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Abstract: Bone defects that are congenital or the result of infection, malignancy, or trauma represent a challenge to the global 
healthcare system. To address this issue, multiple research groups have been developing novel cell sheet technology (CST)-based 
approaches to promote bone regeneration. These methods hold promise for use in regenerative medicine because they preserve cell- 
cell contacts, cell-extracellular matrix interactions, and the protein makeup of cell membranes. This review introduces the concept and 
preparation system of the cell sheet (CS), explores the application of CST in bone regeneration, highlights the current states of the 
bone regeneration via CST, and offers perspectives on the challenges and future research direction of translating current knowledge 
from the lab to the clinic. 
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Introduction
Bone defects that are congenital or that arise as a consequence of trauma, infection, or cancer have been shown to 
severely impair patient well-being, yet they are relatively common clinical entities. Approaches that can effectively 
regenerate or fix these problems are still major medical and economic challenges. Current regenerative strategies rely on 
the use of autografts,1 allografts,2 combinations of autografts and allografts,3,4 xenografts,5,6 and synthetic grafts7 to 
facilitate bone reconstruction, but each of these approaches is associated with specific advantages and limitations. Bone 
tissue engineering strategies have developed substantially over the last two decades, highlighting promising new avenues 
for regenerative research and the clinical translation of resultant findings.8,9 The majority of conventional tissue 
engineering techniques involve injecting cell suspensions or transplanting scaffolds that have been seeded with the 
relevant cells.10,11 However, these delivery strategies generally result in suboptimal cellular survival and limited 
engraftment, and the injection of cells alone fails to provide the requisite structural support,12 precluding efforts to 
appropriately regenerate bone tissue morphology and function. Optimal scaffold materials that are biodegradable, exhibit 
appropriate mechanical properties, and can effectively promote the adhesion, proliferation, and extracellular matrix 
(ECM) secretory activity of cells have yet to be developed despite extensive research efforts.13 Existing scaffold 
materials are associated with a few limitations, including poor biological activity, irregular degradation, weak mechanical 
strength, and immunogenic properties.14,15 Moreover, tissue engineering approaches that utilize trypsin to harvest cells 
can destroy cell membrane proteins and interfere with interactions among cells or between cells and the ECM, 
contributing to impaired adhesion and proliferative activity. As a result, cell-seeded scaffolds often exhibit poorly 
regulate cell-material interactions and high rates of cell death.16

Cell sheet technology (CST) approaches have been developed to overcome many of the abovementioned hurdles to tissue 
engineering, leading to growing research interest in CST applications. CST can preserve cell-cell junctions, the ECM, and key 
proteins, including fibronectin, leukemia inhibitory factor receptor (LIFR), integrin-5, stromal cell-derived factor 1 (SDF-1), 
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myosin heavy chain (MHC), vascular endothelial growth factor (VEGF), and β-actin by harvesting cells without the use of trypsin 
or other proteolytic enzymes.17,18 MHC and β-actin are cytoplasmic, although integrin-α5 and LIFR are membrane-bound. Both 
fibronectin and integrin α5 play roles in shaping cellular adhesion, while LIFR and MHC serve as differentiation indices, VEGF 
can promote angiogenic activity, and SDF-1 can recruit a range of progenitor and stem cells.19 Owing to these properties, these 
proteins are of key clinical importance in cell sheets. Forming cell-cell contacts and secreting ECM prepares cell sheets, they are 
not subject to scaffold material-related limitations, avoiding the potential for implantation-related inflammatory immune reac-
tions, tissue collapse as a consequence of rapid degradation, or impaired tissue development in the context of slow scaffold 
degradation.20–23 Many studies to date have explored the value of cell sheets in the context of bone regeneration, demonstrating 
that these sheets can be used in a scaffold-free manner and that mesenchymal stem cell (MSC) differentiation into bone cells 
occurs more effectively within the confines of a cell sheet as compared to under monolayer growth conditions.24 To extend their 
versatility, cell sheets can also be combined with traditional scaffold materials more effectively than combining scaffold materials 
with free cell suspensions owing to the ability of cell sheets to preserve the ECM and cell-cell interactions.25

Herein, several strategies for preparing cell sheets (CS) and their relative advantages and disadvantages are addressed 
below. Furthermore, recent advancements in CST-based bone regeneration and the selection of cell sources for use in this 
therapeutic context were explored. Moreover, the key limitations of CST were reviewed. These are important research 
directions for the future.

Preparation of Cell Sheets
Several cell sheet preparation strategies have been pioneered to date, including magnetic, mechanical, pH-responsive, 
electro-responsive, photo-responsive, and temperature-responsive systems. A comprehensive description of the advan-
tages and disadvantages of these approaches is provided in Table 1.

Temperature-Responsive Systems
The initial method of preparing cell sheets was suggested using temperature-responsive systems, which is still considered 
an effective technique in this field. Through electron-beam irradiation, N-Isopropylacrylamide (NIPAAm) monomers can 
undergo polymerization and covalent grafting onto tissue culture dish surfaces. Cells can then attach to hydrophobic 
regions coated by dehydrated poly-NIPAAm (PNIPAAm) when cultured at 37°C. When the temperature of the culture 
plate is then decreased to 20°C, hydration of the grafted PNIPAAm results in a change in surface wettability and a shift 

Table 1 The Advantages and Disadvantages of Different Cell Sheet Preparation Systems

Preparation Systems Advantages Disadvantages References

Temperature-responsive 
systems

Intact harvesting, homogeneous thickness, 
good initial adhesion.

High cost, decrease the viability of certain 
sensitive cell types.

[17,34,46]

Electro-responsive systems Construction of monolayered and 
multilayered CSs, obtaining intact CSs.

Requires specific culture substrates and 
devices, deleterious chemicals residues, 

cell damage.

[13,47,52]

Photo-responsive systems Construction of multilayer versatile CSs, 

rapidly detach CSs.

Prolonging irradiation cause cell 

membrane damage and cell killing

[53,68,69,72,84]

Magnetic systems Construction of multilayer multifunctional 

CSs, a simple, cost-effective and time- 

saving method.

