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Abstract: Excessive reactive oxygen species (ROS) may generate deleterious effects on biomolecules, such as DNA damage, 
protein oxidation and lipid peroxidation, causing cell and tissue damage and eventually leading to the pathogenesis of diseases, 
such as neurodegenerative diseases, ischemia/reperfusion ((I/R)) injury, and inflammatory diseases. Therefore, the modulation of 
ROS can be an efficient means to relieve the aforementioned diseases. Several studies have verified that antioxidants such as 
Mitoquinone (a mitochondrial-targeted coenzyme Q10 derivative) can scavenge ROS and attenuate related diseases. Nanozymes, 
defined as nanomaterials with intrinsic enzyme-like properties that also possess antioxidant properties, are hence expected to be 
promising alternatives for the treatment of ROS-related diseases. This review introduces the types of nanozymes with inherent 
antioxidant activities, elaborates on various strategies (eg, controlling the size or shape of nanozymes, regulating the composition 
of nanozymes and environmental factors) for modulating their catalytic activities, and summarizes their performances in treating 
ROS-induced diseases. 
Keywords: nanozymes, enzyme-mimic, oxidative stress, antioxidant, ROS-related diseases

Introduction
Reactive oxygen species (ROS) contain various reactive molecules and free radicals (species with unpaired electrons) 
derived from molecular oxygen, such as hydrogen peroxide (H2O2), superoxide (O2

·−) and hydroxyl radicals (·OH).1–3 

ROS are produced by a cell converting oxygen into oxygen radicals during physiological processes in biological systems 
and play roles as signaling molecules in cells, including activating cell signaling cascades, inducing apoptosis, and 
influencing gene expression.4–7

However, oxidative stress occurs when ROS generation increases or antioxidant defense systems become weaker or 
both, which means unquenched ROS may trigger further reactions.5,8,9 In turn, oxidative stress destroys biomacromo-
lecules and plays a part in a series of pathologies, including neurodegeneration, inflammation, atherosclerosis, diabetes, 
and aging.4,10–12 As massive ROS production and associated oxidative damage are also identified as important causative 
factors for diseases such as I/R, researchers speculated that scavenging excessive ROS might be a viable method for 
oxidative stress-related diseases in the future.13,14

Nanozymes are inorganic nanomaterials that mimic enzyme activities.15 Since ferromagnetic nanoparticles (NPs) 
were detected to possess enzyme-like activity for the first time,16 various nanomaterials have been developed with 
peroxidase-like, oxidase-like, catalase-like and superoxide dismutase (SOD)-like activities and are widely used in 
biomedicine fields such as biosensing, disease diagnosis and treatment.17,18 Furthermore, as Gao and Yan et al concluded, 
nanozymes should be consistent with the enzyme kinetics and catalytic mechanism of natural enzymes, such as the 
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Michaelis–Menten equation. As a substitute for natural enzymes, even compared to other artificial enzymes, nanozymes 
are more prominent in their stability to pH and temperature, low production cost, ease of synthesis in large quantities, and 
reusability.19,20 In addition, the unique physicochemical properties of nanomaterials endow them with a variety of 
functions and provide various methods for rational design.21 By virtue of enzyme-like activities, especially SOD-like and 
catalase-like activities, nanozymes are expected to eliminate intracellular ROS and have therapeutic effects in ROS- 
related damages or diseases.

In this review, we focus on the catalytic activity of antioxidant nanozymes and their significant research progress in 
the treatment of excessive ROS-caused diseases. First, nanozymes that show antioxidant activity, including carbon-based, 
metal-based, and metal oxide-based nanozymes, are summarized. Second, strategies for modulating nanozymes to elevate 
their ROS-quenching capacities are outlined. Third, the applications of nanozymes in relevant treatments are introduced. 
We hope that this review will provide an overview of antioxidant nanozymes in the ROS-induced disease treatment field, 
as well as inspiration for future clinical applications.

Antioxidant Nanozymes
Here, we introduce the representative types of antioxidant nanozymes, which have been reported as antioxidants in recent 
years in the following section (Table 1).

Carbon-Based Nanozymes
Carbon-based nanomaterials have outstanding physicochemical properties, such as electrical, thermal, and optical 
properties, which make them promising materials for biomedical applications.22 They contain fullerene, graphene 
nanosheets, graphene oxide (GO), graphene quantum dots (GQDs), and carbon nanotubes (CNTs), which can be divided 
into zero-dimensional nanomaterials (fullerene, carbon dots, GQDs), one-dimensional nanomaterials (CNTs), two- 
dimensional nanomaterials (graphene), and three-dimensional nanomaterials (nanodiamonds) based on the number of 
dimensions exceeding the nanoscale (100 nm).23

Fullerenes are carbon spheres, in which C-atoms are sp2-hybridized carbon atoms, and presently are used for various 
applications in nanomedicine.24,25 The existence of abundant conjugated double bonds and low lying lowest unoccupied 
molecular orbital endow them the ability to scavenge radical species.26 With the abovementioned characteristics, 
fullerenes show antioxidant activity in dealing with O2

·−, ·OH, and H2O2, and are called “free radical sponges”.27–29

Through inhibiting cellular ROS levels, fullerenes could suppress proinflammatory cytokine release in synovial 
inflammation-related cells in vitro, and alleviate synovitis and joint destruction significantly in vivo.30 Fullerenol belongs 
to fullerene derivatives and exhibits excellent water solubility. With the intrinsic capability of eliminating ROS, 
fullerenol/alginate hydrogels were synthesized to protect brown adipose-derived stem cells (BADSCs) against the 
oxidative stress damage after myocardial infarction (MI) and improve the cardiomyogenic differentiation.31 In MI rat 
model, the fullerenol/alginate hydrogel seeded with BADSCs reduced infarct size, increased wall thickness, and 
improved cardiac functions successfully.

CNTs, with hollow and cylindrical structure, are formed by rolled graphene sheets. Single-walled CNT consist of one 
graphene sheet, while multiwalled carbon nanotubes (MWCNTs) consist of multiple single graphene layers.32 For the 
first time, Fubini et al reported MWCNTs exhibited a remarkable ROS scavenging capacity, including ·OH and O2

·−.33 

The excellent electron affinity of the molecular orbitals or electronic bands of the carbon atoms in the nanotube 
framework was conductive to the scavenging reaction.

