
O R I G I N A L  R E S E A R C H

Machine Learning Analyses Reveal Circadian 
Features Predictive of Risk for Sleep Disturbance
Rebeccah Overton1, Aziz Zafar1,2, Ziad Attia1,3, Ahmet Ay1,2, Krista K Ingram 1

1Department of Biology, Colgate University, Hamilton, NY, USA; 2Department of Mathematics, Colgate University, Hamilton, NY, USA; 3Department 
of Computer Science, Colgate University, Hamilton, NY, USA

Correspondence: Krista K Ingram, Email kingram@colgate.edu 

Introduction: Sleep disturbances often co-occur with mood disorders, with poor sleep quality affecting over a quarter of the global 
population. Recent advances in sleep and circadian biology suggest poor sleep quality is linked to disruptions in circadian rhythms, 
including significant associations between sleep features and circadian clock gene variants.
Methods: Here, we employ machine learning techniques, combined with statistical approaches, in a deeply phenotyped population to 
explore associations between clock genotypes, circadian phenotypes (diurnal preference and circadian phase), and risk for sleep 
disturbance symptoms.
Results: As found in previous studies, evening chronotypes report high levels of sleep disturbance symptoms. Using molecular 
chronotyping by measuring circadian phase, we extend these findings and show that individuals with a mismatch between circadian 
phase and diurnal preference report higher levels of sleep disturbance. We also report novel synergistic interactions in genotype 
combinations of Period 3, Clock and Cryptochrome variants (PER3B (rs17031614)/ CRY1 (rs228716) and CLOCK3111 (rs1801260)/ 
CRY2 (rs10838524)) that yield strong associations with sleep disturbance, particularly in males.
Conclusion: Our results indicate that both direct and indirect mechanisms may impact sleep quality; sex-specific clock genotype 
combinations predictive of sleep disturbance may represent direct effects of clock gene function on downstream pathways involved in 
sleep physiology. In addition, the mediation of clock gene effects on sleep disturbance indicates circadian influences on the quality of 
sleep. Unraveling the complex molecular mechanisms at the intersection of circadian and sleep physiology is vital for understanding 
how genetic and behavioral factors influencing circadian phenotypes impact sleep quality. Such studies provide potential targets for 
further study and inform efforts to improve non-invasive therapeutics for sleep disorders.
Keywords: circadian clock, chronotype, sleep disturbance, sleep quality, machine learning, circadian misalignment

Introduction
Adequate regulation of sleep is important to both mental and physical human health yet sleep disturbances plague nearly 
one-quarter of the world’s population.1 Disruptions in sleep can negatively impact productivity, lowering motivation and 
job performance, as well as the quality of life, impacting healthy relationships and general happiness.2 Individuals who 
experience sleep disturbance and poor sleep efficiency are also more likely to suffer from mental health disorders, 
particularly major depressive disorder. A better understanding of the mechanisms underlying sleep disturbances is vital to 
providing better treatments and outcomes for individuals experiencing sleep disruptions and associated mood disorders. 
A complex interplay of factors influence why some individuals experience sleep disturbance more frequently than others. 
Recent advances in circadian and sleep science underscore the influence of the inernal circadian clock on sleep processes 
and propose both direct and indirect mechanisms for how circadian factors may intersect with sleep physiology.

There are two primary drivers of sleep regulation, the sleep homeostat (Process S) and the circadian rhythm (Process C) 
(Figure 1).3 These two processes involve distinct mechanisms that control different aspects of the sleep-wake cycle. The 
sleep homeostat is the body’s drive for sleep. The drive builds during the day as our time awake increases and get stronger 
the longer we are awake. After a full night of sleep, the drive reaches its lowest point when we have no more need for sleep. 
The circadian clock is an endogenous oscillator in the suprachiasmatic nuclei in the brain that influences the timing of the 
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sleep-wake cycle. These two processes of sleep regulation are continuously interacting but are regulated independently.3,4 

Many of the negative effects of sleep disturbance and sleep deprivation may be attributed to the mismatch between these 
two processes.

One leading factor in sleep disturbance is circadian misalignment—a mismatch between an individual’s endogenous 
circadian rhythms and their lifestyle. Internal circadian rhythms in the brain operate on a 24-hour cycle and are entrained 
every day by environmental factors such as temperature and exposure to light. These molecular rhythms interact with the 
sleep homeostat to regulate the sleep-wake cycle via transcription-translation feedback loops in core clock genes which, in 
turn, regulate associated transcription factors that promote or reduce sleep tendencies.5–7 In mammals, core clock genes 
include the transcription factors CLOCK and BMAL1, which regulate the transcription of Period (Per1, Per2, and Per3) 
and Cryptochrome (Cry1 and Cry2) complexes. In the negative loop, the protein products, PER and CRY dimerize in the 
cytoplasm and reenter the nucleus to inhibit E-box activation of the CLOCK:BMAL1 dimer.8 In the alternate loop, Ror and 
Rev-erbα, are also regulated by the E-box, and their protein products control the rate of Bmal1 transcription; slower tran-
scription when REV-ERBα is bound and accelerated transcription when ROR is bound. The interaction of these dual 
feedback loops stabilizes circadian gene oscillations as well as associated downstream, clock-controlled processes. In 
humans, the misalignment of the circadian clock with behavioral timing can disrupt downstream regulation of the sleep- 
wake cycle which can lead to circadian rhythm sleep disorders such as delayed sleep phase disorder (DSPD).9