Deleterious chemicals residues, CSs do 

not detach in the form of cellular 

monolayers.

[85,86]

pH-responsive systems Economical without complicated 

techniques, simple operation.

Difficulty in obtaining intact CS, cell 

damage.

[91,94]

Mechanical systems Economical without specific culture 

substrate or techniques

Difficulty detachment, damage of cell 

membrane proteins.

[95,98]

Abbreviation: CSs, cell sheets.

https://doi.org/10.2147/IJN.S382115                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2022:17 6492

You et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


from a hydrophobic to a hydrophilic local microenvironment such that cells detach from the culture surface (Figure 1).26 

Several improved versions of this basic temperature-responsive system have been developed or proposed to date.
Various biomolecules have been leveraged to accelerate cell sheet formation through the enhancement of proliferative and/or 

adhesive activity. For example, the synthetic Arg-Asp-Ser (RGDS) peptide has been immobilized on P(NIPAAm-co-CIPAAm) 
surfaces to promote enhanced cellular adhesion, thus expediting cell sheet formation.27 More recently, Other research groups have 
used a heparin-immobilized P(IPAAm-co-CIPAAm) surface to facilitate the binding of proteins such as fibroblast growth factor 
and heparin-binding epidermal growth factor-like growth factor. Fibroblast growth factor28 or epidermal growth factor29 binding 
to heparin-immobilized P(NIPAAm-co-CIPAAm) surfaces is sufficient to promote more rapid cellular growth while maintaining 
cellular activity, thus reducing the overall time needed to generate a confluent cell sheet. Insulin immobilization on these 
temperature-responsive culture surfaces can also induce rapid cell proliferation, hence accelerating the process.30 The average 
harvest period of a single CS, such as those formed utilizing human MSCs, human aortic smooth muscle cells, or human dermal 
fibroblasts, is known to be 7 days.31,32 According to a recently reported study, the application of bulk PNIPAAm substrate 
nanotopography substantially reduces the time required for cell sheet harvesting to just two days, while also enabling the sheet’s 
separation from the culture surface.33

To facilitate more rapid cell sheet detachment from culture surfaces, PNIPAAm has been grafted onto a porous 
membrane (PM) to yield the PNIPAAm-PM substrate, which can decrease the detachment time for prepared cell sheets 
from 75 min to 30 min relative to unmodified PNIPAAm following a temperature decrease to 20°C.34 To further decrease 
this cell sheet detachment time, poly(ethylene glycol) (PEG) was co-grafted with PNIPAAm onto the PM, leading to the 

Figure 1 Schematic illustration of cell sheet formation and harvesting.
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development of the PNIPAAm(PEG)-PM substrate, which brought the time to 19 minutes after cooling to 20 °C35 Patel 
et al36 additionally developed thermo-responsive films consisting of a combination of PNIPAAm and 3-aminopropyl-
triethoxysilane (APTES) that was then deposited onto the surface of glass slides via a spin-coating approach, providing 
anchoring sites for cells to attach and proliferate. Modulation of the PNIPAAm to APTES ratio enabled these researchers 
to tune the cell sheet detachment time within the range of 2.5–40 min. More recently, some groups have leveraged 
thermosensitive Tetronic ®-based hydrogels to detach multiple cell sheets in response to size expansion induced by 
temperature decreases below 37°C, requiring over 15 min at 25°C but under 10 min at 4°C.37,38

It has also been investigated to manipulate cell sheets in a two-dimensional (2D) format using temperature-sensitive culture 
plates, with supporting membranes used for cell sheet harvesting often consisting of porous poly (ethylene terephthalate),39 and 
hydrophilically-modified poly (vinylidene difluoride).40 To facilitate 3D tissue development, plunger-based devices have been 
designed to aid in the process of cell sheet manipulation.41 This plunger allows for repeated cell sheet layering to generate thicker 
3D myoblastic or cardiac tissues,42 hierarchically aligned microstructures,43 and capillary-like networks in 3D tissues.41 

Commercial temperature-responsive culture dishes have been employed for cell sheet construction in the context of bone 
regeneration,44,45 but these systems are subject to two key limitations. Firstly, the required temperature drop can reduce the 
viability of sensitive cell types.34,46 Secondly, while commercial UpCell®-precoated temperature-responsive culture dishes are 
available, they are relatively expensive, limiting their more widespread use.17

Electro-Responsive Systems
To immobilize ligands on a gold surface, Yeo et al47 created an electro-responsive system based on electroactive self-assembled 
monolayers (SAMs). In this setup, the electroactive monolayer-tethered molecules are released upon application of an electrical 
potential to a gold film, resulting in the oxidation of the film. To create an electro-responsive platform, Inaba et al48 used a gold 
surface modified with a SAM comprised of alkanethiol and RGD peptides. Within 10 minutes of applying a −1.0 V electrical 
potential to this surface, the cell sheets that had grown there detached. To decrease the likelihood of harmful chemicals used in the 
preparation of this system remaining present within prepared cell sheets, which could potentially induce an inflammatory response 
in vivo, the gold surface was modified with an oligopeptide containing a central RGD adhesion peptide surrounded by terminal 
cysteine residues. Cell sheets were detached by a negative electrical potential.49 To facilitate cell sheet detachment during 
electrochemical polarization,50 polyelectrolyte-modified surfaces have also been used in the context of electro-responsive cell 
sheet preparation,51 Polyelectrolytes adsorb onto oppositely charged surfaces via electrostatic interactions. However, these 
polyelectrolyte-modified surfaces can introduce local alterations in pH attributable to polyelectrolyte electrochemical dissolution, 
and these may induce DNA damage or apoptotic cell death.52 A recently reported study has demonstrated the design of an 
electrochemically switchable approach to micropatterned heterotypic cell sheet preparation utilizing a system consisting of 
a combination of photolithographic processing and local polyelectrolyte electrochemical dissolution.51 To date, most studies have 
explored the use of electro-responsive systems to prepare cell sheets in the context of vascularized tissue generation, whereas no 
reports have specifically leveraged these techniques in the context of bone regeneration.54 The particular platforms and substrates 
necessary to design these electro-responsive systems may also represent a barrier to their more widespread application.13

Photo-Responsive Systems
Photo-responsive CST preparation strategies have recently emerged as a promising alternative to other techniques given 
that they do not leave any residues within the resultant cell sheets and they maintain the integrity of the ECM and 
associated cellular interactions,55,56 preserving cell viability in a non-invasive manner. Importantly, illumination is easily 
controlled, making this approach to cell sheet harvesting highly efficient and convenient.57 In 2013, researchers 
discovered that UV radiation might alter the wettability of titanium dioxide (TiO2), allowing for the detachment of 
cell sheets.58 Several recent studies have demonstrated that a range of surface materials and wavelengths of light can be 
combined to similarly achieve a robust photo-responsive system.