Graphene is a flat-like layer of densely packed sp2 carbon atoms. For graphene-based nanomaterials, Akhavan et al 
had summarized that the electron density, chemical composition, sp2-hybridized carbon content and chemical properties 
were responsible for their ROS-scavenging abilities.13 Just as Hurt et al reported that a series of graphene-based materials 
showed ·OH scavenging activities.34 Among them, few layer graphene exhibited the best performance, followed by 
reduced graphene oxide (rGO) and GO. The activity order was in inverse to their total surface area. Thus, the main 
antioxidant activities of graphene-based materials were ascribed to pristine sp2 carbon domains rather than oxygen- 
containing functional groups.
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Table 1 Representative Antioxidant Nanozymes and Their Applications

Nanozymes Activity/Mechanism Application Reference

Fullerenes ·OH and O2
·− scavenging activity Cardiac functional recovery [31]

Allergic response [165]

Doxorubicin-induced 

hepatotoxicity

[166]

Graphene based 

NPs

·OH and O2
·− scavenging activity 

Catalase

Neuroprotection [34]

Cardiac repair [36]

Acute kidney injury [134]

Fe3O4 NPs Peroxidase 

Catalase

Aging [39]

Neurodegeneration [39]

Cerebral malaria [167]

PBNPs Peroxidase 

Catalase 
SOD

Colitis [43]

Acute pancreatitis [47]

Full-thickness skin wound [48]

Ischemic Stroke [49]

CeO2 NPs Catalase 

SOD 

Oxidase

Ischemic stroke [62,63]

AD [64–66]

Depression [67]

IBD [69]

Acute gout [70]

Drug-induced liver injury [73]

PD [75]

Rheumatoid arthritis [168]

Traumatic brain injury [169]

Mn3O4 NPs SOD 

Catalase 
GPx

Ear inflammation [82]

PD [84]

IBD [170]

Cu based NPs Peroxidase 

SOD 
Catalase 

GPx

Acute kidney injury, acute liver 

injury, wound healing

[20]

PD [79]

Mo based NPs SOD 

Catalases 

Peroxidases

Acute kidney injury [162]

Hepatic fibrosis [171]

Pt NPs SOD 

Catalases 
Peroxidases

Pulmonary inflammation [172]

Hepaticischemia/reperfusion 

injury

[173]

(Continued)
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In virtue of the antioxidant activities, graphene-based nanomaterials are used for medical treatment applications, such 
as neurotoxicity and cardiac repair.35,36

GOQDS could decompose H2O2 to H2O and O2, thus verifying their catalase-like activity.36 Pretreatment with 
GOQDS in 1-methyl-4-phenyl-pyridinium ion (MPP+) induced PC12 cells and the brains of larval zebrafish could 
prevent overproduction of ROS and provide neuroprotection.35

GOs was modified with polyethylenimine and folic acid−polyethylene glycol (PEG) to form a macrophage-targeting 
/polarizing GO complex (MGC).36 The as-prepared material was verified to eliminate ·OH which invoked cardiac failure 
after MI. In turn, inflammatory biomarkers, such as tumor necrosis factor-α (TNF-α), were less produced during the 
inflammatory phase. Additionally, DNA-functionalized MGC promoted the polarization of M1 to M2 macrophages and 
accelerated secretion of cardiac repair-favorable cytokines. Collectively, this compound played dual roles to attenuate 
inflammation and improve heart function.

Metal and Metal Oxide-Based Nanozymes
Iron Based
Under different reaction conditions, iron oxide nanozymes (including Fe3O4 and Fe2O3) exhibited either peroxidase-like 
or catalase-like activities.16,37,38 These activities conferred iron oxide nanozymes the abilities to scavenge ROS under 
appropriate conditions.

Intrigued by the discovery of the catalase-like activity of iron oxide NPs, researchers have explored how these 
nanoparticles dealt with oxidative stress in aging or neurodegeneration.39 Fe3O4 NPs alleviated a cell model of 
Parkinson’s disease (PD) death and reduced the levels of α-synuclein and cleaved caspase-3, which are presynaptic 
neuronal proteins tightly linked to PD pathogenesis and apoptosis markers, respectively. Finally, the effects of dietary 
Fe3O4 NPs on aging and the Alzheimer’s disease (AD) model of Drosophila were tested, and Fe3O4 NPs were effective 
in increasing life span, antiaging, promoting locomotor activity and reducing apoptosis in these disease models.

Combining nanozymes and natural antioxidants has also been used as free radical scavengers, as shown in Figure 1A.40 

As Zhao et al designed, Fe3O4 NPs and the polyphenol tannic acid (TA), which is a natural antioxidant, were combined into 
Fe3O4@TAn nanoflowers (NFs), as shown in Figure 1B. The Fe3O4 @ TAn NFs could mimic peroxidase, catalase, and 
SOD. Through the complementary action of Fe3O4 and TA, the as-designed nanomaterial exhibited improved and broad- 
spectrum ROS eliminating activity. Additionally, the nanoflower morphology of the Fe3O4@TAn NFs made them fully 
exposed to oxidative stress conditions, thus contributing to the excellent activity. Owing to a remarkable multiple ROS 
scavenging activity, the Fe3O4@Tan NFs were employed to treat mouse endotoxemia with excellent results.

In addition, Prussian blue nanoparticles (PBNPs), as Fe-containing nanomaterials with good biosafety, were also 
found to possess multienzyme activities. The different redox potentials of PB, Prussian white (PW), Berlin green (BG), 
and Prussian yellow (PY) conferred these materials tremendous abilities to transfer electrons.41–44 Dong et al proposed 
that PBNPs represented the first example of a bioinspired nanozyme.45 They looked for the active site of PBNPs and 

Table 1 (Continued). 

Nanozymes Activity/Mechanism Application Reference

Melanin-like NPs ·OH, O2
·−, H2O2, NO, and 

ONOO− scavenging activity

Ischemic stroke [153]

Periodontal disease [150]

Osteoarthritis [148]

Acute peritonitis and acute lung 

injury

[174]

MOF based NPs SOD 

Catalase

Endotoxemia [97]

IBD [175]
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concluded that N-coordinated Fe units (FeNx (x=4–6)) with intrinsic heme-like structures endowed PBNPs with 
peroxidase-like activity.