Previous research on the human circadian/sleep homeostat interface has identified circadian genes directly involved in 
sleep homeostasis.4,10,11 For example, a variable number of tandem repeat (VNTR) region of PER3 is associated with 
variance in homeostatic sleep pressure and sleep architecture.3 Direct changes in the sleep homeostat can also result from 
altered light sensitivity which can be mediated by the function of ipRGC’s. These changes can be treated by directly 
targeting the ipRGC response via light therapy or melatonin supplements.12,13 The interactions between sleep drive 
changes and circadian rhythms have also been well studied in mice and other rodents.14–16 For example, sleep 
deprivation in hamsters attenuates phase shifts induced by light, suggesting that an increase in sleep drive reduces the 
circadian clock response to a zeitgeber, in this case, light.20 Interestingly, attenuated phase advances were also found after 
sleep restriction in humans.17 However, sleep disturbance can also be modulated by behavioral chronotypes via indirect 
pathways involving phase changes in the circadian clock. For example, Russo et al (2017) found that sleep problems 
occurring more than once a week or frequent struggling to fall asleep were much higher in evening type adolescents than 

Figure 1 Dual processes controlling the sleep-wake cycle and potential mechanisms by which circadian mutations may influence sleep disturbance and related outcomes. 
Process S describes the sleep homeostat; the body’s drive for sleep builds during the day as our time awake increases and energy is expended. Sleep drive gets stronger the 
longer we are awake. After a full night of sleep, the drive reaches its lowest point when we have no more need for sleep. Process C describes the circadian rhythm—a self- 
sustained oscillator that influences the timing of the sleep-wake cycle. These two processes of sleep regulation are continuously interacting but are guided by independent 
mechanisms.
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morning types.18 Collectively, these studies underscore the multiple potential links between the circadian clockwork and 
the sleep homeostat.

Mutations in core clock genes could thus affect sleep quality via direct effects (eg, sex-specific transcriptional 
regulation of downstream pathways) or via indirect effects (eg, mediation via behavioral and physiological rhythms 
driven by phase changes in circadian rhythms and circadian misalignment.19 To better inform therapeutic sleep 
technologies, we need to determine which circadian clock gene mutations affect sleep quality and to understand the 
mechanisms by which these mutations influence sleep. To test for direct and indirect circadian-related mechanisms 
influencing sleep disturbance, we performed deep phenotypic analysis using the PROMIS sleep disturbance survey,20 

a well-established measure of diurnal preference, the Horne-Ostberg Morningness-Eveningness Questionnaire (MEQ)21 

and molecular chronotyping (via in-vivo gene expression analyses based on the phase of clock gene oscillations). We 
analyzed genotype associations with sleep disturbance using machine learning and statistical approaches to identify the 
effects of single and multiple circadian mutations and clinical features on sleep disturbance scores.

Methods
Experimental Data Collection
Study participants were recruited from Colgate University and the community residing in Madison County, NY, USA 
(n = 982; males = 318, females = 664, ages 17–79; median = 19). Participants were predominantly Caucasians of 
European descent with less than 8% of respondents indicating a socioeconomic status of lower middle class or poor. 
Participants gave written informed consent, and all procedures followed the principles of the Declaration of Helsinki. The 
Institutional Review Board at Colgate University authorized all consent forms and procedures (#FR-F13-07, #ER-F14 
-12, #F15-13, and #ER-F16-19). The study population and similar methodologies were used in a previous study focused 
on circadian influences on anxiety.

Self-Report Surveys
Participants completed computer-based surveys, including the short form of the Patient Reported Outcomes 
Measurement Information System (PROMIS™) Sleep Disturbance20 and the Horne Östberg Morningness-Eveningness 
Questionnaire (MEQ) survey.21 PROMIS scores indicate self-reported assessments of sleep disturbance, ranging from 0 
to 40, with scores of 0–25 indicating “no or low sleep disturbance”, and 25–40 indicating “high sleep disturbance.” 
Twenty three percent of the sample population (55 (17%) males and 174 (26%) females) scored 25 or above on the 
PROMIS scale, indicating high sleep disturbance. The MEQ survey measures diurnal preference, with scores of <41 
representing evening-type preferences and scores >59 representing morning-type preferences.

