
O R I G I N A L  R E S E A R C H

Sodium Tanshinone IIA Sulfonate Inhibits Vascular 
Endothelial Cell Pyroptosis via the AMPK Signaling 
Pathway in Atherosclerosis
Ji Zhu1,*, Hang Chen2,*, Jianan Guo2, Chen Zha1, Dezhao Lu 2

1The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, People’s Republic of 
China; 2School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China

*These authors contributed equally to this work 

Correspondence: Dezhao Lu, Email ludezhao@126.com 

Introduction: Atherosclerosis (AS) is the underlying cause of cardiovascular events. Endothelial cell mitochondrial damage and 
pyroptosis are important factors contributing to AS. Changes in internal mitochondrial conformation and increase in reactive oxygen 
species (ROS) lead to the disruption of mitochondrial energy metabolism, activation of the NLRP3 inflammasome and pyroptosis, 
which in turn affect atherogenesis by impairing endothelial function. AMPK is a core player in the regulation of cellular metabolism, 
not only by regulating mitochondrial homeostasis but also by regulating cellular inflammatory responses. Sodium tanshinone IIA 
sulfonate (STS), a water-soluble derivative of tanshinone IIA, has significant antioxidant and anti-inflammatory effects, and roles in 
cardiovascular protection.
Purpose: In this study, we investigated whether STS plays a protective role in AS by regulating endothelial cell mitochondrial 
function and pyroptosis through an AMPK-dependent mitochondrial pathway.
Methods and Results: Male ApoE−/− mice and HUVECs were used for the experiments. We found that STS treatment largely 
abrogated the upregulation of key proteins in aortic vessel wall plaques and typical pyroptosis signaling in ApoE−/− mice fed 
a western diet, consequently enhancing pAMPK expression, plaque stabilization, and anti-inflammatory responses. Consistently, 
STS pretreatment inhibited cholesterol crystallization (CC) -induced cell pyroptosis and activated pAMPK expression. In vitro, 
using HUVECs, we further found that STS treatment ameliorated mitochondrial ROS caused by CC, as evidenced by the finding 
that STS inhibited mitochondrial damage caused by CC. The improvement of endothelial cell mitochondrial function by STS is 
blocked by dorsomorphin (AMPK inhibitor). Consistently, the blockade of endothelial cell pyroptosis by STS is disrupted by 
dorsomorphin.
Conclusion: Our results suggest that STS enhances maintenance of mitochondrial homeostasis and inhibits mitochondrial ROS 
overproduction via AMPK, thereby improving endothelial cell pyroptosis during AS.
Keywords: atherosclerosis, pyroptosis, tanshinone IIA, AMPK, mitochondria

Introduction
Atherosclerosis (AS) is a commonly recognized metabolic and chronic inflammatory disease. And AS is accompanied by 
endothelial dysfunction, lipid deposition, and vascular wall thickening.1 AS is a significant cardiovascular burden and 
a leading cause of death worldwide, and is recognized as the basis of cardiovascular disease (CVD).2,3 ASCVD results in 
approximately 2.4 million deaths annually in China.4–6 Vascular endothelial cells constitute the inner wall of arterial 
vessels, and the morphological integrity and balance of their function significantly contribute to vascular health.7 

Endothelial dysfunction, structural alterations, and chronic inflammation of the vascular wall are known to be critical 
steps in AS development, as well as in the instability of advanced plaques.8,9 However, the underlying mechanisms and 
appropriate means to clinically manage the disease require further investigation.

Journal of Inflammation Research 2022:15 6293–6306                                                     6293
© 2022 Zhu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Inflammation Research                                                         Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 23 August 2022
Accepted: 3 November 2022
Published: 14 November 2022

Jo
ur

na
l o

f I
nf

la
m

m
at

io
n 

R
es

ea
rc

h 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://orcid.org/0000-0001-5227-6445
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


Endothelial cell dysfunction is characterized by proinflammatory cytokines, elevated ROS, disrupted vascular tone, 
and various types of programmed cell death (PCD), including apoptosis, autophagy, pyroptosis, and necroptosis.10 