Thus, PBNPs could efficiently control ROS-induced cell damage and treat diseases such as mouse liver inflammation 
and injury, colitis, acute pancreatitis, cutaneous wound healing and ischemic stroke.42,46–50

Gold-Based
Au NPs were demonstrated to decompose H2O2 to O2 at alkaline pH and scavenge superoxide at acidic pH.51 The 
activities made Au NPs potential catalase and SOD mimetics. In addition, Guo and Lu et al showed that Au NPs played 
important roles in ameliorating neurologic deficits and infarction volumes and protecting the cerebra from I/R injury in 
rats via the regulation of inflammatory and immune responses.52

To eliminate the toxicity induced by ·OH produced by the catalytic action of Au nanoclusters (AuNCs), polymeric 3°- 
amine was added to Au NCs to simultaneously restrain the generation of ·OH and retain their catalase-like activity. The 
derived AuNCs-NH2 acted as H2O2 scavengers, thus protecting primary mouse neurons against oxidative stress.53

Cerium Oxide (Ceria)-Based
As early as 2006, Schubert et al proposed that cerium oxide NPs could protect nerve cells from oxidative stress through 
the ability to limit the amount of ROS.54

As relevant studies developed, cerium oxide NPs were proven to have excellent multiple enzyme-mimicking 
properties due to their Ce3+/Ce4+ oxidation state and the presence of oxygen vacancies.55–57

Numerous studies are performed on nanoceria and its biomedical application. CeO2 NPs and related materials have 
been widely used to protect cells that are destroyed by excessive ROS, such as nerve cells, macrophages, cardiac 
progenitor cells, human breast cells, fibrosarcoma cells and human hepatic cells.54,57–61 Furthermore, they may serve as 
a novel therapy for neurodegenerative diseases, depression, ischemic stroke, autoimmune diseases, hepatic injury, sepsis, 
psoriasis, inflammatory bowel disease (IBD), periodontitis, and acute gout.62–77 Based on the excellent ROS eliminating 
capabilities of CeO2, researchers have explored various kinds of targeted methods to address the aforementioned 
diseases.

During the treatment of ROS-related diseases, CeO2 also plays roles in downregulating proinflammatory cytokine 
levels, upregulating anti-inflammatory cytokine levels, inhibiting the ROS–NFκB pathway, etc.69,73,77

Figure 1 Iron oxide nanozyme and nonenzymatic antioxidant constructed a nanoplatform to mimic the antioxidant defense system. (A) The antioxidant ability of Fe3O4 @  
TAn NFs. (B) Schematic illustration of the petal structure of Fe3O4@TA1.0 NFs. Reproduced with permission from Wei Z, Wang L, Tang C et al. Metal-phenolic networks 
nanoplatform to mimic antioxidant defense system for broad-spectrum radical eliminating and endotoxemia treatment. Adv Funct Mater. 2020;30(49). Copyright (2020) John 
Wiley and Sons.40
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Copper Based
Cu-based nanozymes have been widely used to eliminate ROS and improve ROS-related diseases, including PD, acute 
liver injury, acute kidney injury, and wound healing.20,78,79

Deng’s group considered that large surface-to-volume ratios would confer high catalytic activity, so they made 
ultrasmall Cu5.4O NPs (Cu5.4O USNPs), the average hydrodynamic diameter of which was as small as 4.5 nm.20 The as- 
designed nanoparticles were verified to have multiple enzyme-mimicking activities, including catalase, glutathione 
peroxidase (GPx), SOD and excellent broad-spectrum ROS scavenging ability. The reason for the name “Cu5.4 

O USNPs” was because the materials were a mixture of Cu and Cu2O NPs.

Manganese-Based
Lv et al first discovered that manganese dioxide (MnO2) nanoparticles possessed enzyme-mimicking activities, which 
was further demonstrated in another study in 2017.80,81

Recently, Mn3O4 nanozymes were also confirmed to possess antioxidant enzyme-like properties, and when compared 
with the most widely used CeO2, researchers found that Mn3O4 nanozymes were more effective in terms of ROS 
elimination.82,83 The mixed valance states of Mn2+/Mn3+, tolerance to oxidation, large surface area and extremely large 
pore size of Mn3O4 nanozymes contributed to their outstanding multienzyme activity.82

Mn3O4 nanozymes could provide efficient cytoprotection in SHSY-5Y, which is a human cell line model for the PD 
phenotype, and protect mice from phorbol 12-myristate 13-acetate (PMA)-induced ear inflammation.82,84 Furthermore, 
Mn3O4 nanozymes were proven to protect cells suffering from oxidative stress.83 The related expression of various stress 
markers and antioxidant enzymes in the presence of Mn3O4 nanozymes was also detected. Conclusively, Mn3O4 

nanozymes complemented the antioxidant machinery and rescued the cells under oxidative stress independent of the 
endogenous antioxidant machinery.

Other Metal-Based Nanozymes
Qu and his cooperators synthesized GO-Se nanocomposites and Se@PDA (polydopamine) nanozymes, which both 
showed GPx-like properties.85,86 Se@PDA nanocomposites showed excellent antioxidant activity, which was ascribed to 
the enzyme-like effect of the Se component and the nonenzymatic antioxidant ability of pDA.86 By decomposing 
excessive intracellular H2O2, the nanocomposites successfully alleviated neumonia in the mouse model. To achieve 
higher GPx-like activity, mesoporous selenium NPs (MSeNPs) with a high specific surface were synthesized.87 Then, 
hyaluronic acid (HA), which could specifically attach to CD44 on the surface of macrophages, was assembled on the 
MSe NPs to facilitate the accumulation of the as-designed nanozyme at the site of inflammation. Taken together, 
treatment with MSe-HANPs successfully relieved local inflammation and sepsis.

