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Background and Aims: Cardiovascular (CV) risk functions are the recommended tool to identify high-risk individuals. However, 
their discrimination ability is not optimal. While the effect of biomarkers in CV risk prediction has been extensively studied, there are 
no data on CV risk functions including time-dependent covariates together with other variables. Our aim was to examine the effect of 
including time-dependent covariates, competing risks, and treatments in coronary risk prediction.
Methods: Participants from the REGICOR population cohorts (North-Eastern Spain) aged 35–74 years without previous history of 
cardiovascular disease were included (n = 8470). Coronary and stroke events and mortality due to other CV causes or to cancer were 
recorded during follow-up (median = 12.6 years). A multi-state Markov model was constructed to include competing risks and time- 
dependent classical risk factors and treatments (2 measurements). This model was compared to Cox models with basal measurement of 
classical risk factors, treatments, or competing risks. Models were cross-validated and compared for discrimination (area under ROC 
curve), calibration (Hosmer–Lemeshow test), and reclassification (categorical net reclassification index).
Results: Cancer mortality was the highest cumulative-incidence event. Adding cholesterol and hypertension treatment to classical risk 
factors improved discrimination of coronary events by 2% and reclassification by 7–9%. The inclusion of competing risks and/or 2 
measurements of risk factors provided similar coronary event prediction, compared to a single measurement of risk factors.
Conclusion: Coronary risk prediction improves when cholesterol and hypertension treatment are included in risk functions. Coronary 
risk prediction does not improve with 2 measurements of covariates or inclusion of competing risks.
Keywords: risk assessment, coronary disease, risk factors, longitudinal studies

Introduction
Cardiovascular diseases (CVD) are the leading causes of mortality, morbidity, and healthcare cost worldwide. Trends in 
population aging, obesity, and diabetes predict an increased CVD burden over time.1 If we seek to reduce CVD, we need 
to strengthen CVD prevention. Improved CVD prevention can be achieved by interventions targeted to general 
population and to high-risk individuals, with both approaches aimed at controlling modifiable risk factors.

Identification of high-risk individuals usually relies on cardiovascular (CV) risk functions2 to predict the risk of 
developing a CVD event in a period of time, taking into account the presence of known risk factors. Current CV risk 
functions include, among others, the Framingham risk score,3 the Pooled Cohort equations,4 SCORE5,6 and QRISK.7 

These risk functions can be used across populations after a calibration process considering the incidence of CVD and the 
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prevalence of CV risk factors. For example, Framingham-REGICOR calibrated the Framingham risk score to the Spanish 
population.8–10

A CV risk function allows the categorization of individuals according to their risk, from low to very high. The next 
step is to establish the appropriate intensity of preventive strategies, such as lipid-lowering and hypertension treatments.2

Unfortunately, identification of high-risk individuals is not entirely straightforward. In a recent study of 1.8 million 
subjects, 3 commonly used CV risk functions did not accurately identify high-risk individuals.11 In addition, the Spanish 
Framingham-REGICOR function has shown that more than 60% of coronary events occur in individuals identified as 
having low or moderate risk.10

Risk functions necessarily apply baseline values of population risk factors, and most do not consider competing risks 
of death or the overall effect of increasing age and its unknown influence on risk factors. This neglects individual trends 
related to risk factors and treatments. It seems logical that including all this information could increase accuracy of risk 
prediction.7,12,13 Unfortunately, recent publications show contradictory results when competing risks are included in the 
models.5,14,15 There is a need to more thoroughly test what appears to be a promising option and focus the efforts of 
further research on the most promising findings.

In this study, we aimed to develop expanded risk functions to predict coronary events, modeling various 
combinations of competing risks and longitudinal data of risk factors and treatments in the REGICOR population 
cohorts from northeastern Spain. We also compared the calibration, discrimination, and reclassification achieved by 
the resulting functions with the coronary risk function currently used in clinical practice in the region (Framingham- 
REGICOR).