Pyroptosis is a newly discovered form of programmed inflammatory cell death, which is suggested to contribute to 
vascular endothelial cell dysfunction and the pathogenesis of AS.11,12 Pyroptosis can be driven by the NOD-like receptor 
family pyrin domain-containing 3 (NLRP3) inflammasome, which is composed of NLRP3, the adaptor apoptosis- 
associated speck-like protein containing a CARD (ASC), and pro-caspase1.13,14 Once activated, NLRP3 recruits and 
cleaves pro-caspase1 into its active forms, which process pro-inflammatory cytokines such as IL-1β and IL-18 and 
HMGB1.15 Active forms of caspase-1 also cleave gasdermin D (GSDMD), separating the N-terminal pore-forming 
structural domain (PFD) of GSDMD from the C-terminal deterrent structural domain (RD) and the subsequent 
oligomerization of PFD transferred into the cell membrane. And the oligomer of GSDMD leads to massive pore 
formation, resulting in cell death, leakage of the cellular contents, including proinflammatory substances, and increased 
secondary inflammation.16 Oxidized low density lipoprotein (ox-LDL) and cholesterol crystals (CC) are the two main 
factors promoting atherosclerosis. In addition, ox-LDL and cholesterol crystals represent the central activators of the 
NLRP3 inflammasome and endothelial cell pyroptosis through excessive ROS production.17–19 Moreover, some risk 
factors for AS, such as hyperlipidemia, smoking, obesity, diabetes, and hypertension, can result in EC dysfunction and 
even death by triggering inflammasome assembly.20 Therefore, endothelial cell pyroptosis may play a prominent role in 
AS-interrelated inflammation, and targeted regulation of the endothelial NLRP3 inflammasome in atherosclerotic lesions 
may represent a novel direction for treating AS.21

Recent studies have suggested that some risk factors for AS (eg, ox-LDL and cholesterol crystals) mediate 
endothelial cell dysfunction primarily via mitochondrial damage.22 Mitochondrial dysfunction can lead to ROS 
production, mitochondrial DNA (mtDNA) damage, ATP reduction, and membrane potential decline. Mitochondria 
are the main source of ROS production and mtROS has also been shown to drive NLRP3 inflammasome 
activation.23,24 Thus, maintenance of mitochondrial homeostasis is necessary to sustain endothelial cell survival and 
modulate the inflammation in AS.25 AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine 
protein kinase and a key molecule in the regulation of bioenergy metabolism.26 Importantly, activated AMPK 
monitors mitochondrial function and cellular energy status in AS.27 The up-regulation of the AMPK pathway has 
been proven to be conducive to the preservation of mitochondrial function in metabolic diseases under the over-
activation of the NLRP3 inflammasome.28 Thus, the AMPK/PGC-1α pathway shows potential as a novel therapeutic 
target for AS.

Tanshinone IIA, a diterpene quinone that originates from the roots of the traditional Chinese herb Salvia miltiorrhiza, 
is used as a treatment for CVD and columnar ectopy.29 Sodium tanshinone IIA sulfonate (STS) is a water-soluble 
derivative of tanshinone IIA,30 and sodium tanshinone IIA sulfonate injection has been approved by the Chinese State 
Food and Drug Administration (CFDA) for the treatment of cardiovascular diseases.31,32 Recently, several studies have 
explored other potential therapeutic effects of tanshinone IIA and its derivatives in various diseases, including central 
nervous system disorders,33 diabetes,34 cancer,35 depression36 and liver diseases.37,38 Tanshinone IIA and its derivatives 
also displays a potent beneficial effect in AS by improving endothelial function via multiple processes, including by 
stabilizing vulnerable AS plaques via the TLR4/MyD88/NF-κB signaling pathway,39 improving mitochondrial 
function,40 alleviating oxidative stress,41 inhibiting cell death42,43 and reducing the inflammatory response.41 

Nonetheless, whether STS impacts NLRP3 inflammasome activation and subsequent pyroptosis in endothe-
lial cells, and what the underlying mechanisms could be, remain unclear. Considering the NLRP3 inflammasome and 
pyroptosis are important in endothelial dysfunction and AS, these factors warrant investigation. Therefore, we examined 
the protective effects of STS, particularly on NLRP3 inflammasome activation and pyroptosis, and explored the potential 
mechanism by which these occur. In the present study, we found that STS inhibits NLRP3 inflammasome activation and 
subsequent pyroptosis, and may be mediated by the AMPK/mitochondria axis in HUVECs treated with cholesterol 
crystals.
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Materials and Methods
Materials
Dorsomorphin (Compound C, S7840), and Sodium tanshinone IIA sulfonate (STS, purity 98.61%, S3766) were obtained 
from Selleck (Shanghai, China). LPS (Escherichia coli O11:B4) and cholesterol were purchased from Sigma (St Louis, 
USA). And cholesterol crystals as were prepared as previously described.44,45

