause of PF. Elderly age, multiple underlying diseases, poor nutrition, and low body resistance are factors 
known to increase the incidence of PF. The destruction of the submucosal vascular bed by an electrosurgical knife and 
the damage of normal tissue by radiation therapy also affect PF healing. Clinically, the preferred treatment of PF is 
conservative, including intravenous antibiotics, local antibiotic irrigation, local injection of botulinum toxin A,5 and 
nasogastric tube feeding until the closure of the PF. However, these strategies have limited efficacy, with slow, or even 
absent healing. Patients with poor conservative treatment may be treated with pedicled flap, surgical sealant,6 fibrin 
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binder,7 or autologous fat.8 Recently, some scholars have proposed that nanoscale extracellular vesicles termed 
exosomes9,10 can be directly delivered to the wound or defect to accelerate wound healing. The therapeutic purpose is 
achieved by direct injection, intraperitoneal injection, hydrogel complex, or drug carrier.

Most cells can release vesicles, including microbubbles, apoptosis, and exosomes,13 to transmit information between 
cells. The term “exosome” was first proposed by Trams et al in 198114 to describe nanosized (30–150 nm) vesicles generated 
by endosomes to form a multivesicular body (MVB) (Figure 3). MVBs fuse with lysosomes to degrade and recycle their 

Figure 1 Histological features of marginal blood vessels after total laryngectomy. Used with permission of Spring Nature BV, from Abouyared, M., et al, Abnormal 
Microvasculature in Laryngectomy Mucosal Margins may be Associated with Increased Risk of Fistula. Head Neck Pathol, 2019. 13(3): p. 364-370, permission conveyed 
through Copyright Clearance Centre, Inc.11 (A) Lymphatic vessels with marked dilation within the submucosal tissues. (B) Eosinophilic substances in the walls of blood 
vessels result in transparent and thickened arterioles. (C) Analysis of the frozen sections corresponding to B shows that transparent arterioles can be detected histologically. 
(D) Dilated capillaries (X); transparent arterioles (*). These histological features are more common in patients with postoperative fistula.

Figure 2 The four main stages of wound healing: hemostasis, inflammation, proliferation, and remodeling. Reproduced from Liu Y, Yang X, Liu Y, et al. NRF2 signalling 
pathway: new insights and progress in the field of wound healing. J Cell Mol Med. 2021;25(13):5857–5868. © 2021 The Authors. Journal of Cellular and Molecular Medicine 
published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd. Creative Commons CC BY licens.12 Inflammatory stages include the activation of 
inflammatory cells and the release of proinflammatory factors; proliferative stages include fibroblasts proliferation and angiogenesis; and remodeling includes myofibroblast 
shrinkage of the wound and barrier repair.
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contents by autophagy.15 However, when the MVB fuses with the plasma membrane, proteins, lipids, and nucleic acids can 
be transferred to receptor cells by paracrine, autocrine, and endocrine mechanisms.16 Exosomes protect the contents from 
degradation, which is conducive to intercellular communication. It has been reported that exosomes are secreted by 
lymphocytes17 and dendritic cells (DCs),18 with the function of immune regulation and molecular messengers, as achieved 
by exposing major histocompatibility complexes (MHC) and costimulatory molecules. Indeed, exosomes form mature DCs 
carrying B7-2 and ICAM-1 have been shown to directly interact with T cells to activate the immune system. Moreover, 
immature DC-derived exosomes can present antigens to receptor cells to indirectly induce T-cell activation.19 Almost all cells 
secrete exosomes (see Table 1 for specific sources), including macrophages, T cells, B cells, mesenchymal stem cells, fat 
cells, and tumor cells. Exosomes are widely present in body fluids (blood, saliva, urine, cerebrospinal fluid, breast milk, 
amniotic fluid, ascites, semen), playing an important role in immunity, as messengers, and in disease diagnosis and treatment. 
Recently, the profitability of promoting wound healing has gained extensive attention. After tissue damage, abnormal repair 
mechanisms prevent wound healing or further develop to form a pharyngeal. During the inflammatory phase, the nuclear 
factor-E2-related factor 2 (Nrf2)-Ccl2-EGF signal axis is inhibited, affecting macrophage transport, re-epithelialization, and 
angiogenesis. Simultaneously, the release of inflammatory bodies, the production of apoptotic-associated spot-like protein 
(ASC), and the activation of pro-inflammatory caspases leads to cell pyroptosis and increased pathological autophagy. The 
release of inflammatory mediators promotes the downregulation of the Wnt/β-catenin signal pathway, blocking the 
phosphorylation of AKT and ERK1/2, affecting cell proliferation, and slowing wound healing. However, the high expression 
of transcription factor nuclear factor E2 related factor 2 in exosomes has been shown to accelerate diabetic foot ulcer healing. 
Various RNAs present in exosomes could regulate other physiological processes, such as transcription and translation, which 
are beneficial for angiogenesis, fibroblast migration, and tissue damage repair, representing a potential treatment strategy for 
difficult wounds. Therefore, in this review, we summarize the physiological characteristics, extraction methods, and clinical 
applications of exosomes, and highlight their application prospects in PF regeneration after total laryngectomy.