Materials and Methods
Study Population
This was a cohort study in Girona Heart Registry (REGICOR) data from 3 population-based cohorts recruited in Girona 
province in 1995, 2000, and 2005.16 Data from an interview, a physical examination, and several questionnaires, 
completed at baseline and at 2 re-examinations in 2010 and 2018, were available for all participants.17 Follow-up for 
CV events and cause-specific mortality was available through December 2016. Median follow-up was 12.6 years. The 
present study included risk factor data from baseline and the 2010 re-examination, and follow-up data for CV events and 
mortality. We did not consider the 2018 data, given the lack of corresponding follow-up data. From all REGICOR 
cohorts, we included 8470 participants aged 35–74 years, without previous cardiovascular events, and with data in the 
variables of interest and consent for research use of anonymized data (Supplemental Figure 1).

Ethics
The REGICOR population cohorts protocol was approved by the Parc de Salut Mar ethics committee (#2011/4309/I) and 
informed consent was obtained from all participants. All procedures were performed according to the Helsinki 
Declaration and Spain’s guidelines and regulations.

Exposure Variables and Outcomes of Interest
We included the following variables, obtained at baseline, as potential predictors: age, sex, and education level attained 
(primary or lower, secondary, university). Additional predictive variables, recorded at baseline and at re-examination, 
included lipid profile (triglycerides, total cholesterol, and high and low density lipoprotein cholesterol [HDL and LDL, 
respectively]), systolic and diastolic blood pressure, diabetes status, smoking status (smokers and ex-smokers <1 year, 
non-smokers and ex-smokers ≥1 year), body mass index, and treatment for hypercholesterolemia, hypertension, and 
diabetes, defined as diagnosis, current treatment or fasting glucose ≥126 mg/dL.

Outcomes of interest during the follow-up were coronary heart disease (acute myocardial infarction –AMI– or 
angina). We considered stroke events, cancer mortality, and other CV death as competing events. CVD events were 
identified by linkage with the REGICOR AMI Registry,18 and with the Program of Analytical Data for Research and 
Innovation in health (PADRIS) of the Government of Catalonia, which includes all hospital admissions and the official 
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mortality register. Events were identified using ICD-9/-10 codes and cases were classified in an event committee as 
previously reported.19

Statistical Analysis
Descriptive Statistics
Continuous variables were described with the mean and standard deviation, if normality distributed; otherwise, with the 
median and interquartile range. Categorical variables were reported as absolute and relative frequencies. Means were 
compared between groups with the t-test or with ANOVA for two or more groups, medians with the Kruskal–Wallis test, 
and proportions with the Chi-square or Fisher exact test, as appropriate. Incidence curves were estimated for each 
outcome, taking into account other events such as competing outcomes, using the “mstate” R package.

Modeling
We examined the inclusion of potential predictors and of interactions in the models. Interactions between age and risk 
factors and between treatments and the corresponding risk factor were tested. A backward stepwise process based on the 
Akaike Information Criteria informed the selection of independent variables to be included in the models.

Four models were developed: 1) the basic model included the basal values of the 8 variables in the Framingham- 
REGICOR function (age, sex, total cholesterol, HDL cholesterol, systolic blood pressure, diastolic blood pressure, 
diabetes, and smoking status); 2) the basic model plus the treatments identified as significant (control of cholesterol and 
hypertension); 3) the basic model with time-dependent covariates; 4) the basic model plus the significant treatments and 
time-dependent covariates. No interactions were retained in the models.

These models were duplicated to enable analysis with and without competing risks. For each variable in all 8 models, 
we reported Hazard Ratios (HR), 95% confidence intervals (CI) and p-values.

The four models without competing risks were fitted with Cox Proportional Hazard regression. In the models that 
took competing risks into account, a more complex statistical design was required. When these models did not include 
time-dependent covariates (models 1 and 2), a modification of the Cox Proportional Hazards regression adapted for 
competing risks (“cmprsk” R package) was applied. When time-dependent covariates were included (models 3 and 4), 
we used a multi-state Markov model described in Supplemental Figure 2 (“msm” R package). To test the proportional 
hazards assumption of Cox models, we analyzed weighted residuals (“cox.zph” R function).