Genotyping
DNA samples were obtained from ten to twenty hair follicles from each participant. Follicles were digested with 
Proteinase K at 56°C for 24-hours and purified using the Qiagen DNAeasy Micro Kit. Genotyping of single nucleotide 
polymorphisms (SNPs) was completed using a TaqMan SNP Genotyping assay (Applied Biosystems, Foster City, CA) 
on an ABI QuantStudio real-time qPCR instrument. A fragment length analysis of the PER3 VNTR length polymorphism 
repeat region was conducted using GeneScan software on an ABI 3100 sequencer using PCR fluorescent primers. The 
forward primer fluorescently labeled with 6-FAM was used with the following PCR primers: forward, 5’-CAAAATTTTA 
TGACACTACCAGAATGGCTGAC-3’, and reverse, 5’-AACC TTGTACTTCCACATCAGTGCCTGG-3’.22 The PCR 
cycling conditions were 3 min at 94°C, followed by 35 cycles of 45 s at 94°C, 45 s at 58°C, and 45 s at 72°C, with a final 
step at 72°C for 3 min. Capillary electrophoresis on an ABI 3100 sequencer was used to separate and size bands using 
ABI ROX standards. The genotype of each participant was identified as PER3 4/4, PER3 4/5, or PER3 5/5.

Molecular Chronotyping via Circadian Gene Expression Analysis
Ten to twenty additional hair follicles were collected at four different time points: 8 a.m., 4 p.m., 5 p.m., and 8 p.m.23 We 
optimized the estimation of clock phase from four time points and two genes using Stochastic Ranking Evolution 
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Strategy (SRES) methods in previous publications (methods in Supplementary File) 24. All follicle samples were stored 
in RNAlater solution at −80°C prior to analysis. RNA was extracted and purified from hair follicles using the RNeasy 
Micro purification kit according to the protocol provided by Qiagen. The purified RNA was converted to cDNA using rt- 
PCR (TaqMan Gold rt-PCR, ABI) and quantified using Nanodrop. Expression levels of clock genes, PER3 and NR1D2, 
and control genes, GUSB and 18S, were measured in triplicate using rt-qPCR on an ABI QuantStudio instrument 
(Applied Biosystems). Relative mRNA levels were determined using the standard curve method and converted into 
z-scores per individual. The trained curve was fitted to the four data points of each subject using the parameter estimation 
method, Stochastic Ranking Evolutionary Strategy (SRES).24 For phase shift estimation, the training curve was obtained 
from known intermediate types (n = 20; individuals not included in the current study but included in previous studies).23 

The phase difference between each subject’s curve and the training curve estimates the circadian phase shift of the 
individual.

Feature Generation and Selection
Similar methodologies to those described below were used in a previous study on circadian influences on anxiety; for 
more information, see Zafar et al, 2022.25

Genotypic and Clinical Features
We used seven genotypic features: CLOCK3111 (rs1801260), CRY1 (rs228716), CRY2 (rs10838524), PER2 
(rs10462023), PER3A (rs228697), PER3B (rs17031614), and PER3 VNTR (rs57875989), and four behavioral/clinical 
features: diurnal preference scores, age (≤22 or >22), gender, and socioeconomic status (poor, lower-middle-class, upper- 
middle-class, affluent). The seven, single nucleotide polymorphisms (SNPs) are circadian clock polymorphisms that have 
been reported previously in associations with sleep homeostasis and/or circadian phenotypes (diurnal preference/ 
chronotype). To reduce multicollinearity, we performed one-hot encoding for non-binary features, removing the most 
frequent variant (as the baseline condition). We created 2-way genotypic combinations using the seven genes and their 
respective variants, giving us 7C2 * 9 total features. The most frequent class was removed for each group of 9 
combinations and treated as a reference category for a combined data set of 174 total features for analysis.

Feature Selection
We used four feature selection methods (each method ten times with ten-fold cross-validation) to find epistatic 
combinations predictive of mood disorders: InfoGain (IG), ReliefF (ReF), Minimum Redundancy Maximum 
Relevance (MRMR) and Joint Mutual Information (JMI).25–28 A subset of robust features was used for in-depth 
statistical analysis. A feature was considered robust if it appeared in 95% of the runs for a certain feature selection 
method and in at least three out of the four feature selection methods.

Classifiers
We modeled the relationship between risk factors and sleep disturbance using three classifiers: Random Forests (RF), 
XGBoost (XGB), and Support Vector Machines (SVM).29–31 We evaluated the performance of our classifiers using 
accuracy scores and the area under the receiver operating characteristic (AUROC) curves. We used preliminary testing to 
determine an appropriate range of hyperparameters for each classifier and employed grid searching to determine the 
optimal combination of hyperparameters for maximizing accuracy. We used stratified tenfold cross-validation to 
determine each model’s generalizability. We performed the k-nearest neighbors’ imputation to fill in missing values 
for each fold.32 We repeated the cross-validation procedure ten times to ensure robust results, each time using a different 
random number generator seed.