UV (365–366 nm)-Induced CST
The first study on using UV light (365 nm)58 to trigger CS detachment used quartz coated with TiO2 nanodot-coated 
quartz serving as a substrate to grow cells for 5 days. In response to subsequent UV (365 nm) irradiation for 20 min, an 
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intact cell sheet that was viable, functional, and capable of reattaching to other surfaces was produced. Importantly, the 
cells in this sheet were also free of substantial oxidative DNA damage. More recently, many TiO2 film modification 
approaches have been developed. For example, Cheng et al59 revealed that cells were able to spontaneously detach from 
nanostructured anatase TiO2 film culture surfaces when exposed to UV (365 nm) irradiation, with such detachment being 
more rapid than that observed from dense films or nanodot surfaces, suggesting that film nanostructural characteristics 
are an important consideration in the preparation of cell sheets. Other inorganic compounds have also been incorporated 
into TiO2 films to improve cell sheet harvesting. In some studies, carbon quantum dots (CQDs) were added to TiO2 films, 
resulting in faster CS detachment in response to UV (365 nm) irradiation than CQD-free films.60 Other elements 
incorporated into these TiO2 films include SiO2, Zn, and Gr, resulting in the spontaneous and rapid detachment of 
functionally intact cell sheets.60–62 Moreover, TiO2 film surfaces decorated using organic materials have been utilized, as 
in the case of two studies demonstrating that TiO2 films with surface-immobilized RGD peptides can improve the 
adhesion of cells while allowing for rapid cell sheet detachment within 30 min upon UV (365 nm) irradiation.63,64 

A 2017 study explored the use of recombinant human laminin-521 to modify TiO2 films and found that an intact cell 
sheet characterized by improved proliferation and adhesion could be attained using this strategy. Notably, the result cell 
sheet could readily reattach to other surfaces, making it well-suited to subsequent transplantation.65 Recently, researchers 
have leveraged a polydopamine/TiO2 film to construct a cell sheet that could be readily harvested and remained 
functionally intact.66,67 Researchers have developed light-responsive multilayer cell sheets using a TiO2 coating and 
photo-cross-linkable gelatin methacrylate. The micropatterning of this film was achieved via photomask-assisted UV254 
illumination (Figure 2A), while cell sheet harvesting was achieved via UV (365 nm) irradiation (Figure 2B). This 
strategy was demonstrated to be effective as a means of stacking cell sheets in a multilayered manner.53 This new CST 
approach has facilitated the design of other versatile cell sheets as in the case of a pre-vascularized cell sheet amenable to 
subsequent transfer.68 In a recent report, One group of scientists recently published a paper detailing their efforts to create 
a silicon surface that responds to both light and temperature by employing mixed polymer brushes.69 The combination of 
light and temperature stimuli enhanced cell sheet collecting effectiveness when cells were cultivated on this surface and 
released in response to temperature decreases and UV (366 nm) irradiation. This strategy highlights a promising range of 
approaches that can be used to facilitate cell sheet collection in response to various stimuli.

Visible Light (400–800) Induced CST
Wang et al55 originally documented the fabrication of cell sheets utilizing a visible light-responsive technique, in which 
the sheets were detached from p/n junction-containing silicon wafer substrates (Si(p/n)) in response to illumination with 
visible light. Another study has reported a potent ROS-responsive cell sheet preparation strategy using 
a haematoporphyrin-incorporated polyketone (Hp-Pk) film that generates ROS in response to green light (510 nm).70 

This technique allows for the efficient spatiotemporal regulation of cellular detachment.71 In more recent studies, 
researchers have achieved success in preparing a three-layered cell sheet via this approach that was subsequently used 
to repair wound defects in nude mice (Figure 2C).85 While this strategy can effectively release cell sheets for downstream 
utilization, the high levels of ROS that are generated have the potential to harm cells and damage DNA, inducing 
apoptotic cell death as the duration or intensity of exposure is increased.71

NIR Light (808 nm)-Induced CST
Na et al99 constructed cell sheets using a near-infrared (NIR) light-based approach that is promising owing to the ability 
of NIR light to penetrate tissues while remaining safer than visible or ultraviolet light at a given intensity level 
(Figure 2D). These researchers were able to separate cell sheets in 5 minutes owing to the poly(3,4-ethylenedioxythio-
phene) (PEDOT) substrate’s strong photothermal efficiency in response to NIR light diffraction through a micropatterned 
optical lens. More recently, a PEDOT substrate prepared with a thickness gradient via electrodeposition was utilized to 
facilitate cell sheet preparation. As the temperature on the thicker side of this substrate rose more rapidly in response to 
uniform NIR irradiation, collagen dissociation occurred more rapidly such that cell sheets detached in a controlled 
manner along the thickness gradient72 (Figure 2E).
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Mechanisms of Light-Induced CST
The formation and separation of light-induced CS have related to the following factors:1) Surface wettability changes 
under light illumination. There is evidence that some materials (such as organic material substrates and TiO2) change 
their hydrophobic to hydrophilic properties when exposed to light.73,74 Hydrophilic surfaces are generated when oxygen 
vacancies are created by UV irradiation, changing the Ti4+ sites to Ti3+ sites that interact with water molecules in the 
surrounding solution or air.75 Once the oxygen vacancies are filled by water, terminal hydroxyl groups (TiOHT) are 
generated, which can react with the amino groups (-NH3+) of surface-bound proteins to cause a change in the shape of the 
proteins.76 Once the CS has detached, the release of external sticky proteins may be monitored. Second, the surface 