Figure 3 The three ways of exosome formation. Used with permission of Annual Reviews, Inc, from Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019; permission 
convyed through Copyright Clearance Center, Inc.20 1. Multivesicular bodies release exosomes upon plasma membrane fusion. 2. Exosomes released by budding from the 
plasma membrane. 3. Delayed release by budding at the intracellular plasma membrane-connected compartments.
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Application of Exosomes in Biomedicine
Composition and Biological Characteristics of Exosomes
Exosomes are secreted by progenitor cells through the endosomal sorting complexes required for the transport (ESCRT) 
pathway, which contains most of the components of progenitor cells, which mainly include protein, DNA, mRNA, 
miRNA, micRNA, and IncRNA. The outer membrane is lipid biomolecules, mainly composed of ceramide, cholesterol, 
sphingomyelin, glycosphingolipid, and phosphatidylcholine. The components contained in different types of exosomes 
are distinct, but most of them are highly enriched in cholesterol, which is 2–3-fold more than that in parental cells. 
Interestingly, ether lipids account for a high proportion of membrane lipids, but there has been limited research into their 
roles. The research shows37 that ether lipids include lecithin and phosphatidylethanolamine, mainly assuming functions 
of membrane transport, cell differentiation, and antioxidant activities to stabilize the cell structure and protect the internal 
components against degradation.38–42 The proteins found in exosomes include tetrapeptide, transmembrane proteins, heat 
shock proteins (HSP60, HSP70, HSPA5, CCT2, and HSP90), lactadherin, and annexins43 (I, II, IV, V, VI, VII and XI), all 
of which represent good biomarkers for separating and quantifying exosomes. Exosomal proteins also have differing 
roles. Tetrapeptide is an integrated outer membrane protein, and it has been demonstrated20 that exosomes are highly 

Table 1 Source and Function of Exosomes (for Reference)

Cells of Origin Exosomal Cargo Biofluids Recipient Cells Function Reference

T cells miR-198 Plasma Tumor cells Inhibit tumor occurrence [21]

CD-73 Plasma T cells Produce adenosine to suppress immunity [22]

Micr-155 Plasma Th1 cells Mediate immune suppression [23]

Dendritic cells miR-16 Plasma Endotropical cells Inhibit the inflammatory response [24]

miR-21 Plasma Endotropical cells Inhibit the inflammatory response [24]

Latent membrane 

protein-1

Plasma EBV-infected cells Suppress the immune response [25]

Mesoplasmic 

stem cells

lncRNA H19 Plasma Fibroblast Stimulate the wound healing process in 

diabetic foot ulcer

[26]

miR-let7, miR-21-5p Plasma M2 macrophage Attenuate the progression of atherosclerotic 

plaques

[27]

miR-130a Endotropical cells Promote angiogenesis [28]

Tumor cells miR-105 Plasma Endotropical cells Promote lung and brain metastasis of cancer 

cells

[29]

miR-210 Plasma Lung 

adenocarcinoma 
cells

Increase tumor occurrence [30]

miR-210 Plasma JAK2/STAT3 Promote neoplastic angiogenesis [31]

ITGA3 & ITGB1 Serum None Suggest tumor metastasis [32]

lncRNA-MALAT-1 Serum None Prevent tumor cells apoptosis [33]

Endotropical cells miR-214 Plasma Endotropical cells Promote cells migration and angiogenesis [34]

Macrophage miR-21-3p, miR-146a, 

miR-146b

Serum Inflammation cells Inhibits overaction of the congenital immune 

response

[35]

miR-155 Serum Endotropical cells Inhibits angiogenesis [36]
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enriched in CD81, CD82, CD37, and CD63, which assist with the transportation and stability of other membrane proteins 
and may be used as specific biomarkers.44 Heat shock proteins are highly conservative molecular partners, which 
promote the folding modification of other proteins, and antistress and adjustment of redox reactions. Annexins are 
mainly involved in membrane adhesion and fusion. Nucleic acids are other key substances, encompassing DNA, mi- 
RNA, mic-RNA, and IncRNA. The type and quantity of the nucleic acids contained in exosomes are achieved by an 
active sorting mechanism. Indeed, Guduric-Fuchs et al45 found that miR-150, miR-142-3p, and miR-451 are given 
priority over the exosomes, mediating intercellular communication, immunity, antigen presence, and antigen transfer via 
transcription or translation. Non-encoded RNA mainly regulates gene expression, catalyzing specific RNA degradation, 
but whether DNA should be selectively classified to the exosomes is unclear. To summarize, exosomes are nanoscale 
vesicles derived by exocytosis, which contain proteins, lipids, and nucleic acids, all of which play a key role in cellular 
communication. Not only are exosomes involved in physiological processes, such as reproductive, immunization, 
transcription, translation, and organ development,46–48 but they also mediate disease development, such as tumor 
invasion, inflammation, and cardiovascular disease.49–51 Clinically, exosomes have been used in vaccine development, 
drug carriers, biocoupling, and wound-binders. The specific applications are shown in Table 2.