SMOTE Analysis
We employed Synthetic Minority Oversampling (SMOTE) technique to increase model accuracy by balancing our 
unbalanced dataset (with k (nearest neighbor) = 5).33 We performed our analysis with and without SMOTE and then 
reported the balanced dataset results.
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Statistical Analyses
All statistical analyses were performed using R.34 We performed logistic regression analysis on each feature individually, 
keeping one-hot encoded features grouped together for the regression. We performed multivariate logistic regressions 
using Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), employing a sequential replace-
ment method to identify subsets of features with low multicollinearity and strong association with the target variable.35 

We adjust p-values from the regression analyses using the Benjamini–Hochberg method.36 We used mediation analysis to 
determine whether MEQ scores were statistically significant mediators between genotypic and clinical factors and mood 
disorders using the R package mediate.37 We created heatmaps illustrating patterns of association between diurnal 
preference and sleep disturbance using Fisher’s exact tests. To identify sex-specific differences in the average PROMIS 
Sleep Disturbance scores for different two-way gene combinations, we used the car library in R to conduct a Type-3 Sum 
of Squares two-way ANOVA.38 Tukey’s follow-up tests on significant factors were performed using the emmeans library. 
The normality of data was assessed by Shapiro–Wilk’s test in R.

We performed association rule learning analysis using the arules package.39 We limited our analysis to rules of size at 
most six, with at least 90% confidence. For each sex, we found rules that code for both categories of the target variable 
and then sorted them by their respective lift values. We visualized these relationships in sex-specific network plots, using 
the igraph library.40

We used the Algorithm for the Reconstruction of Gene Regulatory Networks (ARACNE) to create gene networks of 
direct and indirect interactions between genes, clinical features, MEQ, and mood disorders using mutual information.41 

We used the minet package in R to create the network and then plotted it using Rgraphviz.42 We employed bootstrapping 
to determine the frequency (ie, confidence level) with which each link in the network appears.

Results
Diurnal Preference (MEQ) and Misalignment are Strongly Associated with Sleep 
Disturbance
In this young adult population, we found an overall average sleep disturbance score of 20.68 (SD = 5.91), with 25% of 
individuals reporting sleep disturbance (n = 227). There was a significant difference in sleep disturbance scores between 
chronotypes (F(2856)=15.82, p = 0.004) with evening-types reporting higher sleep disturbance scores (Dunn post-hoc 
analysis, adj.p<0.001). In addition, a heat map of significant Fisher exact tests reveals that evening-type individuals (low 
MEQ scores) have significantly higher high sleep disturbance scores relative to morning-type individuals (high MEQ 
scores) (Figure 2). Additionally, after further separation according to sex females with higher MEQ scores indicative of 
morning preference were strongly associated with low sleep disturbance scores (Supplementary Figure 1A). While males 
with lower MEQ scores indicative of evening preference are associated with higher sleep disturbance scores 
(Supplementary Figure 1B).

Using in-vivo expression analyses to estimate the phase of circadian rhythms (a proxy for misalignment), we found 
that the relative risk of sleep disturbance was 4.6 times higher if an individual had a delayed phase vs advanced phase, 
but this risk estimate was not significant (Figure 3; OR = 4.667 (0.5538–39.3242), p = 0.1566; RR = 4.6). Individuals 
with advanced phases and a morning chronotype had significantly lower sleep disturbance scores than individuals, on 
average (one sample T = 4.03; df = 15, p = 0.007).

Our network analysis using ARACNE depicting the interactions between genotypes, clinical features, and sleep 
disturbance shows that all features share information with diurnal preference (MEQ), which acts as a mediator (Figure 4).

Two Way-Genotypic Combinations Can Be Predictive or Protective of Sleep 
Disturbance
RF, SVM, and XGB classifiers predicted sleep disturbance symptoms with an accuracy of 61–71% using all or a subset 
of genotypic and clinical factors chosen by feature selection methods (Figure 5). The XGB method achieves the highest 
accuracy (71%) when all features are used. However, if sixty features selected using the JMI method are used, a similar 
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accuracy level (69.9%) can also be obtained using XGB and RF classifiers. These accuracy levels are 19–21% more 
accurate than random chance in our balanced dataset, which has a baseline accuracy of 50%.