Figure 2 Schematic illustration of light-induced cell sheet (CS) preparation and harvest. (A) Ultraviolet 254 (UV254)-induced cell sheet patterning on titanium oxide (TiO2) 

nanodots film (TNF). (B) UV365-induced anisotropic cell sheet (ACS) detachment on TNF. (C) The procedure for reactive oxygen species (ROS) -induced CS transfer from 
Hp-PK film to fibrin gel, and then the stacking process under green light. (D) A schematic illustration for the harvest of multiple CSs by near-infrared (NIR) light. (E) 
A schematic illustration for the precisely directed CS detachment from the gradient photothermal surface. 
Notes: Reproduced from Liu C, Zhou Y, Sun M, et al. Light-induced cell alignment and harvest for anisotropic cell sheet technology. ACS Appl Mater Interfaces. 2017;9 
(42):36513–36524. Copyright 2017, American Chemistry Society. 67 Reproduced from Koo MA, Hee Hong S, Hee Lee M, et al. Effective stacking and transplantation of stem 
cell sheets using exogenous ROS-producing film for accelerated wound healing. Acta Biomater. 2019;95:418–426. Copyright 2019, with permission from Elsevier.72 

Reproduced from Na JH, Seok J, Han M, Lim H, Kim HO, Kim E. Harvesting of living cell sheets by the dynamic generation of diffractive photothermal pattern on 
PEDOT. Adv Funct Mater. 2017;27:10. Copyright 2017, John Wiley and Sons.73
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accumulates electrons as a result of exposure to light. Cell adhesion is enhanced on positively charged surfaces because 
the cell membrane is negatively charged. TiO2 is excited by UV light to generate electron-hole (e-/h+) pairs, which are 
then efficiently separated and transferred to create a surface with varying potentials.60 The negative potential of the film 
surface may be augmented by the buildup of electrons thereon. The CSs detached the film surfaces because of the light- 
triggered, negative charge.77 Surface charge is regulated by surface voltage and potential78 and it has the potential to 
change the conformation of sticky proteins79 and their release. Protein conformational changes (from -helix to -sheet 
transition) have been linked to a negative charge and reactive oxygen species (ROS) in UV- and visible-light-induced CS 
detachment, leading to protein release and CS detachment.80 3) it might cause a structural shift in collagens. Adsorbed 
collagen molecules are heated locally as the photothermal effects heat the PEDOT surface rather than the cell medium. 
As the temperature rises, collagen loses its water content, and the triple helices unfurl into a polypeptide chain in 
a random-coil form. As a result of this structural modification, collagens disintegrate and dissociate into the medium.81 It 
follows that the CSs and their intermediates break apart. Specifically, the additive effects of surface characteristics82 can 
be used to control cell adhesion and detachment. When light is introduced, each of the aforementioned processes works 
together and happens simultaneously. To put it simply, CSs will detach from surfaces on their own under these 
conditions.

Given that light-mediated cell sheet harvesting is a relatively recent technique, it has primarily been utilized in the 
context of cutaneous wound healing and osseointegration to date.70,83 While these experiments have yielded promising 
outcomes, further work is necessary to optimize this technique given that prolonged NIR irradiation can adversely impact 
the viability and activity of cells within the resultant cell sheet,72 with ROS generated in the context of resultant cell sheet 
detachment having the potential to damage the cell membrane.84 Clear standards regarding the biosafety of light in these 
photo-responsive systems are currently lacking.

Magnetic Systems
Ito et al87 were the first to discuss magnetic techniques for the fabrication of cell sheets. The magnetic attraction was used to 
construct multilayered MCL-labeled cell sheets in an ultralow-attachment plate after cells took up positively charged 
magnetite cationic liposomes (MCLs). When the magnetic field was removed, these cell sheets were readily harvested 
using a magnet. More recently, researchers proposed the utilization of RGD peptide-conjugated MCLs (RGD-MCLs) to 
facilitate magnet-based cell sheet preparation, with RGD-MCLs facilitating robust cellular adhesion while retaining the ability 
for cell sheets to be harvested when the magnetic field was removed.88 Fe3O4 magnetic nanoparticles (MNPs) coated with 
nanoscale graphene oxide (nGO@Fe3O4) have also been proposed for use in the context of cell sheet generation, with cells 
that take up these particles being highly amenable to multilayered cell sheet preparation in a system in which the thickness of 
the cell sheet could be regulated via repeated cell addition.89 Several cell sheet types have been reportedly prepared using 
magnet-based approaches, including sheets consisting of MSCs, hepatocytes, endothelial cells, and cardiomyocytes86,87,90 

(Figure 3). While magnetic nanoparticles have shown great promise as an efficient, inexpensive, and straightforward approach 
to cell sheet preparation, they do not allow for the harvesting of unmodified cell sheets. In addition, the resultant cell sheets do 
not detach in the form of cellular monolayers, instead forming cellular aggregate clumps.71,86

pH-Responsive Systems
Guillaume-Gentil et al91 suggested a pH-responsive culturing technique for the manufacture of cell sheets. Layer-by- 
layer deposition of cationic poly (allylamine hydrochloride) and anionic poly (styrene sulfonate) onto conductive 
electrodes made of indium tin oxide was used in this method, and cells were then seeded onto the resulting surface. 
When the pH was decreased to 4.0, an intact cell sheet monolayer could readily be obtained. While this technique was 
effective as a means of facilitating cell sheet harvesting, it induced unavoidable cellular damage owing to the pH- 
sensitive nature of cells.92 Separation of cells in response to pH shifts was facilitated by Chen et al93 using a novel 
chitosan-based method. In this case, chitosan was used for cell culture. Cell adhesion to the chitosan substrate was 
facilitated by the release of fibronectin from these cells, which was adsorbed on the substrate when the pH of the culture 
fluid was maintained at 7.2. However, an increase in the culture media pH to 7.65 resulted in chitosan surface 
deprotonation, yielding this surface a positive charge that leads to fibronectin desorption and cellular detachment.94 
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This strategy, however, has not yet been used to successfully promote complete cell sheet detachment. These pH- 
responsive systems have only been evaluated in a handful of studies to date, primarily owing to the limited pH range 
(6.8–7.4) required for normal cellular function.