Separation and Extraction of Exosomes
Although the use of exosomes in treatment is highly regarded, it is difficult to use in clinical work due to difficult 
extraction technology, and high purity and storage requirements. Therefore, in future research, it will be important to 
simplify the extraction of exosomes and improve the yield. Commonly used exosome extraction methods include 
ultracentrifugation, ultrafiltration, precipitation, miniature exclusion chromatography, and affinity capture. 

Table 2 Type and Clinical Application of Exosomes (for Reference)

Cargo 
Type

Exosomal Cargo Target Clinical Value Reference

miR-RNA miR-RNA126 Fibroblast Promote epithelialization [52]

miR-100-5p M-TOR autophagy pathway Protect cartilage from damage [53]

miR-92a-3p WNT5A mRNA Enhance cartilage generation [54]

miR-16 Vascular endothelial growth 
factor

Prevent angiogenesis [55]

miR-92a Leukemia cells Mediate leukemia metastasis [56]

miR-21-3p Cardiomyocytes Induce cardiomyocyte hypertrophy [57]

miR-207 Astrocytes Inhibits NF-κB and alleviates symptoms of depression [58]

Inc-RNA Inc-EGFR Regulating T-cells Promoting hepatocellular carcinoma immune evasion [59]

Inc-H19 miR-let-7 Promote tongue squamous cell carcinoma migration 

and invasion

[60]

Cir-RNA Fil1 exonic Small cell lung cancer cells Promote tumor metastasis [61]

Protein Annexin 2 and L-plastin Breast cancer cells Prognosis for breast cancer [62,63]

PD-L1 Head and neck cancer cells Indicate tumor progression [64]

Leucine rich alpha- 
2-glycoprotein 1

Cancer cells A potential biomarker for diagnosing for NSCLC [65]

Latent membrane protein 1 T cells Biomarker for diagnosing for nasopharyngeal 
carcinoma

[66]

Tau proteins Neurons and microglia Promote progression of Parkinson’s disease [67]
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Ultracentrifugation is the gold standard for the separation of exosomes, including differential ultracentrifugation and 
density gradient ultracentrifugation, among which, differential ultracentrifugation is the most commonly used. Under 
different centrifugal forces (up to 1,000,000×g), contaminants (300–400×g), cell debris (2000×g), and apoptotic bodies 
(10,000×g) are removed sequentially before exosomes are finally purified. The separation efficiency is related to the rotor 
acceleration, rotor characteristics (rotation radius, k-coefficient, sedimentation path length), and sample viscosity. 
Therefore, we should pay close attention to these aspects when adjusting the rotor parameters. Although differential 
ultracentrifugation is simple to operate and does not require specialized knowledge, prolonged operation (more than 4 h) 
can cause exosome damage and cannot completely separate exosomes from other components outside the cell. 
Ultrafiltration is faster than ultracentrifugation, but with lower purity. Currently, a new method of exosome extraction, 
microfluidics,68 is being widely used in biomedical research, molecular biology, and analytical chemistry. In this 
technology, exosome membrane-binding proteins bind to protein antibodies on a microfluidic chip to achieve the effect 
of separation. ExoSearch microfluidic chips have been developed and applied clinically. The most recent research69 

found that two-phase separation was the most economical, fast, and promising exosome extraction method. In this 
method, polyethylene glycol and dextran are simultaneously dissolved in aqueous solution to form two independent 
phases; exosomes are preferentially deposited in the dextrose phase through chemical reaction, and other proteins will be 
deposited in the polyethylene glycol phase. Fresh polyethylene glycol solution is extracted repeatedly; the protein content 
continues to decrease, while the purity of the exosomes is elevated. Although the clinical application of exosomes in 
diagnosis, treatment, and prognosis has been established, their isolation and purification remain challenging. Therefore, 
further research is necessary to establish efficient, short-term, and convenient extraction methods to realize the 
advantages of exosome therapy.

Clinical Application of Exosomes
Based on their good physiological characteristics, exosomes have been used in the diagnosis of myocardial 
infarction,70,71 psychiatric diseases,72 cancer,73–77 spinal cord injury, and wound healing in vivo.78,79 In vitro, exosomes 
have been included in drug carriers,80 where access to the lesion achieves the purpose of treatment through direct 
injection, intravenous delivery, intraperitoneal injection, and others. Hydrogels and drug carriers are the two most 
common modes of exosome transport.

