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Abstract: Cancer stem cells (CSCs) lead to the occurrence and progression of cancer due to their strong tumorigenic, self-renewal, 
and multidirectional differentiation abilities. Existing cancer treatment methods cannot effectively kill or inhibit CSCs but instead 
enrich them and produce stronger proliferation, invasion, and metastasis capabilities, resulting in cancer recurrence and treatment 
resistance, which has become a difficult problem in clinical treatment. Therefore, targeting CSCs may be the most promising approach 
for comprehensive cancer therapy in the future. A variety of natural products (NP) have significant antitumor effects and have been 
identified to target and inhibit CSCs. However, pharmacokinetic defects and off-target effects have greatly hindered their clinical 
translation. NP-based nanoformulations (NPNs) have tremendous potential to overcome the disadvantages of NP against CSCs through 
site-specific delivery and by improving their pharmacokinetic parameters. In this review, we summarize the recent progress of NPNs 
targeting CSCs in cancer therapy, looking forward to transforming preclinical research results into clinical applications and bringing 
new prospects for cancer treatment. 
Keywords: cancer, cancer stem cells, nanoformulations, natural products, targeted therapy

Cancer remains a major public health problem worldwide, causing a huge disease burden. It is not only one of the leading 
causes of death globally but is also an important factor hindering the extension of human life expectancy, about 80% of 
tumor types derives from some solid cancers including prostate, breast, ovary, pancreas and lung.1 With an estimated 
19.3 million new cancer cases and nearly 10 million cancer deaths globally in 2020, the cancer death rate is expected to 
nearly double by 2040 due to the adverse effects of the COVID-19 pandemic.2

The lives of cancer patients have been significantly prolonged, the overall risk of cancer death has decreased by 32%, 
and approximately 3.5 million cancer deaths have been avoided owing to a series of revolutionary breakthroughs in early 
screening, surgical treatment, and immunotherapy in the past decade. Nonetheless, malignant cancer is still formidable, 
and the overall mortality rate is still high. Metastasis, recurrence, and multidrug resistance (MDR) are major challenges 
to current cancer treatment.3,4

Conventional cancer treatment has multiple drawbacks, including damage to healthy tissues, serious side effects, and 
MDR. Cancer stem cells (CSCs) are specialized cell subsets in tumor tissue with high self-renewal, multidirectional 
differentiation potential and tumorigenic ability and are the driving force of malignant proliferation, invasion, metastasis, 
drug resistance and recurrence of tumors.5,6 As CSCs play a key role in treatment resistance, it has been difficult to 
significantly improve the overall clinical efficacy of Traditional oncology therapies from their current level. Undoubtedly, 
novel therapeutic strategies targeting CSCs will bring new approaches for cancer treatment.7 By targeting the surface 
markers, signaling pathways, microenvironment, metabolic features and differentiation of CSCs, various inhibitors of 
CSCs have been investigated in preclinical studies or clinical trials.8–10 Meanwhile, some existing inhibitors inevitably 
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have certain side effects, such as dizziness and gastrointestinal reactions, which severely limit the clinical drug 
development of cancer therapies targeting CSCs.11

Increasing evidence has shown that many natural products (NP), such as curcumin, sulforaphane, quercetin, and 
berberine, have promising anticancer activity by targeting CSCs.12,13 Although the incredible health benefits of NP 
have been elucidated, their widespread use in cancer therapy is severely restricted by limitations in terms of their 
water solubility, absorption, bioavailability, and targeting.14 By specifically targeting the drug-resistant and aggressive 
CSCs in tumor tissues, nanoparticle-loaded drugs can improve patient survival while minimizing their side effects 
and alleviating patient suffering.15 Therefore, the integration of NP and nanotechnology into cancer therapy could 
result in novel NP-based nanoformulations (NPNs) to target CSCs, which could improve the pharmacological 
response of patients and achieve better clinical benefits.16,17 Accordingly, we aimed to systematically summarize 
the current new trends and development challenges of NPNs targeting CSCs for the treatment of cancer in this 
review.

CSCs
Cancer is a highly heterogeneous tissue, and different mechanisms contribute to its heterogeneity, such as genetic 
mutations, the microenvironment, and the presence of CSCs. CSCs maintain tumors in an immortalized or malignant 
clonal manner and differentiate into heterogeneous cancer cells, leading to the progression of primary tumors and the 
development of new tumors.18,19 CSCs can be derived from self-renewing normal stem cells or progenitor cells that have 
acquired self-renewal capacity due to mutation or dedifferentiation of mature tumor cells. Studies have found that normal 
stem cells gradually develop into precancerous stem cells and CSCs after the first oncogenic mutation, and then further 
accumulate mutations under the effect of mutagens and the microenvironment to increase the tumor’s heterogeneity, 
resulting in uncontrolled cell growth and promoting tumor development, metastasis, treatment resistance, and 
recurrence20,21 (Figure 1).

Figure 1 CSCs and tumor progression. Normal stem cells give rise to multipotent progenitor cells, committed progenitor cells, and mature differentiated cells. Oncogenic 
mutations, microenvironmental alterations, and epigenetic modifications lead to the emergence and abnormal proliferation of CSCs, promoting the development and 
progression of malignant tumors.
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The earliest evidence for CSC models came from acute granulocytic leukemia. Dick et al isolated human acute 
myeloid leukemia stem cells with an immunophenotype of CD34+/CD38− and confirmed the self-renewal ability of CSCs 
in immunodeficient mice.22 The presence of CSCs in other solid tumors was then established, such as in breast, lung, 
pancreatic, prostate, and brain cancers.23–25

The most important feature of CSCs is their ability to continuously self-renew and maintain multidirectional tumor 
differentiation.26 The self-renewal and differentiation pathways of normal stem cells are tightly regulated by Wingless- 
related integration site (Wnt), Notch, Hedgehog, Janus kinase–signal transducer and activator of transcription (JAK- 
STAT), Transforming growth factor (TGF)-β and other signaling pathways, and these pathways are significantly 
dysregulated in CSCs.27–29 These signaling pathways do not individually act as single regulators but instead form an 
intertwined signaling network that together regulates the stemness of CSCs, resulting in the unlimited potential of CSCs 
for self-renewal, proliferation, and multidirectional differentiation, as well as initiating tumor formation, reconstituting 
tumor heterogeneity, and providing resistance to chemoradiotherapy.13

CSCs specifically express various stemness-related genes and markers, such as Krüppel-like factor 4 (Klf4), Nanog, 
Notch, CD24, CD26, CD44, CD133, CD166, aldehyde dehydrogenase (ALDH), and epithelial cell adhesion molecule 
(EpCAM). The expression of these stem cell-related genes and surface markers can significantly promote tumorigenesis 
and facilitate the isolation and identification of stem cells.30,31 In addition, CSCs jointly maintain stemness characteristics 
by virtue of their biological characteristics (cell cycle arrest, DNA damage repair, drug efflux, epithelial-mesenchymal 
transition (EMT), etc.) and the protective effect of the tumor microenvironment (hypoxic environment, cancer-associated 
fibroblasts, chronic inflammation, etc.), which increases the difficulty of tumor treatment.19,32 Moreover, CSCs have 
efficient DNA repair systems and represent a core-to-edge transition profile for enabling resistance and being protected 
within tumor microenvironment stem niches.33–35 In addition, epigenetic mechanisms play critical roles in the formation 
and function of CSCs, tumor heterogeneity, tumorigenicity, tumor development, and metastasis. The interaction between 
epigenetic modifications and the tumor-surviving microenvironment modulates the plasticity of CSCs and shapes the 
architecture of tumors.36–38 Therefore, the regulatory modes involved in CSCs interact and constitute a complex 
regulatory network of CSCs, which increases the difficulty of cancer treatment (Figure 2).

Due to the complex characteristics of the CSCs described above, conventional cancer treatment options can only kill 
cancer cells with limited proliferative potential, while enriched CSCs lead to tumor reconstruction.39 The presence of 
CSCs has inspired the design of innovative therapeutic strategies against cancer aimed at eliminating CSCs. Therefore, 
targeting CSCs is considered a more promising approach to improve therapeutic outcomes, whether it is the development 
of monoclonal antibodies against surface antigens, self-renewal pathways of CSCs, or the induction of differentiation and 
modulation of the CSC microenvironment, as possible new therapeutic strategies targeting CSCs.40,41

NanoMaterials
Nanomaterials are defined as particles with particle sizes <100 nm or materials with particle sizes of 100 nm to 1000 nm 
but exhibiting nanoparticle properties. Due to their specificity in spatial dimensions, nanomaterials possess properties that 
are different from those of macroscopic materials, such as surface effects and small size effects.42 These properties not 
only endow nanomaterials with high catalytic activity to enhance the bioavailability of drugs but also endow nanomater-
ials with good protection and penetration, which can protect drugs from enzymatic degradation and facilitate drug 
absorption, thus enabling targeted delivery to tumor tissues and improved drug delivery efficiency. Nanomaterials as 
delivery carriers can increase drug loading, prolong their circulation time, improve their bioavailability and achieve drug 
enrichment in specific organs or tissues due to their unique physicochemical properties, pharmacokinetic characteristics 
and modifiable biodistribution.43–45 In particular, nanomaterials deliver drugs mainly to malignant regions rather than 
healthy ones, thus minimizing toxic off-target effects and maximizing efficacy.46 Therefore, nanoMedicine plays an 
important role in tumor therapy.47

The particle size, shape, arrangement, surface charge distribution, and surface chemistry of nanomedicine carriers 
are the key factors that determine their physicochemical properties and interactions with the biological environment 
(molecules, cells, tissues, etc.).48,49 The first generation of nanoMedicines was based on the enhanced permeability 
and retention (EPR) effect of the tumor vasculature to load traditional small-molecule antitumor drugs with liposomes 

International Journal of Nanomedicine 2022:17                                                                                   https://doi.org/10.2147/IJN.S380697                                                                                                                                                                                                                       

DovePress                                                                                                                       
4165

Dovepress                                                                                                                                                              Liao et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


as carriers to achieve drug enrichment in tumors. Liposomal doxorubicin (Doxil) became the first nanomedicine 
approved by the Food and Drug Administration(FDA), achieving a breakthrough in the field of nanomedicine applied 
as tumor therapy.50 The preparation of subsequent nanomedicines is more diversified in terms of carrier types and 
drug type selection, with albumin-bound paclitaxel (Abraxane) and paclitaxel polymer micelles (Genexol-PM) being 
the most representative.51,52 In recent years, a variety of novel nanocarriers have also become a hotspot in the field of 
nanomedicines, showing stronger specificity than Traditional carriers.53,54 The choice of nanocarriers loaded with NP 
affects the strength of antitumor effects and the potential to target CSCs (Figure 3).