Mechanical Systems
Mechanical systems offer a means of preparing cell sheets without the need for particular culture substrates or 
techniques, but these systems can require difficult-to-implement manipulation strategies. There have been relatively 
few studies specifically exploring simple mechanical cell sheet preparation techniques, yet these techniques are often 
used in the context of CST applications. At the most basic level, cells grown in an appropriate cell sheet induction 
medium for days or weeks can be detached using a cell scraper and forceps following the formation of a viable cell 
sheet.95 In one report, Imashiro et al17 utilized ultrasonic vibration to detach cell sheets from standard cell culture vessels 
without adversely impacting cellular viability (Figure 4). Alternatively, some research groups have utilized cell sheet 
induction medium containing gelatin to produce cell sheets that were more proliferative and associated with a robust 
ECM, yielding stronger, thicker sheets that could be more easily collected.96 To date, cell sheets prepared using this 
strategy have frequently been employed in the context of bone and cartilage regeneration.97,98,100

To improve cell sheet maneuverability when utilizing a mechanical approach, amniotic membranes (AMs), which consist of 
a thin tissue layer that covers the outermost placental surface, can be used as a cell culture substrate. Given that AMs are often 
discarded after delivery, there are no major ethical concerns regarding their use, and they are easily accessible. Importantly, AMs 
exhibit antifibrotic, antiangiogenic, and antimicrobial properties together with acceptable mechanical properties. In addition, 

Figure 3 Schematic illustration of the fabricated 3D vascularized heterotypic cell sheet by magnetic responsive system. MSCs, mesenchymal stem cells. MNPs, magnetite 
nanoparticles. HUVECs, human umbilical vein endothelial cells. 
Notes: Reproduced from Silva AS, Santos LF, Mendes MC, et al. Multi-layer pre-vascularized magnetic cell sheets for bone regeneration. Biomaterials. 2020;231:119664. 
Copyright 2020, with permission from Elsevier.89
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AMs are largely not immunogenic and suppress pain and inflammation, making them well-suited to use as a tissue culture 
scaffold.101–103 Nam et al104 seeded canine corneal epithelial cells on canine AMs, leading to successful corneal epithelial sheet 
preparation. More recently, human periodontal ligament-derived cells (PDLCs) sheets and human dental pulp stem cells (DPSCs) 
sheets have been generated on AM surfaced by different research teams.105,106 Lindenmair et al107 successfully achieved intact 
human AM (hAM)-mediated osteodifferentiation in vitro and patented their approach.108 Mohr et al109 combined chorionic 
membrane-derived cells and hAM to improve the osteogenic differentiation of these cells, while Starecki et al110 combined 
autologous bone and AMs to successfully repair critical femoral bone defects in rats. Takizawa et al111 subcutaneously implanted 
AM-associated DPSC sheets into nude mice’s maxillary bone defect sites, and within 4 weeks, they observed mineralization and 
bone defect regeneration. Importantly, AM-cell sheet composites have been explored in clinical contexts by Amemiya et al,112 

who cultured autologous oral mucosal epithelial cell sheets on AM substrate surfaces prior to use for the intraoral repair of 
mucosal defects in 5 patients. Following transplantation, these patients did not exhibit any signs of rejection, bleeding, infection, 
or sheet detachment, and new oral mucous membrane tissue ultimately developed at the treated site.

The Application of CST to Promote Bone Regeneration
The Use of Cell Sheets Alone
The use of CST to hasten bone healing, alleviate chronic pain and infection, and lessen the risk of immunologic 
responses associated with fresh frozen allogeneic bone transplants has gained popularity in recent years (Table 2).23 

Rapid advances in the CST field have led to the application of the techniques discussed above in the context of bone 

Figure 4 Cell sheet (CS)-detaching process by ultrasonic vibration. (A) Schematic illustration of CS detachment. (B) The CS was detached from the bottom of the dish by 
ultrasonic vibration. (C) CS-detaching system in an incubator. 
Notes: Adapted from Imashiro C, Hirano M, Morikura T, et al. Detachment of cell sheets from clinically ubiquitous cell culture vessels by ultrasonic vibration. Sci Rep. 
2020;10(1):9468. Copyright © 2020, The Author(s), Creative Commons CC BY license.17
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Table 2 The Application of Cell Sheet Technology in Bone Regeneration in vivo

Author Cell Type Preparation 
System

Scaffold/ 
Growth 
Factor

In vivo Function Ref

Akahane Rat BMSCs (osteogenic 

induction)

Mechanical None Rats (subcutaneous) Osteogenesis [113]

Yan Rat DPCs (osteogenic 

induction)

Mechanical None Nude mice (subrenal 

capsule)

Osteogenesis [114]

Ueyama Rat BMSCs (osteogenic 
induction)

Mechanical None Rats (mandibular symphysis) Osteogenesis [115]

Nakamura Rat BMSCs (osteogenic 
induction)

Mechanical None Rats (femoral fracture) Osteogenesis [116]

Shimizu Rat BMSCs (osteogenic 
induction)

Mechanical None Rats (femoral fracture) Osteogenesis [117]

Yoon Beagle dog ADMSCs 
(osteogenic induction)

Mechanical FT-GCS Beagle dogs (radius bone 
fracture)

Osteogenesis [118]

Ueha Rat BMSCs (osteogenic 
induction)

Mechanical β-TCP Rats (subcutaneous/femoral 
defects)

Osteogenesis [123]

Zhang Human PDLSCs Mechanical AuNPs/BCP Nude mice (subcutaneous) Osteogenesis [124]

Xie Human ESMSCs Mechanical PSeD Rats (calvarial defects) Osteogenesis [45]

Shan Canine BMSCs (osteogenic 

induction)

Temperature- 

responsive

PLGA Canines (mandibular defects) Osteogenesis [125]