Animals and Establishment of as Model
Male ApoE−/− mice (18–22 g, 6 weeks of age) were provided by GemPharmatech Co., Ltd (Nanjing, China). The 
animals were acclimated for 7 days with a 12 h light-dark cycle with water and food ad libitum. Animal care and 
experiments were performed according to the Guide of Chinese Regulation for the Use and Care of Laboratory 
Animals. The experiments were approved by the Medical Code and Ethics Committee of Zhejiang Chinese Medical 
University (approval number: 20200720-06). ApoE−/− mice were fed with a western diet [containing 0.5% (wt/wt) 
cholesterol, fat 42% kcal, carbohydrate 42.7% kcal, protein 15.3% kcal, #TP26304, Trophi Feed High-tech Co., 
Ltd., Nantong, China] for 12 weeks to establish the AS model. Then the ApoE−/− mice were with a western diet 
were randomly assigned to three groups as follows: (1) the western diet (WD) AS model group, in which the mice 
were administrated intragastrically saline every day and continually fed a western diet for 4 weeks; (2) the low STS 
(AS+LT) group, in which the mice were administrated intragastrically 10 mg/kg STS every day and continually fed 
a western diet for 4 weeks; and (3) the high STS (AS+HT)group, in which the mice were administrated 
intragastrically 20 mg/kg STS every day and continually fed a western diet for 4 weeks. Each group has four 
mice. And in normal control group, four male ApoE−/− mice were fed with a normal control diet [containing fat 
12.5% kcal, carbohydrate 68.1% kcal, protein 19.4% kcal, #TP26352, Trophi Feed High-tech Co., Ltd., Nantong, 
China] for 16 weeks.

Analysis of Atherosclerotic Lesions
Mouse aortas were opened longitudinally from the ascending aorta to the abdominal aorta, and fixed in 4% 
paraformaldehyde for 36 h. Hematoxylin and eosin (HE) staining assay was used to detect atherosclerotic lesions, 
and the Oil Red O (Solarbio, China) staining kit was used to evaluate lipid accumulation. Masson staining was used 
to evaluate the content of collagen fibers in atherosclerotic plaques. Immunofluorescence staining was performed to 
stain the location of endothelial cells in atherosclerotic lesions using CD31 antibody (1:100, Abcam, USA), and to 
detect the expression of GSDMD (1:50, Santa Cruz, USA) and the co-localization of endothelial NLRP3 (1:100, 
AdipoGen, USA) and ASC (1:100, AdipoGen, USA) by visualizing using a fluorescence microscope (Olympus, 
Japan). Immunohistochemistry staining was performed to stain the level of IL-1β and IL-18 in atherosclerotic lesions 
using IL-1β antibody (1:100, Proteintech, China) and IL-18 antibody (1:100, Proteintech, China) by visualizing using 
a Nano Zoomer (Hamamatsu, Japan). Quantitative analysis of lesions was performed using Fiji software (NIH, USA).

Cell Culture
HUVECs (Lonza, USA) cultured in Endothelial cell medium (ECM, Sciencell, USA) at 37°C with 5% CO2 and 95% air.

Cell Death Assay
Cell death was evaluated using a PI assay. For assay of cell death, HUVECs after treatment were detected using 
a Calcein-AM/PI Double Staining Kit (Dojindo Kumamoto, Japan).

Cellular Mitochondrial ROS (mtROS) and Mitochondrial Membrane Potential (MMP) 
Assay
After incubating with Mito-Tracker Green (100 nM, Thermo Fisher Scientific, USA) at 37°C for 30 min, HUVECs were 
incubated with MitoSox Red (5 μM, Thermo Fisher Scientific, USA) in phosphate-buffered saline (PBS) at 37°C for 30 
min. The cells were then washed thrice with warm PBS. The MMP was determined with TMRE (100nM, MCE, USA). 
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And the level of mtROS and MMP were assayed using the ImageXpress® Micro Confocal High-Content Imaging System 
(Molecular Devices, USA) as described before.46,47