Hydrogel
Hydrogels with three-dimensional crosslinking structures can support bioactive molecules, such as stem cells and 
antioxidants, with good biocompatibility, antibacterial, hemostasis, tissue adhesion, easy degradation, and injectable 
properties, and represent ideal wound dressings. Hydrogel has been used for diabetic chronic wounds,81 bone 
regeneration,82 spinal cord injury,83 periodontitis,84 and limb ischemia, and can improve the effectiveness of transdermal 
administration through hydrogel-formed microneedles.85 As research has progressed, researchers have found that the 
hydrogel-exosome hybridization system was more conducive to wound healing than the use of hydrogel alone. Exosomes 
can be embedded in hydrogel or act as crosslinkers to construct a three-dimensional hydrogel network directly. In 
a mouse injury model, Nooshabadi et al covered the wound with a chitosan hydrogel containing stem cell-derived 
exosomes and demonstrated a wound closure capacity of nearly 83.6%, which was significantly higher than the control 
group (51.5%). These findings suggest that chitosan glycerol exosome hydrogel can be used for the repair of defective 
skin, and to promote wound healing and epithelialization.86 Similarly, exosomes of the sodium alginate hydrogel are 
placed at the wound, which significantly improves wound closure, collagen synthesis and angiogenesis, and promotes the 
regeneration of the whole skin.87 Besides, Wang et al81 produced a new type of hydrogel consisting of Pluronic F127 
(F127), oxidative hyaluronic acid (OHA), and EPL, known as FHE hydrogel. This hydrogel has advantages of being 
injectable, antibacterial, and self-healing, all of which can promote diabetic wound healing, angiogenesis, and skin 
regeneration via the joining of exosomes. Exosomes are loaded into hydrogels through electrostatic interaction with EPL 
and released in a weakly acidic environment. Recently, exosomal hydrogels derived from HucMSCs-exos have been used 
in bone transplantation with self-healing to extend the life and safety of the material.88 Hydrogel is a good tissue repair 
material, and the addition of low immunogenic exosomes can greatly improve the repair efficiency in the context of 
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chronic erosion wounds, ulcers, and PF regeneration after total laryngectomy. Hydrogel-exosome hybridization system 
promotes tissue and mucosal regeneration, with the aim to replace the graft flap, which will represent a major step toward 
cell-free therapy.

Drug Carriers
In addition to their combination with hydrogels, exosomes can also act as drug carriers. In recent years, the use of 
nanoscale exosomes as tumor-targeted drug carriers has gained increasing attention. Compared to traditional drug 
carriers, such as ice flakes,89 liposomes, and multimers, exosomes are favored for their stability and ability to penetrate 
the blood–brain barrier, protecting the payload from degradation. Sun et al first proposed the use of exosomes as drug 
delivery systems.87 In terms of tumors, multiple studies have confirmed that exosome nanoparticles can be used for 
triple-negative breast cancer,90–93 osteosarcoma,87,92 glioblastoma. In terms of inflammation, exosome wrapping of the 
anti-inflammatory agent curcumin shows increased solubility and stability, as well as the ability to downregulate the 
CD11b+Gr-1+ cell population to control the inflammatory response.94 The use of exosomes as drug delivery systems has 
also been reported in the application of rheumatoid arthritis,95 lymphoma, septic shock, Parkinson’s disease, and 
neuroinductive diseases. Exosomes can also be used as drug carriers in the context of wound healing, where they 
have advantages in their high biocompatibility and ability to prolong the drug action. Exosomes, which can be wrapped 
in centella asiatica, gallic acid, syringe, and orange bell to promote wound healing, represent a good material for PF 
regeneration after total laryngectomy, enhancing antioxidant properties and stimulating keratinocyte migration. Several 
alternative nanoparticles, such as organic nanoparticles, lipid nanoparticles, polymer nanoparticles, nano hydrogels, and 
nanofibers, have also been reported. The healing difficulties observed in PF are largely due to the lack of oxygen. 
Consequently, damaged blood vessels cannot provide sufficient oxygen to normal tissues, affecting fistula repair, and 
resulting in a vicious cycle of “hypoxia–necrosis–hypoxia.” Oxygen-carrying nanodroplets are proposed as a promising 
tool for the treatment of chronic wounds, where they can serve to continuously release oxygen, improving wound 
hypoxia and promoting collagen deposition. Exosomes are better choices than chitosan as oxygen-carrying droplet 
carriers, and may be trialed for the repair of PF regeneration after total laryngectomy in the future, providing another 
option for the repair materials of PF.