Multivariate logistic regression analysis of the top features revealed that two-genotype combinations predicted a more 
robust risk of sleep disturbance symptoms when compared to single gene variants (Table 1). In the overall dataset, 
individuals with the CLOCK3111-TC and CRY2AG genotype had nearly three times the risk of sleep disturbance. 
Average sleep disturbance scores in CLOCK3111-TC/CRY2AG individuals were significantly higher than scores from 
individuals of other CLOCK/CRY2 genotypes (OR = 2.58 (1.38–4.88), p = 0.041). Average sleep disturbance scores for 

Figure 2 Heat Map of Sleep Disturbance Scores and Diurnal Preference (MEQ). Higher MEQ scores indicative of morning preferences are strongly associated with low 
sleep disturbance scores and lower MEQ scores indicative of evening preference are associated with higher sleep disturbance scores. The heatmaps were made using Fisher’s 
Exact Test at varying cutoff levels for both dependent and independent variables. Fisher’s Exact Test shows significant association between high sleep disturbance scores (25 
+) and evening type individuals (MEQ<41). The p-values obtained from the analysis were log-transformed (base 10).

Figure 3 Circadian misalignment predictive of sleep disturbance. Approximately 25% of our sample size reported sleep disturbance with average sleep disturbance score of 
20.68 (SD=5.91, SE=0.195). Advanced-morning types have significantly lower sleep disturbance scores than the average (p=0.007). The odds of sleep disturbance tended to 
be approximately 4.7 times higher if an individual was delayed vs advanced in their chronotype (OR=4.667 (0.5538–39.3242), p=0.157). There was a significant difference in 
sleep disturbance scores between ET and MT groups for which we had molecular chronotypes (F(1,63)=4.63, p=0.035). Average PROMIS sleep disturbance scores for the 
population sample is denoted by the red dashed line.
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individuals with CLOCK3111_TC and CRY2_AG were higher for both males and females (males: 23.6 ± 1.4; females 
24.5 ± 0.88) than for individuals with other genotypes (males: 20.0 ± 0.59; females 21.2 ± 0.35) (Figure 6; genotype F 
(1463) = 15.94, p < 0.001; gender F(1463) = 1.30, p = 0.254; genotype by gender F(1463)=0.018, p < 0.89). Females 
with the CLOCK3111_TC and CRY2_AG genotypes have significantly higher sleep disturbance scores than females with 
other genotypes (p = 0.002) and males with other genotypes (p < 0.001). The combination of CLOCK3111_TT and 
CRY1_CC also significantly increased the odds of sleep disturbance symptoms (OR = 2.69 (1.29–5.69), p = 0.054).

Individuals with the PER3B_AG and CRY1_CC genotypes are eleven times more protected from sleep disturbance. 
Average sleep disturbance scores in PER3B_AG/CRY1_CC individuals were significantly lower than scores from 
individuals of other PER3B/CRY1 genotypes (OR = 11.11 (0.00–0.591), p = 0.091; Table 1). In the large data set, the 
highest sleep disturbance score was reported in males with the PER3B_AG and CRY1_CG genotypes (27.2 ± 2.72) with 
a significant interaction between the effects of gender and genotype on sleep disturbance (Figure 7; genotype F(1430) = 
2.123, p = 0.146, genotype F(1430) = 3.03, p = 0.083 genotype by gender F(1430) = 5.05, p = 0.025).

Figure 4 MEQ acts as a mediator between genotypic and clinical characteristics and human sleep disturbance. The network is constructed using the ARACNE method in 
conjunction with the mi-empirical method and bootstrapping. All links with bootstrap support greater than 50% are shown. MEQ mediates all associations with sleep 
disturbance.

Figure 5 Heat map of prediction accuracy for feature selection and classifier methods. Our analyses yielded up to 19.9% higher prediction accuracy than baseline (50%) on 
a balanced data set using top features.
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The association rule learning results identified additional genotypes and clinical feature combinations that were 
predictors of sleep disturbance for males and females. For females, the most frequently appearing genotypes in the top 
predictors of sleep disturbance were PER3B-GG, CLOCK311-TC, CRY2-AG, PER2-AG, with age and MEQ being 
important clinical features (Figure 8A). CLOCK311-TC and CRY2-AG were frequently found together without mediation 
by MEQ. For males, several features were supported by significant lift and frequency values, with no robust co- 
occurrence of predictive features (Figure 8B).

Discussion
Growing evidence suggests that disruptions in circadian rhythms impact sleep quality and negatively affect both mental 
and physical health. Previous research on the role of circadian clock gene mutations on sleep disturbance have focused on 
GWAS or PheWAS studies that have the advantage of large sample sizes and statistical power, but such studies are 
limited due to weak phenotyping capabilities and the difficulty in analyzing two or more genotype combinations with 
large datasets. Using a machine learning approach to explore associations between circadian genes and sleep disturbance 
in a deeply phenotyped population sample, we report three findings: 1) chronotype and circadian misalignment are strong 
predictors of self-reported sleep disturbance, 2) synergistic interactions in genotype combinations of Period 3, Clock and 
Cryptochrome variants (PER3B (rs17031614)/ CRY1 (rs228716) and CLOCK3111 (rs1801260)/CRY2 (rs10838524)) 
yield strong associations with sleep disturbance, and 3) clock genotypes predictive of sleep disturbance risk tend to have 