Liposomes
Liposomes are hollow spherical vesicles formed by the self-assembly of amphiphilic molecules containing a lipid bilayer 
and an internal aqueous core that allow liposomes to carry and target the delivery of hydrophilic and hydrophobic drugs, 
respectively, and protect the activity of the drug during slow drug release. Liposomes are inherently biocompatible and 
biodegradable because their main components are phospholipids and cholesterol, naturally present in cell membranes. 
Ordinary liposomes are rapidly cleared by the liver and spleen, resulting in a short half-life and circulation time in the 
body. Modification of liposomes with hydrophilic polymers such as polyethylene glycol (PEG) and chitosan can prolong 
their in vivo circulation time and enhance their tumor enrichment. In addition, liposomes modified with sugar residues, 
receptor ligands, antibodies, hormones and other ligands can bind specifically to tumor cell target proteins and enter the 
cells through receptor-mediated endocytosis, accelerating the application of nanomedicine delivery to tumors.41–44

Figure 2 CSC-related malignant tumor behavior. CSCs are cells in tumors that can self-renew and generate heterogeneous tumor cells, such as breast cancer and gastric 
cancer. The presence of CSCs promotes tumorigenesis, growth, metastasis, EMT, drug resistance, and recurrence.
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Polymeric Nanoparticles
Polymeric nanoparticles are colloidal nanoparticles composed of natural or synthetic polymeric materials, mainly 
classified as nanocapsules (cavities surrounded by polymeric membranes or shells) or nanospheres (solid matrix systems) 
according to their morphology and further classified as polymeric vesicles, micelles and dendrimers. The drug can be 
encapsulated inside the polymer or coupled to the polymer surface, and further modification of ligands on the surface can 
achieve targeted drug delivery. However, polymeric nanoparticles have the potential risk of increased toxicity and 
particle aggregation, so polymers with high biocompatibility and degradability, such as poly (lactic acid) (PLA), poly 
(lactic acid-hydroxyacetic acid) (PLGA), and polycaprolactone (PCL), are being developed.45–47

Proteins
Proteins of plant and animal origin or recombinant proteins are attractive nanocarriers that are important in clinical 
therapy, especially in targeted tumor therapy, because of their good biocompatibility, biodegradability, nontoxicity, high 
stability and drug delivery.48 Protein-based drug carriers such as albumin and ferritin are commonly used. Albumin is an 
ideal carrier for delivering hydrophobic drugs, and paclitaxel albumin nanoconjugated particles (Abraxane) use human 

Figure 3 Drug delivery nanocarriers for NP.
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serum albumin as a carrier to rapidly distribute and aggregate in tumor tissues through the natural transport pathway of 
albumin in the body, which increases the efficacy of chemotherapy and reduces toxicity at the same time.49,50 Ferritin is 
the major iron storage protein in the body, and its specific affinity for transferrin receptor 1 (TfR1) allows for drug 
encapsulation and specific targeting of tumors, especially brain tumors, without additional modifications.51 However, 
high temperature, light, strong acid, strong alkali and other factors in the environment can denature and inactivate 
proteins, and the limitations of proteins as a carrier have limited their further development in clinical applications.52

Inorganic Nanoparticles
Inorganic nanoparticles, which have the advantages of simple preparation, a high drug loading rate, good stability, good 
photothermal and photodynamic effects, and easy surface modification, mainly include carbon nanomaterials (carbon 
nanotubes, fullerenes, graphene and graphene oxide), gold nanoparticles, ferromagnetic oxide nanoparticles, silica 
nanoparticles, calcium nanomaterials, etc.53,54 Typical representatives such as Aurmine (CYT6091), a gold nanoparticle 
carrying tumor necrosis factor (TNF), carry toxic but highly effective doses of the anticancer agent TNF into tumor 
tissues to destroy their blood vessels, rather than releasing it into healthy tissues, allowing subsequent chemotherapy to 
penetrate the tumor and kill the cancer cells inside.55 However, the low water solubility and high toxicity of inorganic 
materials are still important issues that cannot be ignored when considering clinical applications, such as oxidative stress 
and DNA damage induced by iron oxide nanomaterials. In contrast, carbon quantum dots, as emerging carbon-based 
nanomaterials with good biocompatibility and low cytotoxicity, are widely used in biofluorescence imaging, tumor 
diagnosis and treatment and may be the most ideal nanomedicine or carrier for the integration of tumor diagnosis and 
treatment.56–58

NPNs Targeting CSCs
Numerous clinical trials have shown that NPNs can improve the antitumor efficacy of NP.55–58 Nanocarriers enable NP, 
such as curcumin, paclitaxel, cyclopamine, all-trans retinoic acid, resveratrol, and silibinin (Figure 4), to maintain 
a stable form before reaching their target organs, and their controllable release of NP to precisely target CSCs 
significantly improves their therapeutic effect against tumors.

Figure 4 Chemical structure of NPs targeting CSCs.
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Curcumin
Curcumin contained in Curcuma longa L. is a natural polyphenolic compound. With the increasing amount of research 
on curcumin, it has been found that curcumin has a wide range of pharmacological activities, such as antitumor, anti- 
inflammatory, antioxidant, antiviral, and anti-infection activities.59,60 Curcumin exerts excellent antitumor effects by 
inhibiting proliferation, inducing apoptosis, and reversing MDR.61,62 Curcumin can inhibit CSCs in numerous types of 
cancers, such as glioma and breast, colorectal, pancreatic, brain, and esophageal cancers.63–66 Even so, its therapeutic 
potential is limited by its poor bioavailability. Nanotechnology-based drug delivery systems, such as nanoparticles and 
liposomes, could facilitate curcumin targeting CSCs, thereby improving its bioavailability, cellular uptake, and antitumor 
activity (Figure 5, Table 1).

Although gemcitabine is the first-line chemotherapy regimen for pancreatic cancer, drug resistance invariably 
develops, significantly limiting its clinical efficacy.67 Khan et al prepared a superparamagnetic iron oxide nanoparticle 
formulation of curcumin (SP-CUR) that could effectively deliver curcumin to pancreatic tumors, target the tumor 
microenvironment, and improve gemcitabine uptake and efficacy by inhibiting the C-X-C chemokine receptor type 4 
(CXCR4)/C-X-C motif chemokine ligand 12 (CXCL-12)/sonic hedgehog signaling pathway. More importantly, the 
combination therapy of SP-CUR and gemcitabine inhibited CSC growth and self-renewal by regulating pluripotent 
maintenance stem cell factors and limiting tumor sphere formation.65 These results indicated that SP-CUR has great 
potential for the clinical treatment and management of pancreatic cancer.

Glioblastoma is the most common and fatal central nervous system malignancy, originating from glial cells and 
accounting for one-third of all central nervous system tumors. Glioblastoma is almost impossible to cure, prone to 
recurrence and has a high lethality rate. Even with surgery plus postoperative chemoradiotherapy, the median survival of 
patients is only approximately 15 months, and the 5-year survival rate is less than 10%.68,69 The poor transport of drugs 
across the blood‒brain barrier (BBB) and glioblastoma stem cells play key roles in the occurrence, invasion and 
recurrence of the disease. Curcumin nanoparticles have been found to inhibit the growth of multiple glioblastoma cell 

Figure 5 Mechanism of targeting CSCs by curcumin nanoformulations. A nanotechnology-based drug delivery system can improve the bioavailability and antitumor activity 
of curcumin and promote the targeting of curcumin to CSCs. By regulating surface markers, signaling pathways, the tumor microenvironment, EMT, and other mechanisms of 
CSCs, curcumin nanoformulations have shown excellent efficacy against pancreatic cancer, breast cancer, colorectal cancer, glioma, and other cancers.
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Table 1 Characteristics of NP-Based Nanoformulations with Curcumin

Nanocarrier Co-Loaded Size (nm) PDI Zeta Potential 
(mV)

Entrapment 
Efficiency 

(%)

Drug 
Loading (%)

Target 
CSCs

Mechanism Refs

Superparamagnetic iron oxide 

nanoparticle

- 120-140 0.244 ± 0.03 -7 - - Pancreatic 

cancer

↓ Tumorsphere formation, self-renewal, C-X-C 

chemokine receptor type 4/C-X-C motif chemokine 

ligand 12 /sonic hedgehog signaling pathway 

↑ Gemcitabine uptake and efficacy

[65]

Polymeric nanoparticle - - - - - 1.5 Glioblastoma ↓ CD133+ stem-like population, STAT3 [70, 

71]

Niosome nanoparticle - 90 0.2 ± 0.002. -35 80 - Glioblastoma ↓ Proliferation, viability, migration, invasion and colony 

forming 

↑ Apoptosis and necrosis

[72]

P-aminophenyl-α-D- 

mannopyranoside-targeting 

curcumin plus quinacrine 

liposomes

Quinacrine 119.7 ± 0.17 0.22 ± 0.01 −2.73 ± 0.74 94.32 ± 0.71 - Glioblastoma ↑ Apoptosis, uptake and endocytic effects 

↑ Cross the blood-brain barrier

[73]