Prospects for Exosomes in PF Regeneration
Mechanism of PF After Total Laryngeal Surgery
In summary, exosomes have high biocompatibility, low immunogenicity, non-toxicity, and low cost, thus wound dressing 
could be used to deliver bioactive exosomes for promoting wound healing, significantly increasing the wound healing 
rate. Wound healing is generally divided into four stages, including coagulation, inflammation, repair, and maturity, and 
obstruction at any stage may lead to wound non-healing. PF is particularly difficult to heal due to the low immunity and 
weak anti-infection ability of patients following total laryngectomy. The higher the tumor stage, the more nutrients the 
cancer cells plunder from the normal tissue, and the weaker the immune function of the normal tissue is. The normal 
immune function of the body is closely related to wound healing, mainly through the actions of neutrophils, monocytes, 
macrophages, and dendritic cells to trigger epithelial migration and proliferation. Previous studies96 have shown that 
during the inflammatory phase, the Nrf2-Ccl2-EGF signal axis is inhibited, the secretion of nrf2 by epidermal 
keratinocytes is blocked, and the secretion of Ccl2-EGF is reduced, affecting macrophage transport, re- 
epithelialization, and angiogenesis (Figure 4). This process often occurs in chronic, unhealed wounds such as those 
observed in PF. Moreover, nrf2 can affect the transformation of M1 to M2 macrophages, hinder the production of anti- 
inflammatory factors, promote an inflammatory state, and slow wound repair; however, the specific effect mechanism has 
not yet been elucidated. New studies12 suggest that chronic wounds lack nrf2, which stimulates the release of 
inflammasomes, the production of apoptosis-associated spot-like protein (ASC), and the activation of pro- 
inflammatory caspase, leading to cell pyroptosis (a new type of programmed apoptosis) and autophagy (Figure 5). 
Zeng et al97 found that miR-106b-5p induces excessive autophagy of fibroblasts by inhibiting erk1/2 expression, reducing 
collagen production, and delaying wound healing. In addition, the increased release of matrix metalloproteinases, pro- 
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Figure 4 The lack of Nrf2 from epidermal keratinocytes impairs wound repair. Reproduced from Villarreal-Ponce, A., et al, Keratinocyte-Macrophage Crosstalk by the Nrf2/Ccl2/ 
EGF Signaling Axis Orchestrates Tissue Repair. Cell Rep, 2020. 33(8): p. 108417. © 2020 The Authors. This article is available under the Creative Commons CC-BY-NC-ND 
license.96 (A) Generation of Nrf2Δ /+Ker and Nrf2Δ/Δker mice. (B) WB (Western-Blot) for MnSOD and Nqo1 on whole-wound lysates from Nrf2Δ /+Ker and Nrf2Δ/Δker mice. (C) 
Quantification of (B). (D) Images of healing in Nrf2 +/+Ker, Nrf2Δ /+Ker, Nrf2Δ/Δker. (E). Wound area over time in Nrf2 +/+Ker, Nrf2Δ /+Ker, Nrf2Δ/Δker, db/db mice. (F). Wound closure in 
Nrf2 +/+Ker, Nrf2Δ /+Ker, Nrf2Δ/Δker, db/db mice. (G) Wound burden analyses in Nrf2 +/+Ker, Nrf2Δ /+Ker, Nrf2Δ/Δker, db/db mice. (H) Epithelial gap measurements in in Nrf2 +/+Ker, 
Nrf2Δ/Δker. (I) Quantification of Ki-67+ keratinocytes at the epithelial wound edge in Nrf2 +/+Ker, Nrf2Δ/Δker. (J) Granulation tissue measurements in Nrf2 +/+Ker, Nrf2Δ/Δker. (K) 
Generation of Nrf2Δ /+HFSC and Nrf2Δ/ΔHFSC. (L) Images of Nrf2+/+HFSC and Nrf2Δ/ΔHFSC. (M–O) Wound area over time (M), wound closure (N), and wound burden analyses (O) in 
Nrf2+/+HFSC and Nrf2Δ/ΔHFSC mice. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
Abbreviation: ns, not significant.
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inflammatory factor TNF-α, serum procalcitonin, anti-angiogenic factor,98 interleukins,99 platelet-reactive proteins 1,100 

and reactive oxygen species inhibit cell migration and are not conducive to wound healing. Moreover, it has been 
reported101 that the expression of IL-25 functional receptors (IL-17RB) is inhibited due to the lack of IL-25 in the wound. 
The low expression of β-catenin results in downregulation of the Wnt/β-catenin signal pathway and obstruction of AKT 
and ERK1/2 phosphorylation, decreasing cell proliferation, increasing apoptosis, and leading to delayed wound healing 
(Figure 6). Together, these mechanisms contribute to the poor healing observed in PF, although research is still relatively 
limited. Therefore, it is necessary to conduct more basic experiments to provide new treatment ideas for promoting 
wound healing.

Mechanism of Exosomes Repair Tissue Defect
Exosomes Activate Normal Immunity
As the name implies, PF is a tissue defect. Long-term mucosal necrosis and insufficient angiogenesis cause the tissue necrosis so 
that the wound does not heal. Typically, platelets are rapidly gathered in the damaged site after tissue damage, forming fibrino 
clots to promote hemostasis. Next, the release of inflammatory factors, such as pentin and histamine, results in higher capillary 
permeability, attracting inflammatory cells to the wound area, playing anti-inflammatory roles. Infiltrated monocytes differentiate 
into anti-inflammatory M2 macrophages, facilitating fibroblast proliferation, collagen deposition and tissue shaping. Previous 
studies102–104 have shown that T cells secrete exosomes enriched in TCR-CD3 composites following stimulation with antigen or 
inflammatory factors, such as IL-12. Exosomes can directly activate CD8+ T cells to generate IFN-γ and granzyme, but also carry 
hazardous signals to activate dendritic cells, which starts the next cellular immunization. However, this has only been examined 
in vitro, and it remains unknown whether T cell–derived exosomes have the same influence in vivo or over long distances. In 