Western Blot Analysis
Total protein was extracted from HUVECs using Cell lysis buffer for Western and IP [20mM Tris(pH7.5), 150mM NaCl, 1% 
Triton X-100, Beyotime, China]. The concentrations of protein were determined by a BCA protein assay kit (Vazime, China). 
20 μg proteins were separated by BeyoGel™ Plus Precast PAGE Gel (Beyotime, China) and transferred onto PVDF 
membranes (Millipore, USA). After blocking with 5% dry milk, the membrane was incubated with primary antibodies 
against NLRP3 (1:1000, AdipoGen, USA), ASC (1:1000, AdipoGen, USA), Caspase-1 (1:1000, Abcam, UK), GSDMD 
(1:500, Santa, USA), and IL-1β (1:500, Santa Cruz, USA), AMPKα (1:1000, Cell Signaling Technology, USA), and 
Phospho-AMPKα (Thr172) (1:1000, Cell Signaling Technology, USA), β-actin (1:2000, Proteintech, China) overnight at 
4°C. Following incubation, the membrane was washed thrice with TBST (0.05% Tween 20). After incubation with the 
corresponding secondary antibody [goat anti-rabbit (1:5000, BOSTER Biological Technology co. ltd, China) and goat anti- 
mouse (1:5000, BOSTER Biological Technology co. ltd, China)], the membrane was exposed to an enhanced chemilumi-
nescence kit (Vazime, China), and observed using a Clinx ChemiScope 3500 (Clinx Science instrument Co. Ltd, China).

Measurement of TG, TC, LDL-C, and HDL-C Contents
Levels of TC, TG, LDL-C and HDL-C in serum were measured using commercial kits (Nanjing Jiancheng 
Bioengineering Institute, China)

Statistical Analysis
GraphPad Prism 8.0 software was used for statistical analysis. One-way ANOVA was used to analyze differences among 
groups. All data in this study are presented as the mean ± SD. P-values < 0.05 were considered statistically significant.

Results
Effects of STS on Aortic Lesions, Lipid Homeostasis, and Inflammation in WD-Induced 
ApoE−/− Mice
To confirm the protective effect of STS postconditioning on AS, we used HE and Masson staining in histological 
sections of the ascending aorta of the ApoE−/− mice. And Oil red O staining was performed to show aortic lesions. 
The serum levels of low-density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), 
triglyceride (TG), and total cholesterol (TC) were also determined to investigate the effect of STS on lipid profiles. 
Our results showed that after treatment with STS, the atherosclerotic plaque decreased significantly compared to the 
WD group as shown by Oil red O staining (Figure 1H). H&E staining indicated that the aortas from the WD group 
exhibited an increased intimal lesion area containing a necrotic core and Masson staining showed unstable plaque 
with cholesterol crystal and healed plaque rupture in WD group (Figure 1F and G). However, STS treatment 
improved this condition (Figure 1F and G). The results showed that STS significantly decreased the levels of 
LDL-C, TG, and TC, especially in the high-dose group (Figure 1A–D). However, the HDL-C levels were not 
changed in the WD group (Figure 1E).

STS Inhibited Pyroptosis in the Aortic Intima of WD-Induced ApoE−/− Mice
Compared to the NCD group, immunofluorescent triple staining of the aortic sinus of NLRP3, ASC, and CD31 
(endothelial cell marker) revealed that the content of endothelial NLRP3-ASC colocalization was significantly increased 
in the ascending aorta of WD group, while STS significantly suppressed this increase (Figure 2A). Our results further 
showed that the expression of GSDMD in the ascending aorta of WD-fed ApoE−/− mice was significantly increased 
compared to that of the NCD group, while STS significantly suppressed the enhanced expression of GSDMD 
(Figure 2B). Furthermore, the positive area of IL-1β and IL-18 was increased in plaques of mice fed with Western 
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diet, but decreased in plaques of mice administrated with STS (Figure 2C and D). Our findings suggested that STS 
suppressed the pyroptosis of endothelial cells in the aortic intima of WD-fed ApoE−/− mice.