Chitosan- PLGA nanoparticles - 187.50 ± 5.08 - 21.57 ± 3.73 82.67 ± 2.02 2.5 Glioblastoma ↓ Proliferation 

↑ Cross the blood-brain barrier

[74]

PH-sensitive core-shell 

nanoparticle

Doxorubicin 160.8 ± 8.64 - -30.6 ± 4.98 85.07 ± 2.86 4.46 ± 0.87 Glioma ↓ CD133+ stem-like population [75]

Hybrid lipid capsules - Three different 

sizes: 27 ± 3/78 

± 5/149 ± 8

0.247 ± 0.016/ 

0.271 ± 0.017/ 

0.247 ± 0.024

-10 ± 2 /-14 ± 2/- 

19 ± 1

90 4 Breast 

Cancer

↓ Mammosphere size/number and stemness [76]

Sterically stabilized 

phospholipid nanomicelles

- 11.5 ± 2.0 - - 86.0 ± 4.8 - Breast 

Cancer

↓ Tumorsphere formation 

↑ Uptake, water solubility and stability of curcumin

[77]

Folic acid functionalized 

nanoliposomes

- 83 ± 17 <0.2 -27 ± 2 68 ± 4 3.3 ± 0.3 Breast 

cancer

↓ Enrichment, growth, proliferation, mammosphere 

growth and epithelial-mesenchymal transition

[78]

Phosphorylated amphiphilic 

calixarene micelles

- 3.86 ± 0.32 0.125 ± 0.078 −25.18 ± 5.74 95.40 ± 4.50 17.10 ± 1.25 Triple- 

negative 

breast 

cancer

↓ Tumorsphere formation, proliferation, invasion and 

migration 

↓ CD44+ /CD133+ breast CSCs

[80]

Glucose nanogold particles - 15 - - - - Breast 

cancer

↓ Tumorsphere formation, proliferation, hypoxia- 

inducible factor 1α and heat shock protein 90 

↑ Apoptosis and reactive oxygen species

[82]

HA-PLGA hybrid NPs Paclitaxel 347.6 0.12 -26.5 44.6 - Breast 

cancer

↓ Mammosphere formation, population and migration 

of CSCs

[83]

PH multistage responsive 

micellar

Paclitaxel 79.4 ± 3.4 0.112 ± 0.15 -2.26 ± 3.9 30.9 ± 2.4 37.1 ± 2.9 Breast 

cancer

↑ Cellular uptake and deep tumor penetration 

↓ Formation and growth of mammospheres

[84]
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Oligosaccharides of 

hyaluronan -histidine- 

menthone 1,2-glycerol ketal

Paclitaxel 120.6 - - - - Breast 

cancer

↓ CD44+ breast CSCs [85]

PH-sensitive polymeric 

nanoparticles of mPEG-PLGA- 

PGlu with hybrid core

Doxorubicin 103.4 ± 0.3 - -11.7 ± 0.1 80.30 ± 1.82 1.91 ± 0.13 Breast 

cancer

↓ Percentage of CSCs [86]

Hyaluronic acid 

conjugatedPLGA-PEG-NH2 

co-polymer

Salinomycin 153.4 ± 4.6 - −32.6 ± 2.5 82 - Breast 

cancer

↑ G1 cell cycle arrest 

↓ Epithelial-mesenchymal transition

[87]

PLGA nanoparticles GANT61 347.4 ± 2.75 0.318 ± 0.02 -21.3 ± 0.23 99.97 ± 0.09 28.6 ± 2.05 Breast 

cancer

↓ Self-renewal 

↑ Autophagy and apoptosis

[88]

Stearic acid-g-chitosan 

oligosaccharide

- 114.7 ± 16.9 0.57 ± 0.02 18.5 ± 0.4 29.9 ± 2.9 - Colorectal 

cancer

↓ CD44+/CD24+ CSCs, tumorsphere formation and 

proliferation 

↑ Uptake of curcumin

[89]

Polymersome nanoparticles - 259.5 ± 1.5 0.465 ± 0.012 -8.74 ± 0.2 97.18 ± 0.05 16.08 ± 0.07 Colorectal 

cancer

↓ CD44+/CD24+ /CD133+ CSCs 

↑ Apoptosis and S cell cycle arrest

[90]

Abbreviations: PDI, polydispersity index; ↑, increase or promote; ↓, decrease or inhibit; -, no data available.
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lines by reducing CSCs.70,71 Negah et al designed a curcumin-loaded niosomal nanoparticle (CM-NP) to target curcumin 
delivery to CSCs, showing stronger anti-CSC ability than free curcumin. CM-NP have good physicochemical stability 
and effectively target and inhibit the survival, proliferation, migration, invasion and colony formation of CSCs by 
regulating cell cycle arrest, apoptosis, reactive oxygen species (ROS) generation, and monocyte chemoattractant 
protein-1.72 An ability to penetrate the BBB is an essential characteristic of the anti-glioblastoma efficacy of NPNs. 
Wang et al designed liposomes coloaded with curcumin and quinacrine modified by mannose, which contributed to 
curcumin and quinacrine crossing the BBB and significantly enhanced the curcumin uptake effect, endocytosis effect and 
induction of apoptosis in glioblastoma cells and CSCs.73 Sialic acid can improve the hydrophilicity of curcumin-loaded 
poly(lactic-co-glycolic acid) (PLGA) nanoparticles and inhibit the proliferation of CSCs by allowing it to cross the 
BBB.74 In addition, curcumin combined with chemotherapy drugs is also an effective method for the treatment of GBM. 
Xu et al developed a pH-sensitive core-shell nanoparticle for the proportional delivery of curcumin/doxorubicin to target 
both CD133+ CSCs and differentiated cancer cells, showing a synergistic therapeutic effect between curcumin and 
doxorubicin.75 These data suggest that nanocarriers can efficiently deliver curcumin across the BBB to inhibit glioblas-
toma CSCs, thereby improving the clinical efficacy of glioblastoma treatment.

Breast cancer is the leading cancer affecting women in terms of both incidence and mortality, and chemotherapy 
resistance and disease recurrence associated with breast CSCs remain serious challenges.2 Yadava et al developed 
curcumin-loaded nanostructure hybrid lipid capsules (CMN-nHLCs) to optimize their physicochemical properties and 
anticancer efficacy for the co-elimination of CSCs and cancer cells. CMN-nHLCs effectively prevented the enrichment, 
growth, and proliferation of CSCs by downregulating the expression of ALDH-1 and led to the disintegration or size/ 
number reduction of mammospheres with an anticancer activity 2.5 times higher than that of free curcumin.76 Gülçür 
et al found that the vasoactive intestinal peptide (VIP) receptor is an attractive molecular target overexpressed in breast 
CSCs, and VIP-modified curcumin sterically stabilized phospholipid nanomicelles (C-SSM-VIP) were designed to 
enhance cell-selective and intracellular drug uptake, actively targeting VIP receptors to inhibit CSCs.77 Similarly, folate 
receptor (FR)-targeted nanoliposomes promoted curcumin internalization into FR-positive CSCs, thereby preventing 
CSC enrichment, growth, proliferation, spheroid formation, and epithelial-mesenchymal transition.78

Triple-negative breast cancer (TNBC) is a heterogeneous and difficult-to-treat type of breast cancer for which there 
are currently no effective targeted therapies.79 Phosphorylated calixarene POCA4C6 is not only an excellent carrier for 
the delivery of curcumin, but itself has good anticancer activity. Studies have shown that curcumin-loaded POCA4C6 
micelles (CPMs) can induce cell cycle arrest and apoptosis and decrease β-catenin nuclear activity and androgen 
receptor levels. More importantly, these NPNs can significantly destroy the formation of CD44+/CD133+ breast 
CSCs and tumor spheroids without causing obvious systemic toxicity,80 which provides new hope for the targeted 
therapy of TNBC.

It was also found that gold nanoparticles showed good radiosensitizing ability.81 Yang et al prepared curcumin 
combined with glucose gold nanoparticles (Glu-GNPs), which showed great potential in alleviating the hypoxic tumor 
microenvironment and improving the radiosensitivity of breast CSCs by inhibiting the expression of hypoxia-inducible 
factor 1α (HIF-1α) and heat shock protein 90 (HSP90) and increasing the level of ROS.82 Surprisingly, the nanoformula-
tions prepared by combining curcumin with chemotherapeutic drugs such as paclitaxel,83–85 doxorubicin,86 

salinomycin,87 and the Hh/Gli-EGFR signaling pathway inhibitor GANT6188 also showed superior tumor suppressive 
activity and CSC killing ability, which provides a potential strategy for drugs combined with targeted therapy to improve 
the treatment of breast cancer.

Colorectal cancer is the third most common type of gastrointestinal cancer in the world and the second leading cause 
of cancer-related mortality. Targeting the inhibition of the malignant biological behavior of CSCs is an important strategy 
for colorectal cancer treatment.2 Wang et al prepared curcumin encapsulated in stearic acid-g-chitosan oligosaccharide 
polymeric micelles to increase the accumulation of curcumin in cancer cells through endocytosis, and the NPNs not only 
reduced the tumor volume but also inhibited the expression of the colorectal CSC marker CD44+/CD24+.89 Pakizehkar 
et al encapsulated curcumin with polyribosomal nanoparticles, which significantly inhibited the proliferation of CSCs and 
induced apoptosis by modulating colorectal CSC surface markers (CD133, CD24, and CD44), miRNAs (miR-126, miR- 
34a, miR-21, miR-155, miR-221, and miR-222) and the expression of apoptosis targets such as P53, CASP9, CASP8, 
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CASP3, BAX and BCl-2.90 This suggests that nanocarrier-loaded curcumin can eliminate CSCs as well as bulk cancer 
cells, which has significant advantages in cancer therapy.