Figure 5 Several modes of regulation of the NRF2 signal pathway. Reproduced from Liu Y, Yang X, Liu Y, et al. NRF2 signalling pathway: new insights and progress in the field 
of wound healing. J Cell Mol Med. 2021;25(13):5857–5868. © 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and 
Molecular Medicine and John Wiley & Sons Ltd. Creative Commons CC BY license.12 Regulation of calcium ions (increased concentration of calcium ions can inhibit the 
transduction of the PI3K/AKT signal pathway due to the overexpression of HO-1), mitochondrial oxidative stress (SIRT3 expression is strengthen by the adjustment of 
NRF2, thereby optimizing the therapeutic effect of mesenchymal stem cells on skin wound healing), ferroptosis (lipid peroxidation is mainly achieved by the participation of 
NRF2 downstream target genes such as HO-1, GCLC, NQO-1, and SLC7A11), pyroptosis (activating the NRF2 pathway promotes apoptosis and inhibits the activation of 
NLRP3 - an inflammatory body), and autophagy (PI3K/AKT pathway activation influences the expression of NRF2 and mTOR, as well as P62 and ATG gene expression).
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Figure 6 Downregulation of IL-17RB signaling pathway mediated by IL-25 delayed wound healing in diabetic mice. Reproduced from Zhang F, Liu Y, Wang S, et al. 
Interleukin-25-Mediated-IL-17RB upregulation promotes cutaneous wound healing in diabetic mice byimproving endothelial cell functions. Front Immunol. 2022;13:809755. 
Copyright © 2022 Zhang, Liu, Wang, Yan, Lin, Chen, Tan and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(CC BY).101 (A). Images of wounds on day 0 and day 11 after injury in the control (CON) group and diabetic mice (DM) group. (B) Quantitative analysis of wound closure 
time. (C) Masson trichrome staining of the wound skin sections from CON group and DM group. (D) Quantitative of collagen deposition in the CON group and DM group. 
(E). Angiogenesis analysis of CD31 in the skin sections from CON group and DM group through immunohistochemistry staining. (F) Quantitative analysis of angiogenesis. 
(G-H). Quantitative analysis of IL-25 and IL-17RB mRNA expression in the CON group and DM group. (I) Immunofluorescence staining of IL-17RB in the CON group and 
DM group. (J) Quantitative analysis of IL-17RB protein expression in the CON group and DM group. *P < 0.05, **P < 0.01, ***P < 0.001. Scale bars, 200 μm (6C left), 25 μm 
(6C right), 25 μm (6E), 20 μm (6I).
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addition, exosomes from dendritic cells can carry MHC-peptide complex to activate CD4+ and CD8+ T105 cells directly, 
activating immune responses to resist virus or bacterial invasion. Nevertheless, exosomes derived from macrophages can affect 
the function of T cells and dendritic cells. For instance, macrophage-derived exosomes enriched in CD63+ and OX40L promote 
CD4+ Th2 cell proliferation and differentiation.106 Exosomes derived from macrophage also upregulate the antigen-presenting 
ability of dendritic cells, leading to the initiation of an antigen-specific immune response.107 Taken together, exosomes derived 
from immune cells have protective effects on the whole body, which can effectively activate the immune system, fight 
inflammation, and accelerate tissue regeneration. In patients with PF, the transformation from M1 to M2 macrophages is 
affected, and increasing inflammatory mediators suppress immunity and hinder fibroblast migration. Therefore, targeting 
exosomes secreted by immune cells may be a potential strategy for the treatment of PF, and, through artificial intervention, 
enhancing immunity will inevitably be conducive to subsequent damaged tissue repair.