Metal Organic Frameworks (MOFs) Based
MOFs are a class of supramolecular coordination complexes with metal ions/clusters bridged with organic linkers by 
coordination bonds.88,89 They also have natural enzyme-mimicking properties. For example, MOF-derived copper 
nanoparticle@carbon nanocomposites, iron(III)-based MOFs (MIL-68 and MIL-100) (MIL=Material Institute of 
Lavoisier), PA-Tb-Cu MOF, Cu2+ ion-modified UiO-type MOF NPs (UiO = University of Oslo), MOF-808 and 
zirconium-ferriporphyrin (Zr-FeP) MOF were verified to possess peroxidase-like activities.90–95

Tb3+ as a metal ion and a boronic acid ligand as a linker constituted a luminescent Tb-MOF.96 The boronic acid 
groups of Tb-MOF reacted with ROS through the rapid nucleophilic addition reaction, which endowed the MOF with 
ROS quenching capability. Further investigation proved that Tb-MOF effectively scavenges exogenous or endogenous 
ROS in living cells, including HeLa cells and RAW 264.7 cells.

According to the size and active sites of natural SOD, Qu and Ren et al designed ultrasmall and bioinspire Cu-TCPP 
MOF nanodots (CTMDs), the average size of which was less than 5 nm.97 The Cu active sites of CTMDs showed 
a similar coordination of N and O atoms to that of SOD, while the ordered channels were similar to substrate channels 
that could accumulate superoxide, thus contributing to the potent SOD-like activities of CTMDS. Additionally, CTMDs 
could catalyze H2O2 into H2O with glutathione (GSH), which mimicked the activity of GPx. Combining SOD-like and 
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GPx-like activity, CTMDs could effectively destroy O2
·− and H2O2. As demonstrated in vivo, CTMDs could alleviate 

endotoxemia efficiently by eliminating ROS and reducing systemic inflammation.

Others
Melanin and Its Derivatives
Nanomaterials derived from natural organisms have been used in biological and medical applications due to their 
biocompatibility and biodegradability. As a natural biopolymer, melanin is distributed in the human body, such as 
skin, eye, brain, and hair.98,99 It showed scavenging activity toward ROS and protected skin from UV damage.100 In 
addition, PDA NPs, as the most typical synthetic melanin, are produced by the oxidative polymerization of dopamine. 
The reductive functional groups of PDA NPs, including catechol and imine, endow them with robust potential in 
scavenging ROS.98,101,102

Ultrasmall Mn2+-chelated melanin NPs (MMPPs) were also verified to exhibit multiple ROS scavenging activities and 
used to treat murine acute kidney injury.103 Considering the characteristics of targeted disease, MMPPs were designed with 
an ultrasmall hydrodynamic size, good physiological stability, and stable radiolabeling performance. Thus, they could 
preferentially concentrate in the kidney and show a robust antioxidative protection response with few side effects.

Single Atom Nanozymes (SAzymes)
SAzymes contain single metal atoms on various supports, which can maximize the utilization of metal atoms, thus 
achieving high activity and selectivity and shrinking the difference between nanozymes and natural enzymes.104–106

To obtain an efficient antioxidant therapy for sepsis, Qu and Ren et al synthesized a SAzyme, Co/PMCS, 
characterized by atomically dispersed coordinatively unsaturated active Co porphyrin centers. The SAzymes could 
mimic SOD, catalase and GPx, thus obliterating multiple RONS.107 In another experiment, the researchers tried to 
develop a clinically applicable bandage based on a single-atom Pt/CeO2 nanozyme for brain trauma (Figure 2). 108 

The nanozyme had high and persistent catalytic activity, which could fight against oxidative stress, decrease 
neuroinflammation and improve neurotrauma. The high catalytic activity was ascribed to the 2% lattice expansion 
induced by Pt single atoms dispersed on the CeO2 (111) matrix, thus decreasing the binding energy of the 
chemical reactions. Moreover, Pt/CeO2 avoided obvious decay due to continuous exposure to oxygen and 
maintained catalytic activity for up to 30 days, which was ascribed to its sustained electron-donating ability via 
the Mars–van Krevelen reaction.

Figure 2 Schematic diagram of the nanozyme-based bandage to treat brain trauma. Reprinted with permission from Yan R, Sun S, Yang J et al. Nanozyme-based bandage with 
single-atom catalysis for brain trauma. ACS nano. 2019;13(10):11,552–11,560. Copyright (2019) American Chemical Society.108
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Regulatory Factors for Nanozyme Activity
Elevating the catalytic properties of nanozymes is a topic of common concern. Studies focused on activity regulation 
have been performed in the past few years. The following are several important factors that influence the antioxidant 
activity of nanozymes.

Physicochemical Properties
Size
Generally, smaller nanozymes show better catalytic activity than larger nanozymes. As the size decreases, nanozymes 
obtain a higher surface-to-volume ratio, expose more active sites, and have a larger surface energy.21,109 However, there are 
some special cases; for example, the catalytic performance of Pd-Ir NPs increased with increasing size.110 To exclude other 
physicochemical factors, the researchers synthesized nanomaterials with the same morphologies and surface structures 
except for size. Catalytic activity parameters, such as Kcat (catalytic rate constant) and Kcat/S (area-specific Kcat), were 
compared. As the size of the Pd-Ir NPs increased, Kcat continuously increased by nearly 12-fold. However, the Kcat/S values 
for different sizes of Pd-Ir NPs were similar. Combining the results, the conclusion was that the catalytic activity of the NPs 
was mainly ascribed to the catalytic surface areas, which could promote the interaction of individual nanoparticles and more 
substrates.

Shape and Morphology
The catalytic activity of nanomaterials also depends on shape and morphology.111 For instance, Ge et al speculated that 
antioxidant activity was structure-dependent for the carbon nanomaterial family.29 They evaluated the radical scavenging 
activities of buckyball-shaped fullerene derivatives and sheet-shaped GQDs by electron spin resonance (ESR) measure-
ments. After comparison, the activities were in the order C70>C60>GQD. By theoretical calculations of the Gibbs free 
energies of reactions (Gr), the Gr’s of C60 and C70 were much lower than that of GQD, suggesting that larger radical 
scavenging activity depends on the lower Gr values.