Paclitaxel
Paclitaxel (PTX) is a natural secondary metabolite isolated and purified from the bark of Taxus chinensis.91 PTX has been 
proven to have good antitumor effects, especially on ovarian cancer, uterine cancer, and breast cancer. The anticancer 
mechanism of PTX is mainly to inhibit the depolymerization of tubulin and promote its polymerization, inhibit cell 
division and proliferation, and eventually lead to tumor cell apoptosis. Although PTX can eliminate most tumor cells and 
reduce the size of tumors, it also enriches the CSC population, leading to acquired drug resistance, recurrence, metastasis, 
and progression.92,93 Therefore, reducing tumor cells while targeting CSCs is a key strategy to improve the anticancer 
efficiency of PTX (Figure 6, Table 2).

PTX Nanoformulations
Researchers have found that the presence of vasculogenic mimicry (VM) and CSCs inevitably leads to the malignant 
progression of gliomas. VM transports nutrients and blood to the extravascular areas of tumors, while CSCs are 
associated with drug resistance and glioma recurrence. Therefore, the key to glioma treatment is to inhibit VM and 
CSCs.94 Liu et al prepared multifunctional tandem peptide R8-c (RGD)-modified PTX liposomes for targeted inhibition 
of VM and CSCs. RGD specifically promotes the contact of CSCs with liposomes, thereby increasing the uptake of 
liposomes by CSCs. Both in vitro and in vivo experiments demonstrated that PTX-loaded liposomes effectively 
inhibited the proliferation and induced apoptosis of CSCs and induced the destruction of VM channels, thereby cutting 
off the nutrient transport channels and preventing glioma recurrence.95 ElNaga et al prepared PTX-loaded PLGA 
nanoparticles to target ovarian CSCs by recognizing FR. In vitro experiments showed that the inhibition efficiency of 
the NPNs on ovarian CSCs was much higher than that of free PTX. A xenograft model was established by subcutaneous 
injection of CSCs in the backs of nude mice, and PLGA nanoparticles enhanced the targeted antitumor ability of PTX 

Figure 6 Mechanism and advantages of paclitaxel and docetaxel nanoformulations. Nanoformulations of paclitaxel and docetaxel significantly improved their physicochemical 
properties. By modulating key signaling pathways, surface markers and other mechanisms of CSCs, nanoformulations of paclitaxel and docetaxel significantly inhibited cancer 
migration, invasion, progression, recurrence, and drug resistance.
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Table 2 Characteristics of NP-based nanoformulations with paclitaxel or docetaxel

Natural 
Products

Nanomaterials Co-loaded Size (nm) PDI Zeta 
Potential 

(mV)

Entrapment 
Efficiency 

(%)

Drug 
Loading 

(%)

Target CSCs Mechanism Refs

Paclitaxel Multifunctional 

tandem peptide 
modified Liposomes

- 100.8 ± 1.5 0.201 ± 0.018 −7.36 ± 

0.32

92.37 ± 4.91 - Glioma ↓ Proliferation 

↑ Apoptosis and 
destruction of VM 

channels

[95]

PLGA nanoparticles, 
conjugated with folic 

acid

- 294.7 - - 73 1.46 Ovarian cancer ↓ ATP-binding cassette 
sub-family G-2 

(ABCG2) and multidrug 

resistance-1 (MDR1) 
↑ Caspase-3 and p53

[96]

Anti-CD44- 

Conjugated Olive Oil 
Liquid Nanocapsules

- 110 ± 20 0.25 ± 0.01 -35 81.1 2.2 Pancreatic Cancer ↓ CD44 

↑ Uptake of paclitaxel

[98]

CD133-targeted 

nanoparticles

- 318.6 0.228 -8.3 91 11.9 ± 0.6 Breast cancer ↓ Formation of tumor 

spheres, CD133

[99]

Albumin nanoparticle - - - - - - Triple-negative breast 

cancer

↑ Uptake of CSCs [101]

Lipid nanocapsules Salinomycin 89 ± 3 0.08 ± 0.002 -6 ± 1 98 0.202 Breast cancer ↓ Formation of tumor 
spheres, CD44 

↑ Apoptosis

[104]

PLGA nanoparticles Salinomycin 116.71 ± 4.31 0.257 ± 0.08 68.2 ± 2.2 59.7 ± 5.7 5 Breast cancer ↑ Cellular uptake 
↓ Population of CD44 + 

cells

[105]

Liquid crystal 
nanoparticles

Forskolin 90 - -15.3 60-90 - Breast cancer ↑ Epithelial- 
mesenchymal transition 

↓ Wnt/β-catenin 

pathway, stemness

[107]

Lipid-polymer hybrid 

nanoparticles

Verteporfin 80-100 - -3 67 0.56 Triple-negative breast 

cancer

↓ NF-κB, Wnt, and YAP 

signaling pathways 

↓ CD44+/CD24− and 
ALDH+ CSCs

[111]

Dual-modified 

cationic liposomes

Survivin-siRNA 118.7 ± 6.3 0.134 ± 0.082 11.5 ± 0.6 98.2 ± 0.6 2.7 ± 0.4 Glioma ↑ Apoptosis and 

differentiation of CSCs

[113]

https://doi.org/10.2147/IJN
.S380697                                                                                                                                                                                                                                    

D
o

v
e

P
r
e

s
s
                                                                                                                                         

International Journal of N
anom

edicine 2022:17 
4174

Liao et al                                                                                                                                                              
D

o
v

e
p

r
e

s
s

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Docetaxel Gelatinase-stimuli 

nanoparticles

Salinomycin 214.5 ± 2.6 0.186 ± 0.013 - 10.26 ± 3.9 61.57 ±  

3.9

Cervical cancer ↓ CD133/CD44 

↓ Epithelial- 

mesenchymal transition, 
tumorigenicity and 

tumor growth rate

[117]

Polylactide-co- 
glycolide/D-alpha- 

tocopherol 

polyethylene glycol 
1000 succinate

Salinomycin 73.83 ± 3.59 0.193 ± 0.021 −25.7 ± 
2.03

53.28 ± 8.96 4.08 ± 
0.86

Breast cancer ↑ The circulation time 
↓ Mammospheres

[118]

Hyaluronan modified 

mesoporous silica 
nanoparticles 

-supported lipid 

bilayers

8- 

Hydroxyquinoline

189.9 ± 3.428 0.092  ± 0.015 -54.2 ± 

0.372

8.23 ± 0.91 8.51 ± 

0.15

Breast cancer ↓ CD44 

↑ Uptake

[121]

HA-modified 

polymeric 

nanoparticles

Photosensitizer 

mesotetraphenyl 

chlorine 
disulfonate

205 ± 3 0.2 −37.2 ± 3 96 ± 4 4.8 Breast cancer ↓ Self-renewal capacity, 

CD44

[122]

Liposomes Telmisartan 133.2 ± 11.7 0.207 ± 0.0113 - 96.4 ± 2.45 - Lung cancer ↑ Apoptosis and 

reactive oxygen species 
↓ CD44, SOX2, ABCC1 

and ABCG2

[126]

Notes: PDI, polydispersity index;↑, increase or promote;↓, decrease or inhibit; -, no data available.
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and minimized systemic toxicity. Surprisingly, the tumors in the xenograft mice completely disappeared after injection 
of PTX-loaded folic acid (FA)/PLGA nanoparticles, the possible mechanism being the appearance of reactive lymphoid 
follicles, high expression of caspase-3 and P53 promoting apoptosis and suppression of the expression of chemoresistant 
genes.96

Lipid liquids are also excellent nanocarriers for drug delivery.97 Marchal et al developed olive oil liquid nanocapsules 
(O2LNCs), which covalently linked specific immuno-γ-globulin to the surface of O2LNCs, thereby preparing a new 
immunonanoformulation. Its internal hydrophobic domain was used to encapsulate PTX, and the outer shell was 
covalently conjugated with an anti-CD44-fluorescein isothiocyanate antibody (αCD44) to specifically deliver PTX to 
CD44-overexpressing pancreatic CSCs. Both in vitro and in vivo experiments showed that pancreatic CSCs with high 
uptake of PTX-loaded αCD44-O2LNCs were four times more effective than free PTX against cancer.98 This immuno- 
nanoformulation innovatively optimizes the ability of conventional nanomaterials to target CSCs with IgG, providing 
a new idea for the advancement of nanodrug delivery systems. Similarly, Swaminathan et al combined an anti-CD133 
monoclonal antibody with nanoparticles formulated with poly (D, L-lactide-co-glycolide) polymers to load PTX to 
achieve targeted killing of breast CD133+ CSCs.99

Abraxane, an albumin nanoparticle of PTX, has been approved by the FDA as a first-line treatment for metastatic 
breast cancer, advanced non-small cell lung cancer, and advanced pancreatic cancer.100 In patients with metastatic breast 
cancer, Abraxane was significantly more effective than free PTX. Yuan et al found that the plasma concentration of 
Abraxane was much lower than that of paclitaxel, but the tumor/plasma drug concentration ratio of Abraxane was 10 
times higher, explaining its targeting and high efficacy. PTX enriches CSCs in residual tumors while eliminating breast 
cancer cells. In contrast, Abraxane increased drug uptake by CSCs 3- to 15-fold and dramatically improved its anticancer 
activity by eliminating CSCs,101 suggesting that NPNs can optimize the efficacy of existing chemotherapy drugs and 
reverse drug resistance and cancer recurrence.

Nanocarriers Coloaded with PTX and Other Molecules
Many small-molecule compounds (such as salinomycin and doxorubicin) and plant-derived compounds (such as 
curcumin, piperine, epigallocatechin gallate, and sulforaphane) have been shown to be effective in eliminating 
CSCs.102 Therefore, the establishment of nanoformulations coloaded with PTX and other natural anti-CSC compounds, 
may ameliorate their respective limitations, reduce their side effects, and enhance their anticancer efficacy due to their 
different modes of action.