Exosomes Regulate the Inflammatory Response
In addition to their participation in immune regulation, exosomes can regulate inflammatory response, as has been shown 
in skin wounds, diabetic foot ulcers, bone defects, scapula tendon injuries, and burns.82,97,108–110 According to previous 
reports,27,111–114 exosomes derived from mesenchymal stem cells promote the polarization of macrophages from M1 to 
M2, leading M2 to secret anti-inflammatory factors such as IL-10 and TGF-β, reducing inflammation and accelerating 
wound healing. Some exosomes are achieved by increasing arginase 1 (ARG1)(M2 macrophage marker) and decreasing 
inducible nitric oxide synthase (INOS) (M1 macrophage marker). Others downregulate toll-like receptor 4 (TLR4), 
nuclear factor κB (NF-κB), and phosphor (p)-p65 to induce M2 macrophages to secrete anti-inflammatory factors. 
A recent study115 suggested that extracellular vesicle-loaded protein fragments could act as bait receptors, integrating 
with specific cytokines, such as TNF-α receptor 1 and IL-6 signal converters, to prevent them from exerting pro- 
inflammatory effects and promoting tissue damage repair. Schneide et al116 confirmed through animal model experiments 
that in humans, anti-inflammatory effects are primarily achieved by activating CD8 T cells to secrete CD73-rich 
exosomes. There is growing evidence that exosomes can also contribute to the progression of inflammatory diseases, 
such as inflammatory bowel disease, arthritis, atherosclerosis, diabetes, and neurodegenerative diseases. The inflamma-
tory response is controlled, which is conducive to the proliferation of fibroblasts, collagen deposition, and tissue shaping. 
The incidence of infection is reduced and the secretion of nrf2 is often hindered by epidermal keratinocytes in PF so that 
Ccl2-EGF is affected; this prevents the conversion from M1 to M2, hindering subsequent fibroblast proliferation, 
angiogenesis, and collagen deposition. Therefore, appropriate exosome supplementation is conducive to tissue damage 
repair. Exosome supplementation can be performed in various ways, including the following: implanting exosomes into 
PF repair materials combined with specific cytokines to reduce inflammation and play a role in promoting repair; or 
injecting specific exosomes at the wound edge to promote rapid tissue regeneration and wound healing. The delivery of 
exosomes through endogenous or exogenous pathway can provide a clinical basis for PF repair. Yet, there are insufficient 
studies on exosomes for PF repair, and a large number of basic studies are needed to further confirm.

Exosomes Promote the Proliferation and Invasion of Fibroblasts
After the inflammatory phase, fibroblast hyperplasia is the most important link in the repair phase. Fibroblasts secrete 
collagen, extracellular matrix, and collagenase, and participate in granulation tissue formation. Studies117 have shown 
that exosomes derived from adipose stem cells can transport miRNA-125a and miRNA-31 to vascular endothelial cells, 
stimulating fibroblast proliferation, and regulating collagen remodeling; exosomes derived from human umbilical blood 
plasma are highly enriched with miR-21-3p, which promotes wound healing by inhibiting phosphatase and tension 
protein homologues, as well as bud-like homologies.118 Furthermore, exosomes derived from mesenchymal stem cells 
deliver lncRNA H19 to fibroblasts, inhibiting miR-152-3p, promoting phosphatase synthesis gene expression, blocking 
the PI3K/AKT pathway to enhance the proliferation and migration of fibroblasts, inhibiting apoptosis, and accelerating 
DFU healing.26 Exosomes can also inhibit the apoptosis of damaged cells and restore the vitality of senescent endothelial 
cells. The exosomes secreted by human embryonic stem cells are rich in miR-200a, which rejuvenates endothelial cells 
by downregulating the expression of Kelch-likeECH-associated protein 1 (Keap1) and activating nuclear factors 
(erythroid derivation 2).119 Fibroblasts increase extracellular matrix and laminin production, reduce platelet production, 

International Journal of Nanomedicine 2022:17                                                                                   https://doi.org/10.2147/IJN.S372042                                                                                                                                                                                                                       

DovePress                                                                                                                       
4129

Dovepress                                                                                                                                                            Chen et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


promote subsequent angiogenesis, and improve blood supply. Consequently, fibroblasts are lacking in PF; thus, targeted 
delivery of normal fibroblasts to the fistula may serve to compensate for the fibroblasts consumed by repeated infections 
and accelerate the healing rate. This process is expected to be achieved via exosomes. The above studies show that 
exosome-assisted wound therapy is a promising cell-free therapy, and a variety of cell-derived exosomes can stimulate 
the proliferation of fibroblasts to promote wound healing.

Exosomes Promote Angiogenesis
Wound healing requires both cell proliferation and adequate blood supply. Angiogenesis describes the new formation of blood 
vessels on the basis of the original capillaries or venules through the proliferation and migration of vascular endothelial cells. 
Under the regulation of pro-angiogenesis factors (alkaline fibroblast growth factor, vascular endothelial cell growth factor), 
a new basement membrane is formed, which subsequently forms a capillary network that can be remodeled. Previous 
studies30,65 have reported that exosomes can promote angiogenesis by transmitting mi-RNA and protein signals. Exosomes 
derived from cardiomyocyte progenitor cells (CMPC) and mesenchymal stem cells highly express extracellular matrix 
metalloproteinase inducers, which mediate ERT/AKT pathway activation and promote angiogenesis. Knockout of the 
extracellular matrix metalloproteinase inducer in cardiomyocyte progenitor cells weakens its angiogenesis effect.120 Studies 
have reported that patients with PF have elevated MMP-2, MMP-7, and MMP-9, which is not conducive to wound healing.103 