More deeply, scientists revealed the prominent effect of surface facets in determining the enzyme-like activity of Pd 
nanocrystals.112 They discovered that Pd octahedrons enclosed by 111 facets had greater enzyme-mimic activity than Pd 
nanocubes enclosed by 100 facets through ESR experiments (Figure 3A). Taking advantage of theoretical simulations, 
the ROS clearance that reacted on Pd 111 and 100 facets was calculated. The reaction energy (Er) of the rate-limiting step 
could be used as the descriptor of the enzyme activity of the metal. As shown in Figure 3B, the Er values of H2O2 and 
O2

·− on the 111 facet were both stronger than those on the 100 facet, which indicated greater H2O2 and O2
·− scavenging 

activities.
Interestingly, Kuang et al prepared a complex of CuO and Cu2O nanoparticle clusters (CuxO NCs) by selecting 

L-phenylalanine (L-Phe) as the structure-directing agent.79 The Phe ligand was confirmed to take part in determining the 
CuxO NC structure, which had a uniform diameter and morphology, a larger volume of pores and a larger pore size than 
those of other materials, such as CuxO-aspartic acid (Asp) (Figure 3C), thus endowing the CuxO NCs with higher 
catalytic performance.

Composition
Tailoring the composition of nanomaterials, such as doping other elements or forming bimetallic or multimetallic 
nanocomposites, poses another way to tune the activity of nanozymes.113–118

Hyeon and Lee et al introduced Zr4+ into ceria nanoparticles to increase the Ce3+/Ce4+ ratio and convert Ce4+ to Ce3+ 

since Ce3+ targets O2
·− and ·OH.72 Through investigation, the Ce0.7Zr0.3O2 (7CZ) NPs showed the best ROS-scavenging 

performance. Additionally, in vivo tests also demonstrated that 7CZ NPs effectively reduced mortality and systemic 
inflammation in sepsis. By Li doping, the catalytic activities of ZnMn2O4 nanozyme developed from single antioxidant 
activity to multiple activities, including SOD-like, catalase-like and GPx-like activities, with enhanced performance.119 

Through XPS analysis, the molar ratio of Mn4+/Mn3+ increased from 0.56 to 2.29 along with gradual Li doping.
Another doping strategy was adopted to improve the catalytic activity of Prussian blue analog (PBA)-based nanozymes 

(Figure 3D and E).120 In this study, Ni-Fe bimetal PBA-based nanocages doped by molybdenum-polysulfide (Nanocages) 
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were prepared and were proved to have multiple enzyme-like activities. Doping molybdenum into PBA successfully 
regulated the size (decreased), shape (from solid to hollow), composition, and electronic structure of the nanocage, thus 
bringing in more catalytic sites and binding sites.

In addition, the peroxidase-like, catalase-like and SOD-like activity of PtCu nanoalloys was related to the atomic ratio 
of Pt/Cu.121 At the same time, by changing the atomic ratio of Pt/Cu, the particle size, alloy composition and crystal 
structure of PtCu nanoalloys were controlled correspondingly.

Surface Coating and Modification
Controlling surface chemistry by surface coating and modification is also an advantageous way to improve catalytic 
performance because chemical reactions take place mainly on the surface of catalysts.122 Ions (fluoride), small molecules 
such as amino acids, citrate, Prussian blue, amino acids, and polymers (protein, dextran, DNA) can act as materials for 
modification.123–128

Yan and Gao et al modified Fe3O4 NPs with histidine (His) residues to mimic the active site of horseradish peroxidase 
(HRP) and expected hydrogen bond formation between the distal imidazole group and H2O2.

129 The bionic design 
effectively altered the catalytic properties of the Fe3O4 nanozyme.

Specifically, abundant efforts have been made to improve the specificity of nanozymes for chiral substrates. By virtue 
of the surface coating of amino acids and DNA with chiral structures on nanozymes as chiral ligands, nanozymes can be 
designed with chiral selectivity.130–133

Natural phenolic antioxidants gave Qu and Ren et al inspiration; they used NaBH4 as the reductant to convert C=O on 
classical GQDs (c-GQDs) to C–OH and formed GQDs (h-GQDs) with phenol-like groups.134 Through comparison, the 
antioxidant activity of h-GQDs was at least 5 times that of c-GQDs under the same conditions. By means of experimental 
research and theoretical calculations, the researchers discovered step by step that phenol-like groups played an important 

Figure 3 The regulation of nanozyme activity based on physicochemical properties. (A) Lower surface energy {111}-faceted Pd octahedrons and higher surface energy 
{100}-faceted Pd nanocubes. (B) Lowest-energy adsorption structures and reaction energies (in eV) for the reactions on structures having either Pd 111 or 100 facets. 
Reprinted with permission from Ge C, Fang G, Shen X et al. Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative 
damage. ACS Nano. 2016;10(11):10,436–10,445. Copyright (2016) American Chemical Society.112 (C) STEM, energy dispersive X-ray spectroscopy (EDS) mapping and 
electron tomographic reconstruction of CuxO NCs. Reprinted with permission from Hao C, Qu A, Xu L et al. Chiral molecule-mediated porous CuxO nanoparticle clusters 
with antioxidation activity for ameliorating Parkinson’s disease. J Am Chem Soc. 2019;141(2):1091–1099. Copyright (2019) American Chemical Society.79 Synthetic process 
(D) and catalytic performance (E) of the Nanocage. Reprinted with permission from Wang C, Ren G, Yuan B et al. Enhancing enzyme-like activities of Prussian blue analog 
nanocages by molybdenum doping: toward cytoprotecting and online optical hydrogen sulfide monitoring. Anal Chem. 2020;92(11):7822–7830. Copyright (2020) American 
Chemical Society.120
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role in the catalytic performance of h-GQDs. In addition, carbonyl groups, which suppress the H-donating ability of the 
phenol-like group, were removed from h-GQDs, which also promoted the antioxidative activity of h-GQDs.

Form Complex or Hybrid Nanozymes
The construction of different nanozymes may improve their catalytic performance and result in synergistic effects and 
even multistep cascade reaction activity, thus attracting many intentions in recent years.135–139

A multinanozyme cooperative platform was assembled in which V2O5 nanowires acted as GPX mimics, while MnO2 

nanoparticles mimicked SOD and catalase (Figure 4A). 140 V2O5@pDA@MnO2 exhibited excellent ROS depletion 
performance that could mimic a natural antioxidant enzyme system (Figure 4B). Compared with Se NPs, GO-Se 
nanocomposites exhibited much higher GPx-like activity.85 The reason might be that GO endows the GO-Se hybrid 
with a greater surface area and rapid electron transfer capacity.