Validation
Models were validated using a 5-fold strategy. Models were derived in 4/5 folds and then the derived models were fitted 
in the remaining fold. This process was repeated 5 times to obtain the predictions for all participants. Predictions were 
computed at 15 years. In models not including time-dependent covariates, baseline values were used.

In models with competing risks, discrimination was assessed with the area under the receiver operating characteristic 
curve (“timeROC” R package); otherwise, with the Somer D index. A competing risk estimate was calculated using the 
“mstate” R package. Calibration was determined with the Hosmer–Lemeshow test using an adapted version of the Nam- 
D’Agostino statistic.20

Reclassification was examined with the categorical Net Reclassification Index (NRI).21,22 We used the published cut- 
off points of the Framingham-REGICOR function, translated to 15 years of follow-up (7.5% and 15%). The NRI was 
adapted for competing events as the Hosmer–Lemeshow test. To calculate discrimination, calibration, and reclassification 
of models with time-dependent covariates, we used the betas of the fitted models and the mean value of the two risk 
factor measurements.

Analyses were done for the whole cohort, and separately for women and men. Tests were declared statistically 
significant when p-value <0.05. All analyses were performed with the R software (version 4.0.5) [R Core Team (2021). 
R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL 
https://www.R-project.org/].
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Data Availability
Data supporting the results reported in this manuscript are available from the corresponding author.

Results
Descriptive Analysis
Participants with no events during the follow-up were younger at baseline (52 years), more frequently women (56%), and 
had some university studies (46%) (Table 1, Panel A). Participants who had a coronary event during the follow-up 
showed, at baseline, the highest levels of triglycerides (115 mg/dl), total and LDL cholesterol (226 and 155 mg/dl, 
respectively), the lowest HDL cholesterol (45 mg/dl) levels, and greater prevalence of smoking (27%) and cholesterol 
treatment (23%), compared to those with no events. Participants who had a coronary event or a stroke during the follow- 
up had the highest diastolic blood pressure levels (82 mmHg) at baseline. Participants who died from other CV causes 
showed, at baseline, the highest systolic blood pressure levels (144 mmHg), body mass index (29 Kg/m2), prevalence of 
diabetes (30%), and treated hypertension and diabetes (37% and 20%, respectively). Descriptive analyses at re- 
examination are presented in Supplemental Table 1.

Event Incidence
There were 1103 events during the follow-up: 386 coronary events (35%), 239 stroke events (22%), 79 other CV deaths 
(7%), and 399 cancer deaths (36%). At 10-year follow-up, coronary events were the most frequent, but at the end of 
follow-up, the most frequent event was cancer mortality (Figure 1). Overall, women had greater cancer mortality than 
incidence of coronary events, while both incidences were very similar in men (Supplemental Figure 3).

Table 1 Baseline Demographic Characteristics and Cardiovascular Risk Factors of the Included Participants by Groups Depending on 
the Event That Occurred in the Follow-Up

No Event 
N=7367

CAD Event 
N=386

Stroke Event 
N=239

Other CV Death 
N=79

Cancer Death 
N=399

p-value

Women 4132 (56.1%) 129 (33.4%) 102 (42.7%) 37 (46.8%) 149 (37.3%) <0.001
Age, years 52.0 [44.0;61.0] 62.0 [55.0;69.0] 64.0 [56.0;70.0] 69.0 [66.0;72.0] 64.0 [56.0;70.0] <0.001

University education 3367 (45.7%) 102 (26.4%) 48 (20.1%) 16 (20.3%) 103 (25.8%) <0.001

Total cholesterol, mg/dL 213 [187;241] 226 [201;259] 216 [195;244] 212 [190;242] 211 [183;243] <0.001
HDL cholesterol, mg/dL 50.8 [43.0;60.6] 45.0 [37.6;56.0] 47.7 [41.0;56.7] 49.5 [40.7;62.5] 48.5 [40.2;59.0] <0.001