Among the various anti-CSC natural compounds screened, salinomycin isolated from Streptomyces albicans has 
proven to be a perfect candidate for killing CSCs.103 Basu et al developed lipid nanocapsules (LNCs) coloaded with PTX 
and salinomycin, which showed superior drug loading capacity and storage stability. Its lipid properties facilitate efficient 
cellular uptake, delivering drugs to breast cancer cells and CSCs simultaneously. The intervention of free PTX led to an 
increase in the number of CSCs (increased expression of CD44+/CD24− and ALDH), while the presence of salinomycin 
reduced the stemness of CSCs. The combined application of these two natural compounds significantly induced CSC 
apoptosis and tumor mammosphere growth, showing superior cytotoxicity and anti-CSC properties.104 Hyaluronan was 
coated on the surface of polymeric nanoparticles coloaded with PTX and salinomycin, which actively targeted CD44 
receptors overexpressed on CSCs and eradicated tumors by killing the cancer cells and CSCs.105 This suggests that 
combination therapy with conventional chemotherapeutic agents and CSC inhibitors may be a promising approach to 
overcome cancer recurrence caused by drug-resistant cell populations.

Forskolin, a diterpene extracted from the roots of Coleus forskohlii, induces the differentiation of CSCs through cAMP 
signaling, causing them to lose their mesenchymal state and acquire a nonstem cell-like epithelial state.106,107 Singh et al 
prepared liquid crystal nanoparticles coloaded with forskolin and PTX, and they could target both differentiated CSCs and 
bulk tumor cells, resulting in overall tumor targeting, thus significantly improving the therapeutic efficacy.107 Conventional 
PTX therapy has been shown to upregulate the NF-κB, YAP, and Wnt signaling pathways, while inhibition of these signaling 
pathways by the photosensitizer verteporfin may abolish the PTX-induced enrichment of CSCs.108–110 Sulaiman et al 
developed coloaded PTX and verteporfin hybrid nanoparticles (PV-NPs) targeting TNBC patient-derived xenografts and 
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CSCs. PV-NPs accumulated in tumors, coinhibited the NF-κB, Wnt, and YAP signaling pathways, and exhibited synergistic 
effects in inhibiting tumor growth and CD44+/CD24− and ALDH+ CSC populations.111

Survivin, an important protein involved in the regulation of apoptosis, is strongly expressed in glioma tissues 
(especially CSCs) and is an ideal molecular target for glioma therapy. The combination of PTX with survivin-siRNA 
represents a potentially useful chemotherapeutic gene therapy strategy.112 Sun et al designed dual-modified cationic 
liposomes (DP-CLPs) linking two receptor-specific ligands, angiopep-2 and A15. DP-CLPs durably and stably bound 
glioma cells and brain microvascular endothelial cells and delivered drugs (survivin-siRNA/PTX) to CD133+ glioma 
CSCs. In vivo experiments showed that DP-CLPs significantly inhibited tumorigenesis and improved survival of tumor- 
bearing nude mice by inducing apoptosis of CD133+ CSCs without therapeutic toxicity.113 This suggests that dual- 
targeting ligands targeting CD133 can be used to develop safe and efficient nanoformulations.

Docetaxel
By enhancing tubulin polymerization and inhibiting microtubule depolymerization, docetaxel leads to the formation of 
stable nonfunctional microtubule bundles and destroys the process of mitosis in tumor cells.114 Docetaxel is one of the 
first-line chemotherapeutic drugs for the treatment of recurrent or metastatic cervical cancer. However, it leads to the 
enrichment of CSCs and the decreased expression of E-cadherin associated with EMT, resulting in treatment failure.115 

The preparation of docetaxel nanoparticles targeting CSCs could address the above problems (Figure 6, Table 2).
Salinomycin is one of the key NP that could be used to change this situation. Wang et al synthesized salinomycin 

nanoparticles, showing their advantages of specific aggregation in tumors, anti-CSCs and low toxicity.116 Then, 
salinomycin-docetaxel-loaded gelatinase-stimuli nanoparticles (Sal-Doc-SE-NP) were designed. Sal-Doc-SE-NP 
improves the therapeutic efficacy while minimizing side effects and recurrence, not only enhancing the antitumor effect 
of docetaxel but also significantly inhibiting CSCs and non-CSCs in cervical cancer xenograft mice by suppressing EMT 
and CD133/CD44 expression.117 The nanoparticles codelivered salinomycin and docetaxel to tumor tissues to inhibit 
breast cancer cells and CSCs with better tumor targeting and antitumor activity.118

8-Hydroxyquinoline (8-HQ), an organic compound with preferential activity against CSCs, showed promising antic-
ancer activity in combination with docetaxel.119,120 Wang et al combined 8-HQ-loaded HA-modified mesoporous silica 
nanoparticles-supported lipid bilayer (HA-MSS) and docetaxel-loaded MSS. In vivo and in vitro experiments demon-
strated that docetaxel-loaded MSS was more cytotoxic to MCF-7 cells, whereas 8-HQ-loaded HA-MSS was more 
cytotoxic to CSCs. Therefore, the combined treatment with the two nanoformulations killed both breast cancer cells and 
CSCs, showing the best antitumor activity.121 Combining chemotherapy and photodynamic therapy, Gaio et al made HA- 
modified polymeric nanoparticles to simultaneously deliver docetaxel and the photosensitizer mesotetraphenyl chlorine 
disulfonate, showing excellent ability to target and kill CD44+ breast CSCs.122

Telmisartan, as an antifibrotic agent, was found to disrupt the tumor interstitial barrier and promote the distribution of 
docetaxel nanoparticles within lung cancer tissues and to penetrate CSCs to enhance the anticancer effect.123–125 

Pretreatment with telmisartan significantly increased the uptake of docetaxel liposomes by lung CSCs and enhanced 
the anticancer effect by improving the hypoxic conditions of the tumor microenvironment, inducing ROS generation and 
apoptosis, and downregulating drug resistance genes and marker expression of CSCs.126

Cyclopamine
Cyclopamine (CYP), a steroidal alkaloid extracted from veratrum, can inhibit the proliferation, invasion and metastasis 
of cancer cells by suppressing the hedgehog signaling pathway. The hedgehog signaling pathway is closely related to the 
self-renewal and maintenance of stem cells, so the targeted inhibition of the pathway by cyclopamine can eliminate 
CSCs, and its nanoformulation can improve its high hydrophobicity, systemic toxicity and poor pharmacokinetics to 
expand its clinical applications127–129 (Table 3).

Hu et al synthesized HA-cystamine-polylactic-co-glycolic acid (HA-SS-PLGA) dual drug-loaded particles loaded 
with cyclopamine and the chemotherapeutic drug doxorubicin. The dual drug-loaded particles with hyaluronic acid 
targeting showed redox-responsive drug release characteristics, releasing cyclopamine and doxorubicin on demand, 

International Journal of Nanomedicine 2022:17                                                                                   https://doi.org/10.2147/IJN.S380697                                                                                                                                                                                                                       

DovePress                                                                                                                       
4177

Dovepress                                                                                                                                                              Liao et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 3 Characteristics of NP-Based Nanoformulations with Cyclopamine or All-Trans Retinoic Acid

Natural 
Products

Nanomaterials Co-Loaded Size (nm) PDI Zeta 
Potential 

(mV)

Entrapment 
Efficiency 

(%)

Drug 
Loading 

(%)

Target CSCs Mechanism Refs

Cyclopamine Hyaluronic acid functional 

amphipathic and redox- 

responsive polymer 
particles

Doxorubicin 245.3 0.11 - 58.2/70.6 - Breast cancer ↓ The number and size of 

tumor spheres

[130]

N-(2-hydroxypropyl) 

methacrylamide copolymer

- - - - - - Prostate 

cancer

↓ CD133 [131]

N-(2-hydroxypropyl) 

methacrylamide 

copolymer-cyclopamine/ 
docetaxel conjugate

- - - - - 6.6/7.2 Prostate 

cancer

↑ Apoptosis 

↓ CD133+CSCs

[132]

mPEG-b-PCC-g-PTX/CYP- 

g-DC

Paclitaxel 76.37 ± 0.15 0.273 - 14.50 ± 1.60 5.36 ± 

0.07

Prostate 

cancer

↓ Hedgehog signaling and 

colony formation 
↑ Tumor suppressor miRNA 

expression

[133]

All-trans 
retinoic acid

Nanoparticles Doxorubicin 151.6 - 1.8 40.01 3.05 Breast cancer ↑ Differentiation of CSCs [137]
Albumin nanoparticles - 180.63 ± 0.38 0.180 ± 0.007 32.1 ± 0.42 93 8.37 Lung cancer ↑ Uptake of ATRA, apoptosis 

↓ Cell growth

[138]

Lipid-polymer 

nanoparticles

- 125.2 ± 9.9 0.18 ± 0.08 -16.3 ± 7.2 86.4 ± 5.6 10.5 ± 4.5 Osteosarcoma ↓ CD44+ CSCs [139]

Nanoparticles - 106.7 ± 8.7 0.17 ± 0.18 -11.5 ± 5.3 84.5 ±  6.9 8.4 ± 3.4 Gastric cancer ↓ CD44+ and CD133+ gastric 
CSCs

[140]

FA-modified chitosan 

(CSO)-derived polymer 
micelles

Doxorubicin 73.34 0.209 25.4 - - Breast cancer ↑ Apoptosis 

↓ Stemness and metastasis

[142]

Stealth liposomes - 81.1 ± 0.8 nm 0.18 ± 0.01 -6.1± 1.4 >90 9.3 ± 0.1 Breast cancer ↑ Differentiation and cell 

cycle arrest 
↓ Proliferation

[143]

Electrospun 

polycaprolactone 
nanofibers

- 929 - - 86.2 12.17 Glioblastoma ↑ Differentiation 

↑ Effect of photothermal 
therapy

[144]

Gold nanostars-dendritic 

polyglycerol

- 68.1 - 13.9 - 54.5 Breast cancer ↓ Stemness gene expression, 

tumor sphere formation, self- 
renewal and tumor growth

[145]

Notes: PDI, polydispersity index;↑, increase or promote;↓, decrease or inhibit; -, no data available.
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targeting CD44-overexpressing breast CSCs and breast cancer cells, significantly reducing the number and size of tumor 
spheres, and almost completely inhibiting tumor growth, showing an excellent synergistic antitumor effect.130

The selective inhibitory effect of N-(2-hydroxypropyl)methacrylamide(HPMA) copolymer cyclopamine conjugate 
(P-CYP) on prostate CSCs was stronger than its effect on ordinary tumor cells, and the proportion of CD133+ cells 
among the surviving cancer cells was significantly reduced by attenuating CD133 expression and CSCs activity.131 

Zhou’s team then engineered an HPMA copolymer docetaxel conjugate (P-DTX) to kill bulk tumor cells, but not CSCs. 
P-DTX and P-CYP together showed superior synergistic effects against prostate tumors.132 Likewise, the combined use 
of cyclopamine and PTX polymer-drug conjugates alleviated PTX resistance and inhibited prostate cancer colony 
formation by inhibiting Hh signaling and upregulating tumor suppressor miRNA expression.133 This suggests that the 
use of two or more drugs with independent mechanisms of action on cancer cells can achieve synergistic therapeutic 
effects.