STS Inhibited NLRP3 Inflammasome and Pyroptosis in HUVECs
We used 500 μM cholesterol crystals to induce an inflammatory response in HUVECs. Using the PI assay, we 
demonstrated that treatment with STS dose-dependently decreased the cell death with stimulus of cholesterol crystals 
(Figure 3A). To evaluate the effects of STS on the NLRP3 inflammasome and pyroptosis, we measured the level of 
NLRP3, ASC, activated caspase-1, IL-1β, and GSDMD. STS treatment decreased the levels of NLRP3, ASC, cleaved 
caspase-1, cleaved IL-1β, and cleaved GSDMD in HUVECs compared to the cholesterol crystals group (Figure 3B). We 
then investigated the specific function of STS in NLRP3 inflammasome assembly. First, NLRP3 specks were detected by 
immunofluorescence, and our results showed that treatment with STS decreased the number of cholesterol crystals- 
induced NLRP3 specks (Figure 3C). These results suggest that STS regulates the formation of the NLRP3 inflammation 
to suppress pyroptotic cell death in HUVECs.

Figure 1 Sodium tanshinone IIA sulfonate alleviates atherosclerosis in ApoE−/− mice. (A) Body Weight, (B) plasma total cholesterol (TC) level, (C) plasma triglyceride (TG) 
level, (D) Plasma low-density lipoprotein cholesterol (LDL-c) level, and (E) plasma high density liptein cholesterol (HDL-c) level. (F) H&E staining of the aortic arches of the 
ApoE−/− mice. (G) Masson staining of the aortic arches. (H) Oil red O staining of the aortic arches. Data are represented as mean ± SD of three independent replicates; 
**P < 0.01 vs NCD group; †P < 0.05, ††P < 0.01 vs AS model group.

Journal of Inflammation Research 2022:15                                                                                          https://doi.org/10.2147/JIR.S386470                                                                                                                                                                                                                       

DovePress                                                                                                                       
6297

Dovepress                                                                                                                                                              Zhu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


STS Improved Mitochondrial Function in HUVECs
Mitochondrial dysfunction is one of the upstream signaling events for NLRP3 activation.24 Cholesterol crystals- 
induced mitochondrial damage and mtROS over-production were detected in HUVECs. Treatment with STS 
inhibited the cholesterol crystals-induced decrease in mitochondrial membrane potential (MMP) and elevated 
mtROS (Figure 4A and B). These results indicate that STS suppressed damage to mitochondria and mtROS.

Figure 2 Sodium tanshinone IIA sulfonate alleviates the pyroptosis in atherosclerotic plaques. (A) NLRP3 and ASC in endothelial cells (marked by CD31) the aortic arches 
were detected by immunofluorescence. (B) GSDMD level in sections of the aortic arches was detected by immunofluorescence. (C) Immunohistochemistry analysis of IL-1β 
expression. (D) Immunohistochemistry analysis of IL-18 expression. Data are represented as mean ± SD of three independent replicates; *P < 0.05, **P < 0.01 vs NCD 
group; †P < 0.05, ††P < 0.01 vs AS model group; Scale bar = 50 μm.
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STS Inhibited Mitochondrial Dysfunction, the NLRP3 Inflammasome, and Pyroptosis in 
HUVECs by Activating the AMPK Pathway
AMPK is an essential regulator bridging energy metabolism, mitochondria and inflammation.48,49 We found that 
STS treatment increased AMPK phosphorylation in HUVECs, which was also confirmed in mice aortic sinus 
(Figure 5). Subsequently, dorsomorphin, an AMPK inhibitor,50 was used to confirm whether STS could suppress 
mtROS over-production through increasing AMPKThr172 phosphorylation. Our results showed that the inhibitory 
effects of STS on cell death (Figure 6A) and mtROS (Figure 7B) were blocked by treatment with dorsomorphin. 
With regard to mitochondrial homeostasis, our results showed that the beneficial effects of STS on mitochondrial 
membrane potential (MMP) (Figure 7A) was disrupted by dorsomorphin. With regard to NLRP3 activation, we 
found that the effects of STS on inhibiting cholesterol crystals-induced activation of NLRP3 and pyroptosis were 
blocked by dorsomorphin (Figure 6B). Dorsomorphin also increased the specks of NLRP3 foci in the cell 
membrane (Figure 6C). These results indicated that STS could increase AMPK phosphorylation to suppress 
mtROS production, resulting in inhibition of NLRP3 inflammasome activation. These results suggest that STS 
can increase AMPK phosphorylation to increase mitochondrial biogenesis, thereby restoring mitochondrial func-
tion to inhibit mtROS production and thus inhibit NLRP3 activation induced-pyroptosis.