Zeolitic imidazolate framework-8 (ZIF-8) was used to encapsulate CeO2 NPs to form CeO2@ZIF-8 and overcame 
some limitations of CeO2.141 According to the design, ZIF-8 mimicked peroxidase to maintain antioxidant activity and 
controlled the size, morphology, and surface potential of CeO2, which was beneficial for biological applications.

Environmental Factor
The antioxidant performance of nanozymes is also sensitive to the surrounding environment, such as pH, temperature, 
and light. The catalytic activity of nanozymes is greatly influenced by pH. As Wei concluded, under acidic conditions, 
nanozymes showed peroxidase-mimicking activities, while under neutral and alkaline conditions, they exhibited SOD- 
like and catalase-like properties.21

Application of Nanozymes in Excessive ROS-Induced Diseases Treatment
In this section, we introduce the application of nanozymes in excessive ROS-induced diseases, including neurodegen-
erative diseases, inflammatory diseases, and stroke et al.

Figure 4 A multinanozyme cooperative platform to efficiently reduce ROS levels. (A) The synthesis process of V2O5@pDA@MnO2 nanocomposites. (B) The multi-
nanozyme system mimics the intracellular antioxidant enzyme-based defense system. Reprinted with permission from Huang Y, Ren J, Qu X. Nanozymes: classification, 
catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 6: 4357–4412. Copyright (2019) American Chemical Society.176
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Treatment of Inflammatory Diseases
The accumulation of ROS may be one of the signaling pathways connecting the UPR (unfolded-protein response) and 
inflammation, thus initiating an inflammatory response.12,142 Excessive inflammation can cause chronic or systemic 
inflammatory diseases, including cardiovascular disease, atherosclerosis, asthma, cystic fibrosis, and rheumatoid 
arthritis.143,144

IBD, as a troublesome colorectal inflammatory disease, is also closely related to excessive ROS.145 Current treatment 
for IBD mainly relies on antibiotics, which will induce problems such as antibiotic resistance. Prussian blue, which has 
been approved as an antidote by the US Food and Drug Administration (FDA) and with good biosafety, can also act as an 
artificial nanozyme, effectively scavenging ROS.146 To improve the solubility of PB NPs, PPB NPs were prepared with 
the help of poly(vinylpyrrolidone) via a one-pot strategy.43 The in vivo experiments showed that through intravenous 
administration, PPBs targeted the inflamed sites and alleviated colitis in mice; in addition, proinflammatory cytokines 
were inhibited significantly. Furthermore, to realize oral administration, it was an ingenious design to combine clinically 
approved montmorillonite (MMT) and CeO2 in targeting the inflamed colon.69 MTT, with negative charges and high 
tolerance to pH, endowed CeO2@MMT with stability to pH and specific adsorption onto the inflamed colon, which was 
positively charged based on electrostatic interactions. Thus, the nanozyme could be efficiently delivered through the 
digestive tract, which made it suitable for oral administration. MMT could simultaneously decrease the systemic 
absorption of CeO2, thus reducing potential toxicity. Budesonide, a promising drug for IBD, and MnO2 nanozyme, 
a nanocarrier, when taken together, became more effective and could be taken orally, as Tong et al demonstrated in 
mouse models.147 The main reasons for selecting hollow MnO2 NPs were as follows: first, they possessed intrinsic 
enzyme-like properties, which could scavenge ROS; second, they had an adjustable hollow structure, which was 
conducive to the loading of drugs; and thirdly, they could be modified with dextran sulfate sodium (DSS), which 
could target activated macrophages. In addition, hollow MnO2 NPs were influenced by the inflammatory microenviron-
ment and were prone to release budesonide, thus fulfilling their role as nanocarriers. Compared with free budesonide, the 
nanocarrier system exhibited fewer side effects and had a better curative effect on IBD.

The researchers noticed some problems in the therapy of osteoarthritis, such as antioxidants, melatonin and 
N-acetylcysteine (NAC), were too small to stay long enough in the joint.148 Therefore, they designed appropriately 
sized dopamine-melanin (DM) NPs, which were 112.5 nm in size, and made the nanomaterials suitable for retention in 
the joint for a long time. In a rat osteoarthritis model, DM NPs were found to combat damage caused by inflammation 
and protect chondro by scavenging intracellular RONS and activating antioxidant enzymes by autophagy. Sharma et al 
chose cartilage that suffered irreversible damage under oxidative stress as the therapeutic target.149 PEG-MnO2 NPs were 
designed with a size of less than 20 nm and positive surface charge. Due to the small size and zeta potential, the 
nanoparticles enabled cartilage penetration and chondrocyte uptake in vitro and in vivo. After one week, 75% of the 
initial signal remained in the joint space, which might be connected with the electrostatic interactions between 
nanoparticles and anionic cartilage tissue. Combined with the intrinsic ROS scavenging capability of MnO2 NPs, the 
materials improved chondrocyte viability and extracellular matrix preservation by reducing inflammation-induced 
oxidative stress in cartilage.

Yang et al pointed out that in periodontal disease suffering from oxidative stress, PDA NPs with strong ROS removal 
capacity successfully decreased local periodontal inflammation.150 PDA NPs that could satisfy the following conditions, 
such as robust antioxidative activity, degradability and low toxicity, might act as intelligent treatments for clinical 
application.