Zhao Human PDLSCs Mechanical PCL-SIM Athymic mice 

(subcutaneous)

Osteogenesis [126]

Liu Rat BMSCs (osteogenic 

induction)

Mechanical CBB Rats (skull defects) Osteogenesis [127]

Shang Human BMSCs (osteogenic 

induction)

Temperature- 

responsive

Allografts Mice (femoral defects) Osteogenesis [128]

Yu MC3T3-E1 Mechanical Collagen 

membrane

Mice (calvarial bone defects) Osteogenesis [129]

Qi Rat BMSCs Mechanical CS/BMP-2 Rats (femoral defects) Osteogenesis [130]

Dang Human BMSCs Mechanical TGF-β1/BMP-2 Rats (calvarial bone defects) Osteogenesis [131]

Chen Rat BMSCs Mechanical SDF-1 Rats (tibial defects) Osteogenesis [132]

Hu Rat ADSCs Mechanical CGF Rats (skull defects) Osteogenesis [133]

Panduwawala Human PDLSCs and 
HUVECs

Temperature- 
responsive

Human tooth 
roots

Nude mice (subcutaneous) Osteogenesis and 
angiogenesis

[135]

Silva Human ADSCs and 
HUVECs

Magnetic- 
responsive

None A chick embryo model Osteogenesis and 
angiogenesis

[86]

Xu Rat BMSCs Mechanical None Rats (calvarial bone defects) Osteogenesis and 

angiogenesis

[136]

(Continued)
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tissue regeneration (Figure 5). For example, in 2008 Akahane et al113 subcutaneously transplanted osteogenic cell sheets 
in rats, and found that after 6 weeks these transplanted sheets exhibited evidence of new bone formation characterized by 
the presence of osteocytes, a mineralized matrix, and an osteoblast lining. In a separate report, researchers implanted 
layered cell sheets prepared from rat dental pulp (DP) cells into the subrenal capsule of nude mice, and observed new 
bone development at 8 weeks post-implantation.114 Ueyama et al115 further performed the transplantation of osteogenic 
bone marrow stem cell (BMSC) sheets into maxillofacial bone defects in rats, thereby promoting extensive new bone 
development in the implanted region at 8 weeks post-surgery. A number of studies have also highlighted the beneficial 
effects of osteogenic cell sheet application in the context of delayed bone union or nonunion, which is a complex process 
that can be shaped by a range of mechanical and/or biological factors.116–118

The Use of Cell Sheets in Combination with Scaffolds
While cell sheet formation is primarily dependent upon interactions among cells and a robust ECM, these sheets lack any 
intrinsic mechanical strength, limiting their utility in the context of bone defect repair. However, combining these cell sheets 
with scaffolds can provide the requisite spatial and mechanical strength to make such repair strategies significantly more 
feasible. In addition, a novel osteoinductive material is also necessary to enhance bone regenerative outcomes.119–122 For 
example, Akahane et al113 subcutaneously implanted rats with hydroxyapatite (HA) scaffolds wrapped in osteogenic cell 
sheets, with subsequent histological analyses revealing that new bone growth was detectable at 4 weeks post-implantation 
within HA pores. In their study, Ueha et al123 utilized BMSC-containing beta-tricalcium phosphate (β-TCP) scaffolds 
wrapped in osteogenic BMSC sheets that were subcutaneously implanted, thereby promoting new bone formation within 
femoral bone defects. Moreover, Zhang et al124 leveraged biphasic tricalcium phosphate (BCP) ceramics wrapped with gold 
nanoparticle (AuNP)-treated PDLSC sheets to prepare a composite material that was then subcutaneously implanted into 
tissue pockets in nude mice, with the incorporated AuNPs significantly expediting ectopic bone growth in this model system 
at 8 weeks post-implantation.

Table 2 (Continued). 

Author Cell Type Preparation 
System

Scaffold/ 
Growth 
Factor

In vivo Function Ref

Zhang Rabbit ADSCs Mechanical CHA Nude mice (subcutaneous) Osteogenesis and 

angiogenesis

[137]

Ma Rabbit BMSCs Mechanical β-TCP Rabbits (muscular pockets) Osteogenesis and 

angiogenesis

[138]

Kang Human MSCs and HUVECs Mechanical β-TCP Nude mice (subcutaneous) Osteogenesis and 

angiogenesis

[95]

Zhang Rat BMSCs Mechanical β-TCP Rats (calvarial bone defects) Osteogenesis and 

angiogenesis

[139]

Jin Rat transfected BMSCs Mechanical BMP-2 Rats (calvarial bone defects) Osteogenesis [144]

Wang Rabbit transfected BMSCs Mechanical CTGF/HBD3 Nude mice (subcutaneous) Osteogenesis [154]

Kim Canine ADSCs Mechanical BMP-7 Canine (radial bone defects) Osteogenesis [155]

Su Rabbit transfected BMSCs Mechanical BMP-1 Rabbits (mandibular 

distraction osteogenesis)

Osteogenesis [156]

Abbreviations: BMSCs, bone marrow mesenchymal stem cells; DPCs, dental pulp cells; ADMSCs; adipose-derived mesenchymal stem cells; FT-GCS; frozen-thawed gelatin- 
induced osteogenic cell sheet; β-TCP, beta-tricalcium phosphate; PDLSCs, periodontal ligament stem cells; AuNPs, gold nanoparticles; BCP, biphasic tricalcium phosphate; 
ESMSCs, ethmoid sinus mucosa derived mesenchymal stem cells; PSeD, poly (sebacoyl diglyceride); PLGA, polylactic-co-glycolic acid; PCL, polycaprolactone; SIM, 
simvastatin; CBB, calcined bovine bone; CS, calcium sulfate; BMP-2, bone morphogenetic protein-2; TGF-β1, transforming growth factor-beta 1, SDF-1, stromal cell- 
derived factor-1; CGF, concentrated growth factor; HUVECs, human umbilical vein endothelial cells; CHA, coral hydroxyapatite; CTGF, connective tissue growth factor; 
HBD3, human β defensin.
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As an alternative to ceramic scaffolds, polymeric scaffolds combined with cell sheets have been explored as tools to 
promote bone regeneration. Xie et al45 for example, generated composites consisting of BMCs contained within porous 
poly(sebacoyl diglyceride) (PSeD) that were wrapped using human ethmoid sinus mucosal-derived MSC (hESMSC) 
sheets, and they found that these composites effectively promoted new bone growth at 8 weeks post-implantation into rat 
calvarial defects (8 mm). Poly lactic-co-glycolic acid (PLGA) scaffolds wrapped using osteogenic cell sheets have also 
been utilized to promote new bone growth in the context of canine mandibular bone defects,125 while Zhao et al126 