A B

Figure 6 Genotype combination of CLOCK3111_TC and CRY2_AG predictive of sleep disturbance in humans. (A) Sleep disturbance scores (±SD), measured using the 
self-reported Patient Reported Outcomes Measurement Information System (PROMIS™) Sleep Disturbance instrument, for males and females with the CLOCK3111_TC 
and CRY2_AG genotype. Average sleep disturbance scores were higher for both males and females with CLOCK3111_TC and CRY2_AG (males: 23.6 ±1.4; females 24.5±0.88) 
than for individuals with other genotypes (males: 20.0 ±0.59; females 21.2±0.35; two-way ANOVA: genotype F(1463)=15.94, p<0.001; gender F(1463)=1.30, p=0.254; 
genotype by gender F(1463)=0.018, p<0.89)). (B) Females with the CLOCK3111_TC and CRY2_AG genotypes have significantly higher sleep disturbance scores than females 
with other genotypes (p=0.002) and males with other genotypes (p<0.001).

Table 1 Risk Factors for Sleep Disturbance Symptoms

Variable Odds Ratio 95% CI Adj. P

CLOCK3111_TC/CRY2_AG 2.58 1.38–4.88 0.041*

CLOCK3111_TT/CRY1_CC 2.69 1.29–5.69 0.054

PER3B_AG/CRY1_CC 0.09 0.00–0.59 0.091†

SOCIOSTATUS 0.26 0.36–0.94 0.091

Notes: *p-value <0.05; †genotype combination has a significant interaction between gender and genotype 
(Figure 7; genotype F(1430)=2.123, p=0.146, genotype F(1430)=3.03, p=0.083 genotype by gender F(1430) 
=5.05, p=0.025). Results from a multivariate logistic regression model based on top-ranked selected features 
identify two-way gene combinations and one demographic feature, sociostatus, that are strongly associated 
with sleep disturbance symptoms.
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sex-specific effects. Our results suggest that circadian clock gene variants may have both indirect (circadian clock- 
mediated) and direct (sex-specific mediated) effects on sleep disturbance.

Association of Sleep Disturbance with Diurnal Preference and Circadian Misalignment
Our results show that high levels of self-reported sleep disturbance are strongly associated with low MEQ scores and 
evening-type diurnal preferences. A potential explanation for the association between diurnal preference and sleep 
quality is the influence of circadian misalignment on physiological regulation of sleep drive. Individuals with extreme 
diurnal preference are more likely to encounter misalignment between their physiological circadian rhythms and their 
sleep-wake patterns. In the current study, the participants were primarily undergraduates encountering a college lifestyle; 
evening-type individuals may be inclined to stay up even later due to social and academic pressures but are also 
compelled to wake up early to attend classes or athletic training. To further test whether increased sleep disturbance and 
eveningness could result from circadian misalignment, we examined the circadian phase of a subset of participants and 

Figure 8 Association rules networks for sleep disturbance. (A) In females, CLOCK311-TC and CRY2-AG co-occurred most frequently with no mediation via MEQ. PER3B- 
GG and age had the highest average lift (>1.45) in the analysis. (B)) In males, no robust co-occurrence across genotypic and clinical features was found, although average lift 
values were higher for males than females.

Figure 7 Genotype combination of PER3B_AG and CRY1_CG show significant interaction effect. (A) Sleep disturbance scores (±SD), measured using the self-reported 
Patient Reported Outcomes Measurement Information System (PROMIS™) Sleep Disturbance instrument, for males and females with a combination PER3B_AG and 
CRY1_CG genotype. Sleep disturbance scores reveal a significant gender-by-genotype interaction (genotype F(1430)=2.123, p=0.146; gender F(1430)=3.03, p=0.083; 
genotype by gender F(1430)=5.05, p=0.025). (B) The highest average sleep disturbance score was reported in males with the PER3B_AG and CRY1_CG genotypes (27.2 
±2.72), with a single male of genotype PER3B_AA/CRY1_CG recording the highest individual sleep disturbance score (34.2).
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identified participants with a mismatch between their self-reported diurnal preference and their circadian phase. As 
expected, individuals with delayed phases and evening chronotypes were significantly more sleep disturbed than other 
individuals. Interestingly, evening-type individuals with advanced phases were significantly more sleep disturbed than 
individuals with advanced phases and morning chronotypes. Individuals with both an advanced phase and morning 
chronotype experienced significantly less sleep disturbance than other individuals. Overall, our results confirm that 
eveningness is strongly associated with sleep disturbance and suggest that circadian misalignment may be an additional 
contributing factor to sleep disruption.