Discussion
STS is a water-soluble derivative of tanshinone IIA, which is present in the roots of the traditional Chinese herb 
Salvia miltiorrhiza. In recent years, studies have shown beneficial effects of STS in CVD, including antioxidant, 
antiplatelet aggregating, and anti-inflammatory effects.51 Herein, we demonstrated that STS attenuated the formation 
of atherosclerotic lesions and inhibited endothelial pyroptosis in the aortic intima of WD-fed ApoE−/− mice. In 
addition, STS also inhibited the expression of LDL-C in serum, but the effect of HDL-C by STS is not significant. 
However, some studies have shown that other HDL-related biomarkers, such as HDL function or HDL particle 
number, may have more clinical significance than the relationship between HDL-C levels and cardiovascular 
disease.52–54 Moreover, in vitro, STS inhibited mitochondrial dysfunction, NLRP3 inflammasome formation, and 
pyroptosis in cholesterol crystals-stimulated HUVECs. We demonstrated that STS may play a role in inflammation 

Figure 3 Sodium tanshinone IIA sulfonate alleviates cholesterol crystals-induced pyroptotic damage in HUVECs. HUVECs were incubated with 500 μM cholesterol crystals 
(CC) for 16 h. 10, 20, 40 μM Sodium tanshinone IIA sulfonate (STS) was added 1 h before CC treatment. (A) Cell death was determined using PI staining. (B) NLRP3, ASC, 
caspase-1, GSDMD and IL-1β protein levels were determined by Western blot. (C) NLRP3 specks were detected by immunofluorescence. Data are represented as 
mean ± SD of three independent replicates; **P < 0.01 vs VEH group; §P < 0.05, §§P < 0.01 vs cholesterol crystals group; Scale bar = 10 μm.
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by regulating pyroptosis in endothelial cells to prevent and treat AS. Importantly, our results showed that might 
prevent pyroptosis in vascular endothelial cells via up-regulation of AMPK related signaling pathway.

In this study, we observed that STS attenuated the formation of atherosclerotic lesions in WD-fed ApoE−/− mice. 
The vascular endothelium plays a physiological role in maintaining vascular homeostasis and its dysfunction is one 
of the major causes of CVDs.7 Some studies and our previous study, have demonstrated that STS exerts anti- 
inflammatory effects in CVDs.41 Moreover, inflammasome-induced pyroptosis has recently been shown to be an 
important cause of endothelial damage.55 In line with this, several studies have confirmed that precise regulation of 
NLRP3 can effectively inhibit vascular endothelial injury in AS.20 The NLRP3 inflammasome is composed of 
NLRP3, ASC, and pro-caspase1.56 Caspase-1 is activated by the NLRP3 polyprotein complex and subsequently 
cleaves inflammatory factors and GSDMD, allowing the GSDMD domain to penetrate the cell membrane, induce 
pyroptotic cell death, and promote the release of inflammatory factors.57 In this study, the formation of the NLRP3, 
ASC, and GSDMD were remarkably inhibited by STS in the aortic endothelial cells of WD-fed ApoE−/− mice. And 
STS administration also attenuated IL-1β and IL-18 expression in the aorta of mice. Combined with the above 
results, the beneficial effects of STS in the prevention and reversal of AS may depend on the suppression of the 
activated NLRP3 inflammasome signaling pathway.

Figure 4 Sodium tanshinone IIA sulfonate alleviates cholesterol crystals-induced mitochondrial damage in HUVECs. HUVECs were incubated with 500 μM cholesterol 
crystals (CC) for 16 h. 10, 20, 40 μM Sodium tanshinone IIA sulfonate (STS) was added 1 h before CC treatment. (A) Representative images of TMRE staining in HUVECs 
that were stained with TMRE (red, to label MMP) and Hoechst 33342 (blue, to label nuclear). (B) HUVECs were stained with Mito-SOX probe (red, to label mtROS), Mito- 
tracker Green (green, to label mitochondrial) and Hoechst 33342 (blue, to label nuclear) and images were detected under Confocal High-Content Imaging System. Data are 
represented as mean ± SD of three independent replicates;**P < 0.01 vs VEH group; §P < 0.05, §§P < 0.01 vs cholesterol crystals group; Scale bar = 10 μm.
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It is well-known that cholesterol crystals induce endothelial cell pyroptosis and endothelial dysfunction and choles-
terol crystals markedly increase endothelial ROS production, thereby inducing NLRP3 inflammasome activation and 
endothelial cell pyroptosis.58,59 We observed that STS treatment of HUVECs alleviated cholesterol crystals-induced 
pyroptosis by decreasing the number of PI-positive cells, the enhanced expression of the NLRP3 inflammasome, mature 
caspase-1, and cleaved-GSDMD, and the level of activated-IL-1β. These results suggest that STS plays an anti-AS role 
by inhibiting endothelial cell pyroptosis.