LDL cholesterol, mg/dL 140 [116;165] 155 [124;184] 144 [126;170] 139 [120;170] 139 [115;167] <0.001

Triglycerides, mg/dL 90.0 [68.0;125] 115 [86.2;155] 100 [75.0;132] 111 [76.0;148] 97.0 [75.0;134] <0.001
Systolic blood pressure, 
mmHg

124 [113;138] 139 [126;154] 140 [125;155] 144 [134;154] 136 [123;150] <0.001

Diastolic blood pressure, 
mmHg

78.0 [72.0;85.0] 82.0 [74.0;89.0] 82.0 [75.0;90.0] 80.0 [72.5;87.0] 79.0 [72.0;86.0] <0.001

Diabetes 837 (11.4%) 100 (25.9%) 57 (23.8%) 24 (30.4%) 91 (22.8%) <0.001

Smoking 1687 (22.9%) 103 (26.7%) 51 (21.3%) 11 (13.9%) 105 (26.3%) 0.051
BMI, km/m2 26.7 [23.9;29.7] 28.2 [25.7;31.0] 27.6 [25.2;31.2] 29.3 [25.7;32.8] 27.3 [24.8;30.4] <0.001

Cholesterol treatment 584 (7.93%) 88 (22.8%) 35 (14.6%) 16 (20.3%) 31 (7.77%) <0.001

Blood pressure 
treatment

1089 (14.8%) 127 (32.9%) 69 (28.9%) 29 (36.7%) 105 (26.3%) <0.001

Diabetes treatment 241 (3.27%) 54 (14.0%) 32 (13.4%) 16 (20.3%) 33 (8.27%) <0.001

Notes: Categorical variables are summarized with absolute (N) and relative frequencies (%), continuous variables with the median and interquartile range. 
Abbreviations: BMI, body mass index; CAD, coronary artery disease; CV, cardiovascular; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein 
cholesterol.

https://doi.org/10.2147/CLEP.S374581                                                                                                                                                                                                                                 

DovePress                                                                                                                                                                    

Clinical Epidemiology 2022:14 1148

Subirana et al                                                                                                                                                         Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=374581.docx
https://www.dovepress.com/get_supplementary_file.php?f=374581.docx
https://www.dovepress.com
https://www.dovepress.com


Model Description
Variable estimates for the best discrimination models are presented in Table 2. When competing risks were taken into 
account, the best model to predict coronary events included baseline values of the Framingham-REGICOR coronary risk 
function variables (age, sex, total and HDL cholesterol, blood pressure, and presence of diabetes and smoking), together 
with treatment of cholesterol and hypertension (Table 2).

When competing risks were not included, the best model was the Framingham-REGICOR function, either with 
baseline or with time-dependent covariates. In the model with competing risks, cholesterol and hypertension treatment 
doubled the risk of coronary events and increased the risk by 29%, respectively. Model estimates were similar in women 
and men (Supplemental Table 2).

Figure 1 Cumulative incidence of coronary events, stroke, other cardiovascular mortality, and cancer mortality during the follow-up. Incidence units are 1/100 inhabitants. 
Abbreviation: CV, cardiovascular.

Table 2 Variable Estimates in the Models with Best Discrimination

Model With Competing Risks Model Without Competing Risks

REGICOR + Treatments REGICOR Model

HR (95% CI) p-value HR (95% CI) p-value

Women 0.53 (0.42, 0.66) <0.001 0.53 (0.42, 0.66) <0.001

Age (x10years) 1.67 (1.48, 1.88) <0.001 1.90 (1.68, 2.15) <0.001

Total cholesterol (x10mg/dL) 1.07 (1.05, 1.09) <0.001 1.06 (1.04, 1.09) <0.001
HDL cholesterol (x10mg/dL) 0.80 (0.72, 0.89) <0.001 0.80 (0.73, 0.87) <0.001

Systolic blood pressure (x10mmHg) 1.13 (1.06, 1.21) <0.001 1.15 (1.08, 1.23) <0.001