In addition, our network analysis reveals that all effects of circadian mutations on sleep disturbance tested in this 
study (as well as clinical factors) are mediated via diurnal preference scores. Connections between diurnal preference or 
chronotype and circadian-related genes have been reported numerous times in the literature.43–47 One of the most robust 
connections involves the circadian clock gene, Per3. Several studies have reported that the longer allele of the PER3 
VNTR polymorphism (rs57875989) is associated with morning-types.4,24,46,48–52 Archer et al (2003) also found that 
found that prevalence of DSPD in individuals with the 5-repeat allele was low.43 In other studies, associations between 
PER3 VNTR variants and diurnal preference are less clear. For example, Turco et al (2017) found no significant 
association between the length polymorphism (rs57875989)48 and diurnal preference. Overall, there is ample evidence 
that diurnal preferences in some populations are mediated by circadian gene mutations and these circadian phenotypes 
can be associated with sleep disturbance.

Circadian Genotypes Predictive of Sleep Disturbance
Using feature selection methods, we identified multiple genotype combinations of two or more gene variants that provide 
robust predictions of sleep disturbance risk; the predictive value of these genotype combinations is higher than any 
predictive value for single variants (Table 1). Using multivariate regression, we found that participants that were 
heterozygous for variants in CLOCK (TC) and CRY2 (AG) genes had nearly three times the risk of sleep disturbance 
relative to individuals of other CLOCK/CRY2 genotypes and double homozygous individuals with CLOCK (TT) and 
CRY1 (CC) genotypes have a similar risk of sleep disturbance, although this association is only significant at adjusted 
alpha level of 0.1. Our results suggest that that synergistic effects of multiple mutations in the molecular clockwork may 
directly or indirectly modulate physiological pathways associated with sleep disturbance.

In the primary circadian feedback loop, the CRY genes work in the retina as light-independent inhibitors of the 
CLOCK/BMAL heterodimers.53 These genes feedback to inhibit CLOCK/BMAL activity to eventually suppress their 
own expression.54 The CRY1 variant (rs2287161) SNP is located downstream from the CRY1 polyadenylation site, 
suggesting that other regulatory features are involved in the modulation of CRY1 gene expression. In previous studies, 
CRY1 has been linked to both depression and disruptions in sleep regulation.55–57 Wisor et al (2002) found that mice 
without CRY1 or CRY2 exhibited high non-REM (eg, quiet, non-dreaming, quiescent state) sleep drive, suggesting 
cryptochrome genes influence the homeostatic regulation of sleep.58 This condition was also associated with high mRNA 
levels of PER1 and PER2 which are normally inhibited by CRY1/CRY2 in the CLOCK/BMAL negative feedback loop.58 

In humans, Patke et al (2017) discovered a link between a familial delayed sleep phase disorder (DSPD) and a hereditary 
dominant, gain of function variant in CRY1. This mutation enhances the function of CRY1, causing reduced expression 
of specific transcriptional targets and a lengthening of the circadian period, leading to DSPD symptoms such as delayed 
sleep onset and offset times.9

Previous studies of circadian influences on mental health reveal multiple associations of the CRY2 (rs10838524) 
polymorphism with mood disorders, including associations with dysthymia, winter depression and Type I bipolar 
disorder.59–61 The diverse associations between a single CRY2 polymorphism and mood underscores the potential 
links between circadian clock genes and physiological pathways central to mental health. Because mood disorders are 
often co-morbid with sleep disorders, it is possible that CRY2 may play a role in mediating pathways affecting sleep 
disorders as well. Interestingly, a study of bipolar patients by Lavebratt and colleagues (2010) revealed marked 
differences in CRY2 mRNA levels in control participants relative to bipolar participants following one night of sleep 
deprivation.60 These results suggest that dysregulation of CRY2 may be linked to physiological changes caused by sleep 
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deprivation. Collectively, these findings suggest that cryptochrome genes play a role in both circadian and sleep 
regulation.

In our study, individuals with a PER3B (AG)/CRY1 (CC) genotype were 11 times more likely to be protected from 
sleep disturbance, although the association was only significant with an adjusted alpha value of 0.1. Interestingly, the 
negative association of PER3B (AG) and CRY1 (CC) with sleep disturbance in our study is driven by genotype–gender 
interactions in males and this effect is completely mediated by diurnal preference. This suggests that circadian features 
may indirectly influence sleep quality in males with the PER3B-CRY1 (AG-CC/CG) genotype. The PER3 gene has been 
implicated in sleep architecture and circadian rhythm disruptions in previous studies.4,10,46–49 Most importantly, 
researchers have found that links between PER3 polymorphisms, diurnal preference, and mood provide evidence for 
the “phase-shift hypothesis” which supports that some depressive symptoms in humans can be linked to a misalignment 
of the circadian phase with the sleep-wake cycle.47 A seminal study identified two missense variations in PER3 (PER3- 
P415A/H417R) in humans with familial advanced sleep phase disorder (FASPD) which are also associated with elevated 
Beck Depression Inventory (BDI) and seasonality scores indicative of seasonal affective disorder (SAD).62 Additional 
experiments on these mutations in mice resulted in mice with delayed circadian phases in short photoperiods and longer 
durations of wheel-running activity in constant light. Further experiments suggested that the products of PER3-P415A 
/H417R variants effectively reduce the stabilization of PER1 and PER2, leading to the observed changes in phase and 
lengths of circadian rhythms.62