Similarly, Zhang et al121 confirmed that exosomes derived from bone marrow mesenchymal stem cells activate the PI3K/AK 
pathway by transmitting miRNA-126, promoting angiogenesis, and accelerating wound healing. Secondly, exosomal miR- 
1260a could promote angiogenesis and osteogenesis by targeting HDAC7 and COL4A2, and the addition of low-dose 
nanomaterials Fe3O4 and SMF could enhance this promoting effect.122 To summarize, most exosomes affect gene transcrip-
tion by transmitting RNA signals, promoting protein factor synthesis, and mediating angiogenesis. Studies have shown that 
exosomes derived from human-induced mesenchymal stem cells can also promote angiogenesis and osteogenesis,82,109,111 

representing another option for treating bone defects. Exosomes secreted by adipose-derived stem cells (ADSCs) can facilitate 
the proliferation of endothelial progenitor cells and the production of vascular growth factor, reducing the expression of 
inflammation-related proteins and accelerating wound healing. Moreover, the high expression of the transcription factor Nrf2 
can enhance these effects and can be used as a therapy for diabetic foot ulcers.109 Given the ability of exosomes to promote 
angiogenesis and assist with wound healing in skin wounds, burns, and ulcers, the application of exosomes in PF repair is 
worth exploring.

Exosomes Promote the Deposition of Proteoglycan and Production of Collagen
The final step in wound healing is the formation of granulation tissue, ie, proteoglycan deposition and collagen production. 
Granulation tissue protects wounds and fills wounds and other tissue defects. However, patients are generally in poor condition 
after total laryngectomy, and when PF occurs, the peri-traumatic fibroblasts cannot migrate in an orderly manner, leading to 
insufficiency of new blood vessels. These blood vessels cannot provide adequate oxygen and nutrient supply, and cannot form 
hard granulation tissues, resulting in slow or poor-quality healing. Li Qian et al123 determined the effect of exosomes derived 
from fat mesenchymal stem cells on the repair and healing of traumatic tissues by flow cytometry, reverse transcription 
quantitative polymerase chain reaction (RT-qPCR), and Western blotting. As a result, they found that lncRNA H19 (H19), 
microRNA 19b (miR-19b), and SRY-related high-mobility group protein cassette 9 (SOX9) played a major role. First, exosomes 
can inhibit SOX9 to activate the Wnt/β-catenin pathway and promote the proliferation, migration, and invasion of fibroblasts 
around the wound. Second, H19 in exosomes can be used as a signaling molecule to upregulate the expression of SOX9 by 
inhibiting miR-19b, promoting collagen synthesis and wound repair. Hence, exosomal H19 is a positive regulator of wound 
healing. Thus, targeted delivery of exosomal H19 may represent another option for PF repair. Moreover, exosomes derived from 
ADSCs can also directly stimulate the generation of collagen types I and III, increase the expression of N-cadherin and cyclin-1 
genes, internalize fibroblast expression, promote their proliferation, migration, and hasten tissue healing.124 The latest research124 

shows that miR-21-5p and miR-125b-5p carried by exosomes derived from cord blood mesenchymal stem cells inhibit the 
conversion of growth factor β receptor 2 and transforming growth factor β receptor 1, thereby inhibiting the TGF-β signal 
pathway to stimulate wound regeneration and healing, and reduce scarring. Likewise, transmitting Wnt4 to activate the Wnt/β- 
catenin and AKT pathways in skin cells is beneficial to wound healing by enhancing wound closure and inhibiting 
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apoptosis.123,125,126 In patients with PF, the lack of β-catenin leads to the obstruction of AKT and ERK1/2 phosphorylation, 
affecting wound healing. These findings demonstrate that exosomes interfere with the normal metabolism of tissues by 
transmitting RNA or proteins, with the associated signaling pathways representing sites of action. Furthermore, exosomes 
derived from mesenchymal stem cells can replace stem cells for cartilage tissue regeneration and repair, mainly to reduce the 
production of inflammatory factors (eg TNF-α, IL-6 and IL-10), promoting the deposition of proteoglycans and type II collagen 
production.54 In summary, a strong wall is needed to defend against external diseases, and strong granulation is needed to defend 
against inflammation. The difficulties with PF healing are mainly due to poor tissue regeneration and lack of blood supply, which 
together affect the formation of granulation tissue. While local antibiotic therapy is ineffective, and the survival rate of flap 
transplantation is low, the prognosis of patients remains poor. Combined with previous studies, exosome therapy may open new 
perspectives for PF repair, and targeted delivery, drug scaffolds, biological patches, and hydrogels are expected to be cell-free 
treatment options for PF repair.

Conclusion and Future Prospects
Wound healing has long caused issues following surgery, and poor healing tissue is not only vulnerable to infection but 
also reduces the effectiveness of surgery. Particularly, patients with cancer are prone to PF after total laryngectomy, 
which can persist for a long time. For patients, this not only increases financial burden, but also reduces the quality of 
life. Numerous studies120,121,127 have shown that exosomes play an important role in promoting all phases of tissue 
repair, and can assist with help wound healing by enhancing anti-inflammatory factors, promoting fibroblast proliferation, 
and promoting angiogenesis. We have reason to believe that exosomes somehow influence the repair process of PF. The 
use of genetic engineering techniques for the repair of PF not only represents a future research direction, but also a major 
therapeutic strategy for PF in cell-free therapy. Nevertheless, optimizing the production and storage methods of exosomes 
remains an urgent problem to be solved.
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