Treatment of Ischemic Stroke
Ischemic stroke, caused by artery thrombi in blood vessels, in turn leads to excessive ROS production and the resulting 
damaged neurons during the I/R process.151,152

Bioinspired melanin NPs (Me NPs) were employed as a novel antioxidant to treat ischemic stroke disease, as shown 
in Figure 5. The infarction area of the brain in a murine model was greatly reduced compared to that in the control.153 
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The melanin NPs not only scavenged ROS, including O2
·−, H2O2, and ·OH, but also reduced inflammatory responses by 

inhibiting the expression of inflammatory mediators and cytokines.
A stable composite formed by human serum albumin (HSA) bound to the Mn3O4 nanozyme was used to alleviate 

nervous system injury caused by ischemic stroke reperfusion.154 Owing to HSA, the as-designed nanozyme showed 
excellent stability, which was important for high bioavailability and prolonged blood circulation time. Moreover, Mn ions 
were released from HSA-Mn3O4 into bodily circulation and thus promoted SOD2 expression. PEG- and angiopep-2 
(ANG)-modified CeO2 nanozyme was loaded with edaravone for the treatment of ischemic stroke.62 PEGylation 
endowed CeO2 nanozyme with superior characteristics of uniformity, small size, and prolonged blood circulation, 
while ANG led to effective cross blood–brain barrier (BBB) (through receptor-mediated transcytosis), which solved 
the problem of maintaining BBB integrity and the high accumulation need of nanozyme in damaged areas (Figure 6). The 
loaded edaravone and CeO2 core both contributed to the removal of ROS, thus providing an efficient strategy for treating 
strokes. To solve the problems that exist in nanozyme treatment, such as less nanozyme accumulation in the ischemic 
brain site, a neutrophil-like cell membrane-coated mesoporous Prussian blue nanozyme (MPBzyme@NCM) was 
prepared.50 The preparation of the nanomaterials translocated the entire cell membrane to the surface of the nanozyme 
and realized interaction between inflamed brain microvascular endothelial cells and neutrophils. The operation could help 
to promote nanozyme to access damaged brain and realize a noninvasive active-targeting therapy for ischemic stroke. 
PBNPs also polarized microglia from M1 to M2, decreased the accumulation of neutrophils, reduced neuronal apoptosis, 
and upregulated neurogenesis. This work proposed a new way to treat brain diseases by combining biomembranes and 
nanozymes.

Treatment of Neurological Diseases
The common feature of neurodegenerative diseases, such as AD and PD, is a gradual loss of neuron function. More 
deeply, the deposition of the peptide amyloid-β (Aβ) for plaques and the deposition of the protein tau for neurofibrillary 
tangles comprise the histopathological hallmarks of AD.155–157 Studies have confirmed that abnormal ROS affect the 

Figure 5 Comparison of the infarction area of 2,3,5-triphenyltetrazolium chloride-stained brain slices from different groups. Reprinted with permission from Liu Y, Ai K, Ji 
X et al. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J Am 
Chem Soc. 2017;139(2):856–862. Copyright (2017) American Chemical Society.153
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production and aggregation of Aβ peptides and metal ion homeostasis and cause mitochondrial dysfunction in AD.158 

ROS can also contribute to the degeneration of dopamine cells in PD.159

For the treatment of AD, researchers synthesized small and positively charged triphenylphosphonium-conjugated 
CeO2 NPs (TPP-CeO2 NPs), which could enter mitochondria and destroy ROS to relieve oxidative stress in a 5XFAD 
transgenic AD mouse model.64 Concretely, the derived nanoparticles mitigated reactive gliosis and maintained mito-
chondrial morphology. The TPP orientation verified the feasibility of mitochondrial therapeutics against neuroinflamma-
tion. Another strategy aimed at the accumulation of Aβ is shown in Figure 7.65 Aβ antibody-conjugated magnetite/CeO2 

nanoparticle assemblies (MCNAs) with core/shell structures were synthesized to remove Aβ peptides from blood. When 
applying an external magnetic field, MCNAs isolated the captured Aβ peptides through magnetic force, while CeO2 NPs 
in MCNAs scavenged ROS overproduced by the immune response. Collectively, the assemblies reduced the levels of 
blood Aβ and brain Aβ in 5XFAD transgenic mice and prevented spatial working memory deficits.

Ling and Tian et al exploited a new approach aimed at the tau pathway to deal with AD, involving tau hyperpho-
sphorylation and aggregation of hyperphosphorylated tau.66 As Figure 8 shows, the nanocomposite CeNC/IONC/MSN 
was formed by modifying CeO2 and iron oxide nanocrystals on mesoporous silica NPs (MSN). Then, T807, which can 
bind tau protein, was immobilized on its surface; while methylene blue (MB), which can inhibit tau aggregation, was 
adsorbed into the pores of MSNs. CeO2 scavenged ROS and suppressed tau hyperphosphorylation, while MB inhibited 
hyperphosphorylated tau aggregation. Through the cooperation of components, the as-nanocomposite successfully 
protected neuronal survival and ameliorated learning and memory impairments developed in AD.

PD is characterized by the accumulation of misfolded α-synuclein (a prion-like protein) into Lewy bodies, which 
plays a central role in the pathogenesis of PD.160 A concept of proof that used nanozymes to fight against α-synuclein 
spreading was provided by Mao’s group.121 PtCu nanoalloys (NAs) were prepared and possessed three enzyme-like 
activities, including peroxidase-like, catalase-like and SOD-like activities. The application of PtCu NAs in vitro or 
in vivo significantly inhibited α-synuclein preformed fibril (PFF)-induced α-synuclein pathology, cell death, and 
neuron-to-neuron transmission by scavenging ROS. Moreover, the PtCu NAs strongly inhibited α-synuclein spreading 
in the PD brain. Zheng and Cai et al considered that inflammasome-mediated pyroptosis may be a therapeutic target 

Figure 6 TPP-CeO2 NPs acted as antioxidants for AD. (A) Formations of oxygen vacancies, cerium(III) and cerium(IV) species in CeO2 NPs. (B) Main roles of components 
on edaravone-carried and PEG/ANG-conjugated CeO2 NPs (E-A/P-CeO2). (C) Synthetic process for E-A/P-CeO2. (D) ANG-LRP endocytosis of E-A/P-CeO2. Reprinted 
with permission from Bao Q, Hu P, Xu Y et al. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. 
ACS Nano. 2018;12(7):6794–6805. Copyright (2018) American Chemical Society.62
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for PD and discovered PB NPs as a pyroptosis inhibitor.161 Due to their potent ROS-scavenging activity, PB NPs 
inhibited the activation of the nucleotide-binding domain and leucine-rich repeat family pyrin domain containing 3 
(NLRP3) inflammasome and caspase-1, reduced the cleavage of gasdermin D and the production of inflammatory 
factors, and effectively suppressed the pyroptosis of microglia in PD cell and mouse models. Although the study 
reveals a good effect of PB NPs on the treatment of PD, the deeper mechanism in vivo is currently unclear. The 
pharmacokinetics and long-term toxicity of PB NPs remain an issue of concern.