Mitochondrial damage is thought to be one of the upstream signaling events for endothelial dysfunction, 
NLRP3 inflammasome activation, and pyroptosis, and excessive products such as mtROS and mtDNA released 
after mitochondrial damage. And these products can cause NLRP3 activation.60 We found that cholesterol crystals 
treatments resulted in an increase in mtROS production, as well as changes in mitochondrial membrane potential, 
suggesting mitochondrial dysfunction. STS can exhibit a dose-effect restoration of mitochondrial membrane 
potential, and reduced mtROS production. Our work shows that STS is beneficial for regulating mitochondrial 
function.

AMPK, as an energy receptor, plays a central role in maintaining mitochondrial homeostasis, and controlling 
inflammatory stress and oxidative stress.61 AMPK is considered a potential target for metabolism-related CVD, 
including AS, coronary heart disease, and diabetic cardiomyopathy.62 AMPK inhibits inflammatory signaling and 
NLRP3 activation.48 In this study, we found that WD caused decreased pAMPK expression in the aortic 
vasculature, and cholesterol crystals decreased the expression of pAMPK in endothelial cells in vitro. STS 
increased AMPK expression in WD mice aortic vessels, as well as in cholesterol crystals-treated HUVECs. 
Moreover, dorsomorphin, an AMPK inhibitor, inhibited the activation of AMPK in endothelial cells by STS and 
also suppressed the inhibitory effect of STS on endothelial cell pyroptosis. AMPK not only inhibits inflammation 
but also promotes oxidative phosphorylation and mitochondrial homeostasis.61 The addition of dorsomorphin 
greatly disrupted the restoration of STS for mitochondrial membrane potential, and also further increased the 
production of mtROS. ROS generation was the first intermediate found to be common to various stimuli-induced 
NLRP3 inflammasome activation. And mitochondria are the major source of intracellular ROS. The over- 
production of mtROS is responsible for the activation of the NLRP3 inflammasome.56 Overall, the regulation 

Figure 5 Sodium tanshinone IIA sulfonate activates AMPK. HUVECs were incubated with 500 μM cholesterol crystals (CC) for 16 h. 10, 20, 40 μM Sodium tanshinone IIA 
sulfonate (STS) was added 1 h before CC treatment. (A) p-AMPK level in sections of the aortic arches was detected by immunofluorescence. (B) p-AMPKThr172, AMPK 
protein levels were determined by Western blot. Data are represented as mean ± SD of three independent replicates; **P < 0.01 vs VEH group; §§P < 0.01 vs cholesterol 
crystals group; ††P < 0.01 vs STS treatment group.
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of endothelial pyroptosis by STS is AMPK-dependent, and the regulation of mtROS plays a central role in this 
process.

In summary, STS ameliorates endothelial pyroptotic cell death and AS in an NLRP3-dependent manner. STS 
increases the phosphorylation of AMPK, where it improves mitochondrial function and blocks mtROS production, 
leading to suppression of NLRP3 inflammasome activation and pyroptosis in endothelial cells. Our results suggest that 
STS may be used for preventing AS.

Figure 6 Inhibition of AMPK signaling eliminates the protective effect of Sodium tanshinone IIA sulfonate on cholesterol crystals-induced endothelial pyroptosis. 
HUVECs were incubated with 500 μM cholesterol crystals (CC) for 16 h and 40 μM Sodium tanshinone IIA sulfonate (STS) was added 1 h before CC treatment. 
10 μM Dorsomorphin was added 2 h before STS treatment. (A) Cell death was determined using PI staining. (B) NLRP3, ASC, caspase-1, GSDMD and IL-1β 
protein levels were determined by Western blot. (C) NLRP3 specks were detected by immunofluorescence. Data are represented as mean ± SD of three 
independent replicates; **P < 0.01 vs VEH group; §P < 0.05, §§P < 0.01 vs cholesterol crystals group; †P < 0.05, ††P < 0.01 vs STS treatment group; Scale 
bar = 10 μm.
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