All-Trans Retinoic Acid
All-trans retinoic acid (ATRA) is the major natural metabolite of vitamin A. As a low toxicity cell differentiation agent, 
the anticancer efficacy of ATRA has been extensively studied in various malignancies. By activating retinoic acid 
receptors and retinoid X receptors to regulate gene transcription, induce stem cell differentiation and regulate stem cell 
maintenance-related signaling pathways, ATRA has shown excellent ability to target CSCs.134–136 However, due to the 
low solubility and stability of ATRA, it is rapidly cleared, resulting in a rapid decrease in the concentration of ATRA in 
plasma and serious dose-dependent side effects. ATRA encapsulated in nanoparticles is expected to protect it from 
degradation, and targeting ATRA to CSCs may stimulate CSCs to shift to a more differentiated state, resulting in a better 
response to chemotherapy137 (Table 3).

Li et al developed an HA-functionalized cationic albumin-based targeted nanoparticle-delivered ATRA to target 
CD44-overexpressing CSCs. Due to the HA modification, CD44+ CSCs promoted the uptake of ATRA and exhibited 
a strong inhibitory effect on cell growth and induction of apoptosis. In vivo imaging revealed that drug-loaded 
nanoparticles inhibited the tumorigenicity of CSCs, showed targeted accumulation in mouse tumor-bearing lungs and 
significantly inhibited tumor growth.138 Similarly, the use of an anti-CD133 antibody can increase the efficient and 
specific delivery of ATRA-loaded lipid-polymer nanoparticles to osteosarcoma stem cells for higher therapeutic 
efficacy.139 However, cancers often have multiple CSCs populations with different phenotypes, suggesting that targeting 
just one CSCs population is not enough to eliminate CSCs completely, and therefore targeting multiple CSCs sub-
populations simultaneously would yield better outcomes. Chen et al prepared ATRA-loaded poly(lactide-co-glycolide)- 
lecithin-PEG nanoparticles (ATRA-PLPN), and combined anti-CD44 and anti-CD133 antibodies with the nanoparticles 
to transport ATRA specifically to CD44+ and CD133+ gastric CSCs, thereby enhancing the growth inhibition of gastric 
CSCs. In contrast, ATRA-PLPN cannot target any CSCs population due to a lack of anti-CD44 or anti-CD133 
antibodies.140 It can be expected that better efficacy will be achieved by simultaneously targeting more phenotypic 
populations of CSCs.

The chemotherapeutic drug doxorubicin has been used to treat a variety of cancers, but CSCs in many solid tumors 
are resistant to it, which may also further enrich CSCs after treatment, leading to chemoresistance, tumor recurrence, and 
metastasis.141 Sun et al prepared nanoparticles simultaneously encapsulating ATRA and doxorubicin, which effectively 
increased the drug’s enrichment in tumor tissues and CSCs and reduced CSCs in breast tumors in a synergistic manner. 
ATRA and doxorubicin were simultaneously delivered to the CSCs. ATRA induced differentiation of the CSCs, thereby 
attenuating their tumor-initiating ability and subsequently enhancing the cytotoxicity of doxorubicin, without triggering 
CSCs enrichment after treatment. At the same time, in vivo experiments also confirmed the significant synergistic 
inhibitory effect of the combined administration of ATRA and doxorubicin on tumor growth.137 Liu et al developed an 
FA-modified chitosan (CSO)-derived polymer (FA-CSOSA). FA modification can promote the uptake of nanoparticles by 
cancer cells through FA receptor-mediated cellular internalization, and thus they synthesized ATRA and doxorubicin- 
loaded micelles (FA-CSOSA-DOX/ATRA). Simultaneous use of these two micelles induces cancer cell apoptosis and 
inhibits the breast cancer stemness and metastasis induced by doxorubicin treatment.142 Li et al encapsulated ATRA in 
pegylated liposomes (stealth liposomes) through the EPR effect, resulting in better accumulation in tumors and 
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significant inhibition of tumor formation and growth. Compared with regular cancer cells, breast CSCs are more sensitive 
to ATRA stealth liposomes and they prevent rapid proliferation of CSCs in the mitotic stage by inducing CSCs 
differentiation and cell cycle arrest in G0/G1 phase. At the same time, the combination of ATRA stealth liposomes 
and low-concentration vinorelbine stealth liposomes showed a stronger ability to kill CSCs, providing a new strategy for 
the treatment and prevention of the recurrence of breast cancer.143

In addition, a combination of ATRA and heat therapy is also an effective strategy for the removal of CSCs. The 
combination of hydroxylated multiwalled carbon nanotubes (MWCNTs-OH) and ATRA in an electrospun polycapro-
lactone (PCL) nanofiber system can disrupt the stemness of CSCs and reduce their tolerance to heat therapy to improve 
its effectiveness. Both in vivo and in vitro experiments showed that after ATRA induced CSCs differentiation, multi-
walled carbon nanotubes generated heat under near-infrared, significantly inhibited the activity of glioma stem cells, and 
killed more CSCs.144 Similarly, Pan et al developed a gold nanostars-dendritic polyglycerol nanoplatform loaded with 
retinoic acid (RA) to specifically and multivalently target breast CSCs. RA induces CSCs differentiation, combined with 
photothermal therapy in a synergistic inhibitory manner to inhibit stemness gene expression, CSCs-driven tumor sphere 
formation, CSCs self-renewal, and tumor growth.145 This points the way to improving the efficacy of existing cancer 
treatments, including photothermal therapy, to specifically eliminate CSCs.

Flavonoids
Flavonoids are widely found in natural plants and are produced by the secondary metabolism of natural polyphenolic 
compounds. Studies have shown that dietary intake of rich flavonoids will reduce the risk of colon cancer, prostate 
cancer, breast cancer and other cancers, and play an effective role in inhibiting the growth and spread of tumor cells at 
multiple stages.146–148 The current main research direction is focused on the structural modification and optimization of 
natural flavonoids, and targeting cancer cells and CSCs through drug delivery systems may achieve more clinically 
meaningful effects (Table 4).

α-Mangostin is a bioactive flavonoid in Garcinia mangostana, and it has been proven to have good antitumor 
properties.149 α-Mangostin-coated PLGA nanoparticles (Mang-NPs) were readily taken up by CSCs and cancer cells to 
inhibit cell viability, proliferation, colony formation, EMT, and induce apoptosis without affecting normal epithelial cells. 
More importantly, by inhibiting the expression of Notch, sonic hedgehog pathways and their downstream targets, stem 
cell markers (CD24, CD133, CD44, Musashi and Lgr5) and pluripotent maintenance factors (Oct4, Sox-2, Klf-4, c-myc 
and Nanog), Mang-NPs significantly inhibited the self-renewal ability of CSCs, suggesting the great potential of 
nanotechnology targeting CSCs signaling pathways in blocking cancer progression, metastasis, drug resistance and 
recurrence.150,151 Likewise, garcinol is a polyisoprenylated benzophenone derivative that is highly abundant in the genus 
Garcinia. Hyaluronic acid-modified PLGA nanoparticles loaded with garcinol reduced its toxicity to normal tissues and 
improved drug accumulation in tumors. By downregulating hypoxia-inducible factors (HIF-1α and HIF-2α) and the 
Notch pathway to induce apoptosis and inhibit CSCs proliferation, garcinol nanoformulations were able to inhibit CD44+ 
breast CSCs growing in a hypoxic microenvironment.152

Silibinin is a flavonoid compound isolated from the fruit and seeds of milk thistle (Silybum marianum L. Gaertn), and 
it has been widely used in clinical practice as a hepatoprotective drug.153 In recent years, the anticancer and tumor 
preventive effects exhibited by silibinin have shown great potential for development and improved bioavailability with 
nanomaterials.154,155 Coloaded carbazole and silibinin cationic liposomes can kill prostate cancer cells and CSCs 
simultaneously.156 Furthermore, aberrant up-/down- regulation of microRNAs (miRNA or miR) has been identified in 
different cancers and it plays an important role in the self-renewal and differentiation of stem cells.157,158 Therefore, 
upregulation of tumor suppressor miR and downregulation of tumor miR expression by NP with anticancer effects may 
be a novel approach to target CSCs. Tehrani et al found that by inhibiting tumor miR (miR-21, miR-155, and miR-221) 
and inducing tumor suppressor miR (miR-34a, miR-126, and miR- let7b) and their targeted expression, 
a nanoformulation of silibinin induced apoptosis and inhibited the migration and proliferation of pancreatic cells and 
CSCs.159,160 This suggests that targeting CSCs by modulating the function of miRNAs associated with stem cells is 
a feasible and promising approach.
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Table 4 Characteristics of NP-Based Nanoformulations with Flavonoids or Alkaloids