Diastolic blood pressure (x10mmHg) 0.99 (0.87, 1.13) 0.940 0.99 (0.88, 1.12) 0.872
Diabetes 1.33 (1.05, 1.70) 0.019 1.50 (1.19, 1.89) 0.001

Current smoker 1.63 (1.28, 2.07) <0.001 1.65 (1.29, 2.09) <0.001

Cholesterol treatment 2.02 (1.56, 2.61) <0.001 – –
Blood pressure treatment 1.29 (1.02, 1.65) 0.036 – –

Abbreviations: CI, confidence interval; HDL, high-density lipoprotein cholesterol; HR, hazard ratio.
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Model Performance
Models predicting coronary events that included competing risks showed better discrimination when cholesterol and 
hypertension treatment were considered (Figure 2). The use of baseline or time-dependent covariates did not modify 
model discrimination significantly. Models without competing risks showed similar discrimination regardless of the 
inclusion of treatments and time-dependent covariates.

Calibration was acceptable in models predicting coronary events (Supplemental Table 3). Even in the models showing 
a significant lack of calibration, only a slight overestimation of risk was observed in the highest risk decile (Supplemental 
Figure 4). With or without competing risks, reclassification improved when cholesterol and hypertension treatment was 
included (Table 3).

Figure 2 Discrimination of the models. 
Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; Ref, reference; REGICOR, Girona Heart Registry.

Table 3 Reclassification by the Categorical Net Reclassification Index Between the Basic Model with 
the Variables from the Framingham-REGICOR Function and the Models with and without 
Treatments, Time-Dependent Covariates and Competing Risks

NRI (95% CI) p-value

Models including competing risks
REGICOR + time-dependent covariates 0.66 (−3.49, 4.81) 0.755
REGICOR + treatments 0.073 (0.017, 0.130) 0.011

REGICOR + time-dependent covariates + treatments 0.049 (−0.007, 0.104) 0.086

Models not including competing risks
REGICOR + time-dependent covariates 2.04 (−3.71, 7.79) 0.487

REGICOR + treatments 0.089 (0.036, 0.142) 0.001

REGICOR + time-dependent covariates + treatments −0.002 (−0.097, 0.094) 0.970

Abbreviations: CI, confidence interval; cNRI, categorical net reclassification index.
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Discussion
In this study, we observed an improvement in modeling the prediction of coronary events when cholesterol and 
hypertension treatments were added to classical CV risk factors. Also, categorical reclassification of models was 
improved when treatment information was included. Calibration of models was acceptable. On the other hand, including 
2 measurements of risk factors or competing risks, as has been suggested by some authors,6,23–26 did not improve 
predictive capacity in our cohort.

The improved discrimination in coronary risk prediction we observed when treatment information was included 
affirms previous reports. For example, two equations that estimate both coronary and cerebrovascular events include 
some treatment data: the QRISK3 function,7 which predicts CV events and is the recommended algorithm in UK, 
includes treatment for hypertension; the ACSVD risk calculator for CV events, based on Pooled Cohort Equations4 and 
currently recommended in the US, includes statin use and hypertension treatment.27 However, treatment information is 
neither included in the SCORE2 risk functions recommended by the European Society of Cardiology nor in any other 
European risk function except for the QRISK3. In Spain, FRESCO28 is the most recent CV risk prediction study using 
representative cohorts of the population in Spain, and developed separate risk functions for coronary and cerebrovascular 
events. The FRESCO Study found a significant interaction between systolic blood pressure and hypertension treatment 
only for coronary risk prediction, not for cerebrovascular events.

Based on the current literature,23–26 we anticipated that models with more than one measurement of CV risk factors 
and treatments would discriminate better than models with the basal measurement only, in the context of coronary event 
prediction. However, in models including time-dependent covariates, we observed no effect.