seeded PDLSCs on a polycaprolactone (PCL)-simvastatin (SIM) membrane scaffold, with the resultant cell sheet- 
scaffold construct being subcutaneously implanted into nude athymic mice, resulting in enhanced ectopic mineralization 
at 8 weeks post-implantation. Calcined bovine bones and allografts are only two examples of natural bone-derived 
scaffolds that have been utilized to promote faster bone regeneration.127,128 In their recent study, Yu et al129 transplanted 
angle-ply collagen membrane-supported cell sheets into murine calvarial defects, and found that these sheets were 
associated with more bone formation than that observed in other treatment groups at both 4 and 8 weeks post- 
implantation.

Combined Use of Growth Factors and Cell Sheets
Growth factors are important mediators of bone regeneration and have been combined with cell sheets to improve 
regenerative outcomes in several recent reports. For example, Qi et al130 observed significant increases in bone formation 
at 4 and 8 weeks post-surgery in a rabbit ulnar segmental defect model system when animals were implanted with 
recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded calcium sulfate wrapped in BMSC sheets as 
compared to the outcomes observed for rabbits treated with cell sheets or rhBMP-2/CS alone, consistent with the ability 
of the utilized bioactive microparticles to facilitate sustained BMP-2 delivery. In another study, Dang et al131 detected 
improved bone defect healing in a rat calvarial bone defect model when human BMSC sheets were combined with such 
microparticles. Moreover, Chen et al132 found that the transplantation of MSC sheets in combination with local stromal 
cell-derived factor-1 (SDF-1) injection was associated with accelerated bone tissue healing. Similarly, Hu et al133 

Figure 5 The types of constructions and in vivo models used in bone regeneration.
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generated a complex formed from concentrated growth factor (CGF) and adipose-derived stem cell (ADSC) sheets, with 
the resultant complex being used to repair rat skull defects, effectively promoting new bone formation.

The Importance of Vascularized Cell Sheets in Bone Regeneration Applications
Pre-vascularization is critical to ensuring that engineered bone tissue remains viable and successfully integrates with host 
bone tissue following implantation. Osteogenic differentiated pre-vascularized MSC sheets preserve their immunomo-
dulatory and microvascular characteristics upon implantation.134 In some recent studies, research teams have sought to 
enhance vascularization in tissue-engineered bone. For example, Panduwawala et al135 employed cell sheets consisting of 
human PDLC and human umbilical vein endothelial cells (HUVEC) sheets wrapped within human tooth roots and 
subcutaneously implanted within immunodeficient mice, leading to robust bone and vascular lumen development at 8 
weeks post-implantation. In a separate report, multilayered cell sheets consisting of human ADSC and HUVEC sheets 
were implanted in a chick embryo model system, revealing that human vascular structures were preserved and human 
cells were capable of migrating and integrating with the chick vasculature within 3 weeks post-implantation.86 Xu et al136 

seeded an undifferentiated BMSC cell sheet with BMSC-derived endothelial cells (ECs) to create a pre-vascularized cell 
sheet; they then implanted this sheet and an osteogenic BMSC sheet into rat calvarial defects, where the pre-vascularized 
group showed superior bone tissue formation and a greater number of functional perfused blood vessels compared to the 
control group. To further investigate the synergistic promotion of angiogenesis and osteogenesis in a subcutaneous 
heterotopic transplantation experiment, Zhang et al137 generated a double-cell sheet complex consisting of a combination 
of osteogenic and vascular endothelial cell sheets and combined this complex with coral HA. In another novel report, 
researchers encircled a porous β-TCP scaffold with an arteriovenous loop via insertion onto the lateral groove, with the 
resultant complex being wrapped in a BMSC sheet before transplantation into a rabbit thigh muscle pocket, leading to the 
accelerated development of vascular and bone tissue.138

A thin membrane called the periosteum covers the surface of bone tissue and serves a critical function in controlling 
the growth and repair of bone.13 Through the deposition of HUVECs on undifferentiated hMSC sheets, Kang et al95 were 
able to recreate the fibrous layer of native periosteal tissue, and the osteogenic periosteal tissue layer was achieved 
through the activation of osteogenesis in hMSC sheets. When these cell sheets were combined and then wrapped in 
a porous β-TCP scaffold, the authors were able to create a biomimetic periosteum that could be effectively implanted 
subcutaneously in nude mice, whereupon it was sufficient to drive angiogenic activity and anastomose with the local host 
vasculature and to promote osteogenic activity. Zhang et al.139 Similarly, these biomimetic periosteal scaffolds were 
shown to stimulate faster bone and vascular formation when they were constructed from rat BMSCs, wrapped in a porous 
β-TCP scaffold, and transplanted into calvarial defects in rats.