Natural 
Products

Nanomaterials Co-loaded Size (nm) PDI Zeta 
Potential 

(mV)

Entrapment 
Efficiency 

(%)

Drug 
Loading (%)

Target 
CSCs

Mechanism Refs

α-Mangostin PLGA 
nanoparticle

- 186.3 ± 6.42 - 0.03 ± 
0.005

51.16 ± 2.61 - Pancreatic 
cancer

↓ Sonic hedgehog pathway, 
epithelial-mesenchymal 

transition, self-renewal, 

proliferation, colony formation 
↑ Apoptosis

[150]

PLGA 

nanoparticles

- - - - - - Colorectal 

cancer

↓ Notch pathway 

↓ Epithelial-mesenchymal 
transition and self-renewal 

capacity

[151]

Garcinol HA-coated 
GA-loaded 

PLGA 

nanoparticles

- 158.8 0.192 47.4 60.31 5.02 Breast 
cancer

↓ Hypoxia-inducible factors 
(HIF-1α and HIF-2α) 

↓ Notch pathway

[152]

Silibinin Liposomes Carbazole 63.0 ± 1.0 0.26 ± 0.007 10.7 ± 0.3 99.1 ± 0.02 10 Prostate 

cancer

↓ Colony formation and 

migration 

↑ Apoptosis and G2/M phase 
arrest

[156]

Polymersome - 221.7 ± 59.23 0.32 - 94.86 ± 0.07 15.81 ± 0.57 Pancreatic 

cancer

↑ Apoptosis 

↓ Migration and proliferation

[159]

Polymersome - 219.2 0.32 -12.15 94.86 15.81 Pancreatic 

cancer

↑ Apoptosis 

↓ Migration and proliferation

[160]

Catechin Carbon 
nanotubes

- 11 0.354 - - - Prostate 
cancer

↑ Radiosensitivity 
↓ Nanog, Oct4 and β-catenin

[162]

Resveratrol Liposomes - - - - - - Glioblastoma ↑ Caspases 3/7 [163]
Liposomes - 200 - - - - Glioblastoma ↑ Apoptosis [164]
Nanoparticle. - 198.5 ± 0.28 0.196 ± 0.020 3.40 ± 

0.976

- - Oral cancer ↑ Cytokines 

↓ Invasion, proliferation and 

growth of CSCs

[165]

(Continued)
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Table 4 (Continued). 

Natural 
Products

Nanomaterials Co-loaded Size (nm) PDI Zeta 
Potential 

(mV)

Entrapment 
Efficiency 

(%)

Drug 
Loading (%)

Target 
CSCs

Mechanism Refs

Camptothecin Nanoparticle - - - - - - Breast 

Cancer

↓ Hypoxia-inducible factor 1α [169]

Nanoparticle All-trans 

retinoic acid

150 - - - 6.7 Breast 

Cancer

↓ Hypoxia-inducible factor 1α 
↑ Differentiation of CSCs into 

non-CSCs, reactive oxygen 
species

[170]

Nanocapsules Fluorouridine 

and lovastatin

107.72 ± 10.78 0.152 ± 0.013 -26.45 ± 

5.33

67.6 68.3 Triple- 

negative 
Breast 

Cancer

↓ Growth and metastasis of 

CSCs

[171]

Berberine Liposomes - 96.88 ± 1.81 0.20 ± 0.01 -8.98 ± 
0.96

93.5 ± 3.14 - Breast 
Cancer

↓ ABC transporters (ABCC1, 
ABCC2, ABCC3, ABCG2) and 

Bcl-2 

↑ Apoptosis

[174]

Piperlongumine PLGA based 

nanoparticle

- 251 0.3 - 95 9.5 Triple- 

negative 
Breast 

Cancer

↓ Self-renewal, stemness, 

chemoresistance, epithelial- 
mesenchymal transition and 

aggressiveness 

↓ STAT3

[175]

Tetrandrine Liposomes Vinorelbine 102.05 ± 0.99 0.193 ± 0.003 24.35 ± 

4.76

89.453 ± 1.86 - glioma ↑ Apoptosis [176]

Note: ↑, increase or promote;↓, decrease or inhibit; -, no data available. 
Abbreviation: PDI, polydispersity index
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Catechin, a flavonoid found in various plants, including green tea, is widely considered an adjuvant in cancer treatment.161 

Carbon nanotubes deliver catechin specifically targeting CSCs, inhibit the expression of related transcription factors and 
regulators (including Nanog, Oct4, and β-catenin), and significantly increase the radiosensitivity of cancer cells, which is 
expected to eradicate prostate CSCs through synergistic effects and radiosensiticity.162 In addition, resveratrol is a well- 
known natural polyphenolic organic compound that is widely found in grapes, peanuts, knotweed, blueberries, and other 
plants, and has multiple health benefits such as anti-inflammatory, anticancer, cardiovascular and cerebrovascular protection, 
and anti-aging.66 The targeted delivery of resveratrol encapsulated in nanocarriers to CSCs can induce apoptosis (regulate 
caspases 3/7, P53), regulate the production of inflammatory cytokines (such as TNF-α, IL-6, IL-1β, etc.), and decrease the 
expression of metastasis (CD133, ALDH1, CXCR4, etc.) and angiogenic markers (matrix metalloproteinases, inducible nitric 
oxide synthase, vascular endothelial growth factor -A, etc.) in xenograft mouse model systems.163–165

Alkaloids
In recent years, alkaloids such as camptothecin, berberine, piperlongumine, and tetrandrine have been found to have 
good therapeutic effects on multiple types of cancer166 (Table 4). The combination of camptothecin with anti-angiogenic 
drugs and differentiation inducers is an effective therapeutic strategy against CSCs-derived tumor heterogeneity. The 
induction of hypoxia and concomitant upregulation of HIF-1a stimulates tumor angiogenesis, invasion, metastasis, 
resistance to anti-angiogenic drugs and self-renewal of CSCs, and the alkaloid camptothecin is a powerful inhibitor of 
HIF-1a activity.167,168 The camptothecin nanoformulation (CRLX101) blocks hypoxia-induced accumulation of CSCs 
and HIF-1a in breast cancer cells while enhancing the efficacy of anti-angiogenic drugs.169 Shen et al prepared 
nanoparticles for the combined delivery of ATRA and camptothecin. The nanoparticles differentially released the two 
drugs to maximize their synergistic anticancer efficacy and eliminate both CSCs and bulk tumor cells.170 In addition, 
Zhang et al innovatively combined statins with chemotherapeutic agents to design nanocapsules loaded with 
a lovastatin-camptothecin-fluorouridine conjugate for simultaneous drug delivery to tumor sites showing encouraging 
synergistic anticancer and antimetastatic potential.171 This nanodelivery system provides a simple and synergistic 
strategy to significantly reduce chemotherapy resistance, recurrence, and metastasis associated with CSCs.

Conventional chemotherapeutic drugs will enrich CSCs while destroying cancer cells and generate drug resistance, which 
in turn leads to cancer recurrence and metastasis. The overexpression of cell membrane ATP-binding cassette (ABC) 
transporter proteins and mitochondrial apoptosis-related proteins is the main cause of drug resistance in CSCs.172,173 

Berberine liposomes can cross the membranes of CSCs, downregulate the expression of ABC transporter proteins 
(ABCC1, ABCC2, ABCC3, ABCG2) and selectively accumulate in mitochondria, which in turn induces the death of 
CSCs due to acute cytotoxic injury and the induction of apoptosis.174 PLGA-based piperlongumine nanoparticles (PL-NPs) 
similarly induced apoptosis in CSCs via the mitochondria pathway and inhibited self-renewal, stemness, chemoresistance, 
EMT, and invasiveness of CSCs by downregulating STAT3.175 The multifunctional targeting of vinorelbine plus tetrandrine 
liposomes enhances drug targeting across the BBB to aggregate in brain tumor sites, penetrate and destroy CSCs, and induce 
apoptosis in CSCs by activating relevant apoptotic proteins.176 These results suggest that targeted modulation of CSCs 
apoptosis may improve chemotherapy drug resistance and reduce the consequent risk of cancer recurrence and metastasis.

Other NP
Sulforaphane (SFN), a natural isothiocyanate, can inhibit CSCs and CSCs-like properties through a variety of mechan-
isms, such as blocking self-renewal signaling (Wnt/b-catenin, Hedgehog, and Notch signaling.), activating apoptotic and 
autophagic pathways, and altering miRNAs (miR-140, 21 and 29).66,177,178 However, SFN is highly hydrophobic and 
has poor stability to light and oxygen, which limit its efficacy and wide application.179 Gu et al developed mineralized 
hyaluronic acid-SS-tetradecyl nanocarriers that are responsive to highly reducing and mildly acidic tumor microenvir-
onments, and could rapidly deliver SFN and target CD44+ breast CSCs via HA, enhancing the efficacy of SFN in 
inhibiting CSCs-like properties and significantly inhibit CSCs invasion, self-renewal and tumor growth.180 Likewise, by 
targeting the Wnt/β-catenin signaling pathway, the SFN-loaded nanoparticles significantly inhibited the self-renewal of 
breast CSCs and improved their chemotherapy sensitivity, and its combination with doxorubicin can eliminate both 
cancer cells and CSCs, thus effectively eradicating breast cancer.181
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ALDHs maintain intracellular environmental homeostasis by catalyzing the conversion of toxic aldehydes to nontoxic 
carboxylic acids, which are essential for maintaining the self-renewal of normal and cancer stem cells. Members of the 
ALDH1A family (ALDH1A1, ALDH1A3) are closely associated with cancer development, metastasis, and drug 
resistance, hence targeting ALDH1A associated with CSCs may be an effective adjuvant cancer therapy.182–184 