While there is no prior information on the effect of time-dependent covariates in the prediction of coronary events, 
some studies have analyzed the effect of mean values of longitudinal data of risk factors on CV risk prediction. In 
a recent international study, discrimination and reclassification slightly improved in CV event prediction when algorithms 
included mean values of repeated measurements of systolic blood pressure and total and HDL cholesterol values.23 Other 
studies also found small improvements in CV risk prediction with the addition of summary information of more than one 
measurement of blood pressure and lipids.24–26

Our study is the first to model more than one measurement of classical risk factors (systolic and diastolic blood 
pressure, total and HDL cholesterol, smoking, diabetes) together with cholesterol and hypertension treatment in the 
prediction of coronary events. We observed no improvements with the additional measurement. It is possible that adding 
only one more measurement is not enough to improve model discrimination. In addition, currently available methods 
may not be adequate to assess performance of models with time-dependent covariates.

Most of the models we developed showed lower discrimination when competing risks were included, compared to 
those without competing risks, regardless of the use of time-dependent or basal covariates. The exception was the 
coronary model with competing risks and treatment information. The recent SCORE2 risk function,6 which incorporates 
competing risks and is based on data from more than 1 million participants, reported better discrimination than the 
SCORE risk function29 without competing risks. However, the SCORE2 function also incorporates non-fatal events, 
a large number of contemporary cohorts, and a recalibration of risk models with updated incidence and risk factor data. 
Given that the individual effect of competing risk information on discrimination is not reported for the SCORE2 function, 
and that the improvements mentioned likely contributed to the improvement in model discrimination, it is not possible to 
know whether competing risks improved discrimination in the SCORE2 function.

On the other hand, recent large studies focused on the impact of competing risks have shown similar discrimination in 
the prediction of CV events by models with and without competing risks.14,15 There are several possible explanations for 
the differences in results between these studies and ours, including differences in sample size, analysis of CV versus 
coronary risk prediction, and the number of competing risk events considered (only one, non-CV mortality, versus 3 
competing events in our models). Altogether, our results and previous studies on the role of competing risk in CV risk 
prediction suggest that competing risk information may not improve model discrimination. However, it could be useful to 
focus our analysis on specific subgroups, such as the elderly. In addition, models including competing risks could be 

Clinical Epidemiology 2022:14                                                                                                      https://doi.org/10.2147/CLEP.S374581                                                                                                                                                                                                                       

DovePress                                                                                                                       
1151

Dovepress                                                                                                                                                        Subirana et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


helpful to public health implementation of chronic disease prevention programs, as they provide risk prediction for more 
than one disease.

In the ongoing quest to improve coronary risk prediction, this study contributes a complex analysis that included 
time-dependent covariates, competing risks, treatments, and interactions. A strength of the study is the data from more 
than 8000 participants in 3 population-based cohorts, which have been extensively used in the study of risk factor 
prevalence and coronary risk prediction. These population cohorts used validated instruments to obtain basal and re- 
examination data and obtained follow-up information through verified sources. In addition, the statistical methods used in 
this study, which include cross-validation, support the robustness of the obtained results.

This study has also some limitations to be considered. The REGICOR population cohorts included in this study were 
recruited in 1995–2000–2005, and the incidence of CV events varied slightly between these cohorts, which could hamper 
the validity of our results. However, in recent decades, the trend in AMI in the study region has shown a slowly 
decreasing trend, with no evidence of a major shift in recent years.30 Secondly, the number of events included in this 
study is low, particularly the competing risk event classified as “other CV mortality”; a rate typical of northeastern Spain 
but lower than in other European regions.30 While the results obtained could have been affected by this factor, their 
validity is supported by the robust analysis performed.

Conclusions
Coronary risk prediction in northeastern Spain improved when cholesterol and hypertension treatment were considered 
together with classical CV risk factors. Contributing to the discussion of multiple risk factor measurements and 
consideration of competing risks in risk prediction models, our data suggest that two measurements over time are not 
enough to improve CV risk prediction, compared to a basal measurement only and that including competing risks may 
not improve CV risk prediction in a general population.

Abbreviations
AMI, Acute myocardial infarction; CV, Cardiovascular; CVD, Cardiovascular disease; HDL, High-density lipoprotein 
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