Cells Type Used for the Generation of Cell Sheets
Since its initial emergence in the 1980s–1990s,23 As time has progressed, tissue engineering has matured, and critical 
success criteria have been identified for various tissue engineering strategies, including sufficient blood supply, an 
appropriate number of progenitor cells, appropriate quantities of signals necessary to induce the differentiation of those 
cells in the appropriate order, and an appropriate ECM or scaffold capable of supporting engineered tissue 
development.140 Therefore, the success of tissue engineering aimed at bone regeneration relies heavily on the selection 
of seed cells with strong osteogenic capacity. A range of cell types has been used to develop cell sheets for use in the 
context of bone regeneration, including BMSCs,141 ADSCs,133 hESMSCs,45 dental follicle cells,142 PDLCs,143 DPSCs,44 

and genetically modified cells.144 BMSCs exhibit greater osteogenic potential than ADSCs,145 while DPSCs are thought 
to exhibit greater proliferative and clonogenic potential than BMSCs.44 Human amniotic MSCs (hAMSCs) and human 
umbilical cord MSCs (HUCMSCs) have also been previously leveraged to promote osteochondral defect repair.100,146 

Currently, hAMSCs have attracted substantial research interest owing to their higher yields and superior osteogenic 
potential relative to ADSCs,147 with these cells offering similar advantages over hBMSCs.148 Moreover, hAMSCs 
exhibit greater immunosuppressive activity relative to HUCMSCs.149 Importantly, Since hAMSCs are produced from 
amniotic membranes, which are often discarded as medical waste, hAMSC-based therapy does not raise the same ethical 
difficulties as other kinds of stem cell-based treatment.100 To date, hAMSCs have been utilized to treat diabetes.150 Due 
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to their impressive proliferative capacity, multipotency, immunomodulatory capabilities, and powerful paracrine effects, 
urine-derived stem cells (USCs) have lately attracted substantial attention in the context of employing them in cell-based 
treatments.151 For instance, Guan et al,152 developed a construct comprised of USCs and a β-TCP scaffold that 
successfully promoted new bone formation when implanted into femoral segmental bone defects. Xing et al153 have 
also reported similar findings. Genetically modified cell sheets have also been explored as potential tools for use in the 
context of bone regeneration,144,154–156 although this strategy remains to be tested in human patients in a clinical setting, 
and further efforts are necessary to optimize this approach through the design of novel gene transfection approaches, 
efforts to control and prolong transgene expression, and other safety-related improvements.157

Clinical Applications and Challenges
However, several therapeutic applications have lately been documented in the context of regeneration of cornea,158 

lungs,159 heart,160,161 esophagi,162,163 middle ears,164,165 periodontal tissue,143 blood vessels,166 skin,167 and knee 
cartilage168,169 regeneration (Table 3). At present, the use of CST has shown great promise as a method for fostering 
effective bone tissue repair. Despite major advances in this field, the therapeutic potential of this technology has yet to be 
completely exploited since numerous issues and constraints remain unsolved. For one, CST is limited by the 

Table 3 Clinical Applications of the Cell Sheet Technology

Type of 
Regenerative 
Tissue

Cell Types Method of Cell 
Sheet Formation

Combined with 
Scaffolds

Monolayer/ 
Multilayer 
Cell 
Sheets

Effects References

Cornea Autologous oral 
mucosal epithelial cells

Temperature- 
responsive system

No scaffolds Monolayer Complete re- 
epithelialization of 

the corneal surfaces 

in all treated eyes

[158]

Lung Dermal fibroblasts Temperature- 
responsive system

No scaffolds Monolayer Air leaks were 
completely sealed.

[159]

Heart Autologous myoblasts Temperature- 
responsive system

No scaffolds Multilayer Clinical condition 
(ejection fraction) 

improved markedly.

[160,161]

Esophagus Autologous oral 

mucosal epithelial cells

Temperature- 

responsive system

No scaffolds Multilayer Complete re- 

epithelialization 

occurred in ulcer 
surfaces.

[162,163]

Middle ear Autologous nasal 
mucosal epithelial cells

Temperature- 
responsive system

No scaffolds Monolayer Promote middle ear 
mucosa regeneration.

[164,165]

Periodontal 
tissue

Autologous 
periodontal ligament- 

derived cells

Temperature- 
responsive system

Beta-tricalcium 
phosphate 

granules

Multilayer Promote periodontal 
tissue regeneration.

[143]

Blood vessels Autologous fibroblasts 

and endothelial cells

Temperature- 

responsive system

No scaffolds Multilayer Promote arterial 

revascularization

[166]

Skin Allogeneic 

keratinocytes and 

fibroblasts

Mechanical systems No scaffolds Monolayer Accelerate wound 

epithelialization

[167]

Cartilage Autologous 

chondrocytes

Temperature- 

responsive system

No scaffolds Multilayer Promote cartilage 

regeneration

[168,169]
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immunogenicity and viability of cell sheets following implantation, necessitating efforts to identify additional cell types 
with satisfactory osteogenic characteristics and to leverage autologous cell sources wherever possible to mitigate 
potential immune reactivity. The possibility of in vitro cell multiplication, with its accompanying danger of contamina-
tion or adverse cell alterations, is another major obstacle to the clinical implementation of CST. The cells used for cell 
sheet production must be free of bacteria, mycoplasma, viruses, or endotoxin in order to be safely utilized. As such, cell 
sheet production requires formally defined processes and highly skilled operators at present. Notably, it is difficult to 
regenerate bone tissue with CST because of the lack of a reliable blood supply. In this view, CST-based initiatives to 
produce vascularized 3D tissues are an effective way of studying this field. Lastly, cell sheets generally lack durable 
mechanical properties, and the ECM and cellular components within these sheets differ significantly from those in native 
bone tissue. The use of cell sheets in isolation to recapitulate bone tissue may thus be challenging. To overcome these 
challenges, further improvements to existing CST preparation systems and/or new systems will be essential. Moreover, 
research focused on the development of a novel osteoinductive material is also warranted to enhance these regenerative 
outcomes.

Conclusions
The use of CST has shown great promise as a method for promoting effective bone tissue repair. There are several 
options for creating CSs. Preparing CSs for bone regeneration is most commonly done through temperature-responsive 
and mechanical approaches. This is likely because temperature-responsive systems are the most traditional system and 
mechanical approaches are simple because they do not require any special culture substrates or techniques. Multilayered 
CSs are also manufactured via a magnetic method, with the form being carefully controlled by varying the amount of 
magnets or the magnet pattern. There have been significant advancements in this area, but many uncertainties and limits 
remain before the therapeutic promise of this technology can be completely realized. Complicated structures and 
morphologies in hard tissue are challenging to recreate with CSs alone. Improving current preparation methods or 
proposing a new, effective preparation system is necessary to answer these problems. To further improve these 
regeneration results, research into the creation of a new osteoinductive substance is required.
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