Natural coumestan wedelolactone-encapsulated PLGA nanoparticles enhanced drug retention and sustained release in 
CSCs by downregulating the expression of drug resistance genes SOX2 and ABCG2, thereby significantly reducing self- 
renewal, pluripotency, invasiveness and increasing sensitivity to PTX in ALDH1A1+ breast CSCs (which are known to 
be resistant to breast CSCs).185 CaCO3 nanoparticles codeliver thymoquinone and doxorubicin to significantly eliminate 
breast CSCs by inhibiting ALDH activity.186 In addition, citral extracted from lemongrass oil is a natural inhibitor of 
ALDH1A1 and ALDH1A3, and the nanodelivery system improves the stability of citral and maintains its ability to 
specifically inhibit ALDH1A1 and ALDH1A3 activity to significantly block CSCs self-renewal, colony formation, drug 
resistance, and metastatic potential, while its combination with PTX shows strong synergistic effects.187,188

Realgar is a mineral that has been used in China for more than 3000 years and its main active ingredient is tetraarsenic 
tetrasulfide (As4S4). In recent years, many studies have shown that As4S4 can induce apoptosis in various cell lines such as 
leukemia cell lines and lung cancer cell lines.189–191 Grinding the realgar coarse powder into nanoparticles showed higher 
efficacy and less toxicity, significantly eliminating CSCs and reducing their clonogenic ability.192 Moreover, realgar 
nanoparticles inhibited glucose metabolism, lung CSCs viability, and tumor growth by inhibiting metabolic reprogramming, 
which may be associated with the downregulation of HIF-1α expression via the PI3K/Akt/mTOR pathway.193

Nanomaterials delivering triterpenoids such as anthothecol, nimbolide, and ginsenoside Rg3 similarly showed 
excellent ability to target CSCs. The use of nanoparticle graphene oxide loaded with ginsenoside Rg3 significantly 
inhibited the malignant progression of osteosarcoma, inhibited the sphere formation of CSCs, and improved the effect of 
photodynamic therapy.194 Anthothecol-coated PLGA nanoparticles (Antho-NPs) inhibited the proliferation, colony 
formation, and induced apoptosis of pancreatic CSCs and suppressed the self-renewal ability of CSCs by targeting the 
sonic hedgehog pathway and genes regulating cell survival and the cell cycle with no effect on human normal pancreatic 
ductal epithelial cells. Moreover, nimbolide-encapsulated PLGA nanoparticles (Nim NPs) are similar to Antho-NPs, both 
of which can induce the transition of pancreatic CSCs from mesenchyme to epithelium, thereby inhibiting their move-
ment, migration, invasion, MDR, and self-renewal capacity195,196 (Table 5).

Conclusions and Future Perspectives
Cancer remains a serious global health problem. With more in-depth research on cancer, the continuous emergence of new 
anticancer drugs and technical means, and the early screening of the disease, the treatment of cancer has made great progress, 
but serious treatment-related side effects, drug resistance, recurrence, and metastasis lead to high cancer mortality and a major 
social burden.197 CSCs present in tumor tissues control the occurrence and development of tumors, chemotherapy resistance, 
recurrence, and metastasis due to their characteristics of high proliferation, self-renewal, multidirectional differentiation, high 
tumorigenicity, and multidrug resistance. CSCs are highly resistant to conventional chemotherapeutic drugs, and the applica-
tion of chemotherapeutic drugs will greatly enrich CSCs.40 Therefore, finding drugs that target and clear CSCs is a new 
strategy to improve the cure rate of cancer. A growing body of epidemiological and clinical research suggests that ingestion of 
natural plant compounds has health benefits, both in reducing cancer incidence and the risk of recurrence, and they exhibit 
synergistic effects with traditional anticancer drugs. More importantly, compared with most chemotherapeutic agents, plant 
compounds from abundant and safe sources directly or indirectly target key signaling pathways, self-renewal pathways, 
metabolism, epigenetic modifications, and the tumor microenvironment of CSCs, and this may become a new therapeutic 
strategy for targeting CSCs.198,199 However, despite the tremendous health benefits of NP, their clinical use is severely limited 
by their poor water solubility, low absorption rate, low bioavailability, and nonspecific targeting. Nanocarriers, due to their 
superior storage stability, tissue permeability, and biocompatibility, target the delivery of biologically active compounds of 
natural origin to improve their bioavailability, prolong the drug circulation time in vivo, and enhance drug efficacy.16 

Therefore, the development of nanocarrier systems for targeted delivery and controlled drug release provides a possibility 
to overcome the toxic and side effects of traditional chemotherapeutic drugs and kill CSCs.
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Table 5 Characteristics of NP-Based Nanoformulations with Other Natural Products

Natural 
Products

Nanomaterials Co-loaded Size 
(nm)

PDI Zeta 
Potential 

(mV)

Entrapment 
Efficiency 

(%)

Drug 
Loading 

(%)

Target CSCs Mechanism Refs

Sulforaphane Mineralized hyaluronic acid-SS- 
tetradecyl nano-carrier

- 85.90 
± 3.49

0.13 
± 

0.01

-13.81 ± 
0.36

92.36 ± 2.17 33.64 ± 
1.33

Breast cancer ↓ Invasion, self-renewal of CSC 
↓ Tumor growth

[180]

Self-Assembled Poly(D, L-lactide- 
co-glycolide)/Hyaluronic Acid 

Block Copolymer-Based 

Nanoparticles

Doxorubicin 179.3 
± 2.8

0.113 
± 

0.023

-26.3 ± 1.5 - 5.7 ± 1.0 Breast cancer ↓ Wnt/β-catenin signaling pathway 
↓ Self-renewal of breast CSCs

[181]

Wedelolactone PLGA nanoparticles Doxorubicin 95 ± 

0.34

0.77 

± 

0.065

-8.5 ± 2.35 83.3 ± 2.15 - Breast cancer ↓ Self-renewal, pluripotency, 

invasiveness 

↑ Sensitivity to paclitaxel

[185]

Thymoquinone Cockle Shell-derived aragonite 

CaCO3 nanoparticles

- - - - - - Breast cancer ↓ALDH, CD44 and CD24 

↓ Migration, invasion and sphere 

formation

[186]

Citral Polymeric micelles Paclitaxel 26.51 0.1 -13.87 99.73 9.95 Breast cancer ↓ Self-renewal, differentiation and 

migration, aldehyde dehydrogenase 

family (ALDH1A1)

[187]

Nanoparticle Paclitaxel - - - - - Breast cancer ↓ Colony forming, aldehyde 

dehydrogenase family(ALDH1A3)

[188]

Realgar Realgar nanoparticles - 131 - - - - Multiple 
myeloma

↓ Clonogenic capacity [192]

Nano-realgar particles - 72.79 - - - - Lung cancer ↓ Glucose metabolism, CSCs 

viability and tumor growth

[193]

Ginsenoside 

Rg3

Graphene Oxide Nanoparticle - - - - - - Osteosarcoma ↓ Sphere formation 

↑ Photodynamic therapy

[194]

Anthothecol PLGA-nanoparticles - 275 0.3 -20 - - Pancreatic 
cancer

↓ Epithelial-mesenchymal transition; 
↓ AKT and mTOR

[195]

PLGA-nanoparticles - 190.52 

± 5.39

0.02 

± 
0.01

- 45.25 ± 3.55 - Pancreatic 

cancer

↓ Proliferation, colony formation, 

self-renewal, sonic hedgehog 
pathway, epithelial-mesenchymal 

transition 

↑ Apoptosis

[196]

Notes: PDI, polydispersity index;↑, increase or promote;↓, decrease or inhibit; -, no data available.
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Furthermore, non-CSCs can be spontaneously and randomly transformed into CSCs.31,200 Therefore, better therapeutic 
outcomes can be achieved using a combination of conventional chemotherapy and antitumor stem cell agents to simulta-
neously remove cancer cells and CSCs. Currently, clinical combination therapies are mainly based on the combined 
administration of conventional agents, which may have synergistic, additive, or even antagonistic effects. 
Nanoformulations are powerful tools whose pharmacokinetics and distribution in vivo depend on the nanocarriers themselves, 
independent of the characteristics of the drug.201 Currently, coadministration regimens for nanoformulations are divided into 
the combined use of two single-drug delivery systems and the combination of two drugs in a single-drug delivery system. The 
use of two separate nanoformulations allows the flexibility to administer drugs at different doses and times, but it is difficult to 
achieve synchronization of their pharmacokinetics and biodistribution to maintain a synergistic ratio of drugs at the tumor site. 
In contrast, drug delivery systems that coload NP (killing CSCs) and conventional chemotherapeutic agents (killing cancer 
cells) can deliver them simultaneously to the tumor site in synergistic ratios, thus synchronizing tumor treatment in time and 
space and ensuring the elimination of different cancer cell subpopulations to achieve synergistic therapeutic effects.202–204 

However, maintaining synergistic drug ratios in the same nanodelivery system is not easy because each drug exhibits different 
release rates according to its properties, which also poses new challenges for the design of nanodelivery systems.

In this review, we summarize the great potential of nanocarrier-delivered natural product agents in targeting CSCs to 
overcome cancer recurrence, metastasis, and drug resistance. Nanocarriers improve the bioavailability of natural active 
compounds such as curcumin, PTX, doxorubicin, cyclopamine, and all-trans retinoic acid, which are passively or actively 
targeted by ligand modification for delivery to CSCs to inhibit their stemness and they show excellent synergistic effects in 
combination with chemotherapeutic agents, providing more options for the development of novel, safe, and effective 
antitumor drugs. Although breakthroughs have been made in the experimental research of nanomedicines in the preclinical 
stage, they are still far from the core goal of achieving clinical therapeutic effects. Currently, moving from basic laboratory 
research to clinical applications is a key issue in the development of the nanomedicine field. With significant advances in 
nanotechnology, targeted drug delivery, and cancer biology, this work is expected to achieve a breakthrough soon.
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