Treatment of Acute Liver/Kidney Injury
The researchers used Cu5.4O USNPs to treat acute kidney injury and acute liver injury, and verified that Cu5.4O USNPs 
functioned as antioxidants to eliminate ROS and induced remission of the diseases.20 In the meantime, the ultrafine size 
of the nanoparticles accelerated renal clearance and conferred high biocompatibility. The therapeutic mechanism 
involved in acute kidney injury was uncovered in a further study. GSH metabolism, the MAPK signaling pathway, 
and the TNF signaling pathway, which exacerbated renal injury, were inhibited by Cu5.4O USNPs. The nanoparticles also 
maintained the expression of antioxidant genes, inhibited excessive proinflammatory factors such as TNF-α and 
interleukin-1β (IL-1β), and promoted the expression of kidney-associated genes. The Cu5.4O USNPs were reused three 

Figure 7 Schematic illustration of MCNA synthesis and mechanism. Reprinted with permission from Kim D, Kwon HJ, Hyeon T. Magnetite/ceria nanoparticle assemblies for 
extracorporeal cleansing of amyloid-beta in Alzheimer’s disease. Adv Mater. 2019;31(19):e1807965. Copyright (2019) John Wiley and Sons.65
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times to decompose H2O2. The results showed that the nanomaterials could maintain almost the same catalytic activity as 
the original solution, indicating that they had good stability and recyclability.

Mo-based polyoxometalate (POM) nanoclusters were synthesized with potent ROS-scavenging activity owing to the dual 
oxidation states of Mo5+/Mo6+.162 Furthermore, POM nanoclusters acted as new antioxidants for ameliorating acute kidney 
injury in a murine model. By positron emission tomography (PET) imaging, radionuclide 89Zr-labeled POM nanoclusters 

Figure 8 CeNC/IONC/MSN-T807-MB and its tau-targeted synergistic treatment for AD. (A) Schematic illustration of the progressive fabrication of CeNC/IONC/MSN- 
T807-MB. (B) Treatment mechanism of the nanocomposite. Reprinted with permission from Chen Q, Du Y, Zhang K et al. Tau-targeted multifunctional nanocomposite for 
combinational therapy of Alzheimer’s disease. ACS Nano. 2018;12(2):1321–1338. Copyright (2018) American Chemical Society.66
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were observed to be more likely to accumulate in the injured kidneys due to their ultrasmall hydrodynamic diameter. The 
treatment effect demonstrated that POM improved the renal function of acute kidney injury mice with excellent safety.

The therapeutic mechanisms of PBNPs were probed in anthracycline-induced liver injury.46 PBNPs activated the 
Nrf2/ARE pathway to upregulate antioxidative genes, thus reducing oxidative stress in response to liver injury. They also 
attenuated inflammatory reactions by decreasing the expression levels of myeloperoxidase and F4/80 (a specific indicator 
for macrophages) in the liver.

Others
The main pathological features of depression, a serious mental disease, are oxidative stress and excessive ROS. Thus, 
Zheng and Zhang et al considered using CeO2 nanozyme as a novel drug to treat depression.67 To overcome the 
disadvantage of CeO2, such as its large size, bovine serum albumin (BSA) served as a space constraint to avoid 
nanoparticle aggregation. The as-designed CeO2@BSA nanoclusters were endowed with an ultrasmall size as small as 
2 nm, potent ROS scavenging activity and BBB penetration ability. When used in a depressive model induced by chronic 
restraint stress, CeO2@BSA decreased depression-like behaviors, relieved neuroinflammation and provided neuroprotec-
tion with few side effects.

Conclusion and Future Perspective
An imbalance of ROS leads to oxidative stress and is linked to various diseases, including diabetes, neurodegeneration, 
and aging.4 Nanozymes with intrinsic antioxidant ability are widely employed to treat ROS-involved diseases.

In this review, we mainly introduce considerable experimental studies that showed satisfactory performances of 
nanozymes in disease models such as inflammation, neurodegenerative diseases and stroke. In addition, we summarize 
the enzyme-mimicking traits of nanozymes and show the rational design of nanozymes to improve antioxidant enzyme- 
like activities. For example, shapes, surface areas, surface facets, particle morphologies, porous structures, pore sizes and 
volumes, metal doping, and combinations of different functional enzymes may lead to the different catalytic abilities of 
nanozymes. Although abundant efforts have been made on nanozymes in ROS-involved diseases, there are still short-
comings and deficiencies that need further improvement.

1. The low catalytic activity and poor substrate selectivity of nanozymes are still big problems, which will be a huge 
stumbling block for their practical application in the future. According to the above summary, doping, control of 
shape and morphology, forming complex nanozymes, single atom technology, etc., are effective measures to 
improve the activity of nanozymes. A biomimetic strategy that simulates the active sites of natural enzymes may 
help to enhance the efficiency of nanozymes.

2. It is well known that living organisms are complex systems. When nanozymes are used in vivo, their pharmaco-
kinetics, ie, the absorption, distribution, biochemical conversion and excretion of nanozymes in the body, need 
a detailed examination, and based on this information, the application prospects of nanozymes can be overall 
assessed. In addition, the lack of detailed evaluation of the biosafety and biocompatibility of nanozymes is another 
problem. Fears have been raised about the potential toxicity of nanozymes on biological systems. The problem in 
the usage of nanozymes in the central nervous system also includes BBB permeability. It is worth noting that the 
compatibility of nanozymes can be improved by the loading of natural proteins, which may be a feasible 
strategy.163,164

3. At present, the use of nanozymes for ROS-related diseases involves AD, PD, colitis, acute kidney injury and acute 
liver injury, which are serious and incurable; however, the treatment should expand to diseases that are not life 
threatening but also bring pain to patients, such as oral ulcers caused by radiation therapy and difficult-to-heal 
wounds.

With respect to the problems above, further refinement for high-performance, excellent biosafety, and detailed 
research in diverse animal models, nanozymes, which are easy to synthesize and low-cost, may be further developed 
and hold promise as a new therapeutic strategy for ROS-related diseases in clinics.
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