The Per3 gene has also been linked to sleep phenotypes, independently of circadian rhythms.3 One interesting finding 
in our study is the lack of association between the PER3 variable number of tandem repeat region (VNTR; rs57875989) 
and measures of sleep disturbance. This length polymorphism has been associated with altered responses to sleep loss 
and gene expression in pathways involved in sleep homeostasis in mice,60 as well as sleep architecture in 
humans.4,10,22,43 For example, Lazar et al (2012) found morning preference, earlier wake time and bedtime, and reduced 
daytime sleepiness was associated with the longer VNTR allele (PER35/5).52 This length polymorphism has also been 
associated with both sleep duration and depressive symptoms, suggesting that PER3 may be involved in the regulation of 
both sleep homeostasis and mood pathways in humans.11,43,47,48 In our study, we expected that we might find the PER3 
VNTR polymorphism to be predictive of sleep disturbance values, but we did not uncover significant predictions of risk 
or protection from risk associated with PER3 VNTR genotypes. It is possible that larger sample sizes are required to 
identify effects of PER3 VNTR on sleep disturbance—or that sleep structure, but not necessarily sleep quality is affected 
by variants of this gene.

Sex-Specific Circadian Genotype Associations with Sleep Quality
In addition to the significant genotype-by-gender interaction in the PER3B/CRY1 results, our network analyses showed 
clear differences between males and females in genotype risk factors for sleep disturbance. For females, the most 
frequently appearing genotypes in the top predictors of sleep disturbance were PER3B-GG, CLOCK3111-TC, CRY2-AG, 
and PER2-AG, with age and MEQ being important clinical features. Our multivariate regression analysis provided strong 
evidence that individuals with both CLOCK3111-TC and CRY2-AG genotypes were more likely to report sleep 
disturbance. For males, a number of features were supported by significant lift and frequency values, with no single 
predictive features stand out. Average lifts were higher for all of the top rules for males relative to females, but co- 
occurrence was more widely distributed across the genotypes and clinical characteristics. Previously, Shi et al (2016) 
revealed that some variants in circadian clock-related genes are associated with major depressive disorder (MDD) in 
a sex dependent manner.63 After a sex-stratified analyses they identified two variants CLOCK (rs1801260) and NPAS2 
(rs34705978) that were significantly associated with MDD in only one gender. The CLOCK polymorphism was 
significantly associated with MDD in males (P = 0.028) and not females.63 In our study, the CLOCK genotype TC is 
significantly associated with sleep disturbance in the population when found in combination with the CRY2 AG 
genotype. However, our collective analyses reveal a stronger association for this genotypic combination with sleep 
disturbance in females. Thus, the effects of CLOCK mutations may be mediated through sex-dependent pathways in 
conjunction with or independent of core clock pathways. Further studies are needed to understand the sex-dependent 
effects of circadian clock genes on sleep architecture and features, to fully understand this difference.
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Limitations
The limitations of the current study include the study of a large number of features in the machine learning analyses using 
a relatively limited sample size.64 We did not study, and thus could not remove the confounding variables of 
environmentally induced sleep disturbance and alcohol and drug use, although we did remove individuals that use 
melatonin supplements from the population sample. Our population sample includes primarily young adult Caucasians of 
European descent, which limits the generalization of our findings to more diverse populations. In addition, the average 
sleep disturbance scores in the study indicate that many young adults in this sample do not experience severe sleep 
disturbance which may limit the generalization of the findings to older or younger populations. Future studies should 
assess the precision of our analyses, including our risk factor predictors and top features analyses, using an independent 
population. Our study is limited outcomes reporting associations between sleep disturbance and particular genotypes or 
circadian phenotypes; future studies should use this information to further understand causal connections between these 
variables and how potential therapeutic targets could alleviate sleep distress in humans.

Conclusion
Using a machine learning approach to study the association between circadian clock genes, diurnal preference, and 
clinical factors with sleep disturbance, our study reveals both direct and indirect, via mediation by circadian phenotypes, 
effects of circadian clockwork on self-reported sleep quality. Our results support the conclusions that chronotype and 
circadian misalignment are strong predictors of self-reported sleep disturbance. In addition, we report novel synergistic 
interactions between clock gene variants that yield strong associations with sleep disturbance and these associations tend 
to be sex-specific. Our results show evidence for circadian influences on sleep quality, but the role of circadian genes in 
regulating sleep factors is at a nascent stage. Understanding how clock genes and circadian features influence sleep 
quality has the potential to reveal clinical targets and other forms of therapy that may help alleviate sleep disturbance.
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