REVIEW

27

Quality of the Evidence Supporting the Role of Acupuncture Interventions for Vascular Dementia

Hongshuo Shi (1,2,*, Xuecheng Zhang^{3,4,*}, Guomin Si^{1,2}, Hongling Jia⁵

¹Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China; ²Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China; ³Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China; ⁴Beijing University of Chinese Medicine, Beijing, People's Republic of China; ⁵Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China;

*These authors contributed equally to this work

Correspondence: Hongling Jia, Email jiahl1969@163.com

Background: Inflammation is an important pathogenesis of vascular dementia (VaD), and the regulatory effect of acupuncture on neuroinflammation has received extensive attention. There is conflicting evidence regarding the efficacy and safety of acupuncture for postpartum VaD. This overview aims to systematically evaluate systematic reviews/meta-analyses (SRs/MAs) of acupuncture on VaD. **Methods:** From the establishment of the electronic database to August 2022, search and identify SRs/MAs on acupuncture treatment for VaD. The Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR-2), the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 (PRISMA 2020), and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system were used to evaluate the methodological, reporting, and evidence quality of the included SRs/MAs.

Results: Twelve SRs/MAs were included in this research, and the quality of methodological, reporting, and evidence for these SRs/ MAs were not satisfactory. The shortcomings of these SRs/MAs mainly include lack of protocol registration, incomplete literature search, missing list of excluded literature, and high risk of bias of included original clinical trials.

Conclusion: VaD patients may benefit from acupuncture therapy. However, the high risk of bias in original clinical trials and the low quality of SRs/MAs make evidence-based decisions less reliable.

Keywords: acupuncture, vascular dementia, randomised controlled trials, meta-analyses, systematic reviews, overview

Introduction

Vascular dementia (VaD) is a type of dementia caused by the clinical or subclinical cerebrovascular injury resulting from ischemic/hemorrhagic stroke or other cerebrovascular diseases.¹ It is clinically characterized by impairment of neurological positioning, accompanied by difficulties with intelligence, calculation, orientation, emotion, memory, and behavior.² As the second most common type of dementia, after Alzheimer's disease, VaD afflicts nearly 46.8 million individuals around the world. In Europe and North America, VaD accounts for about 15% to 20% of people with dementia, while in developing countries this proportion has risen to approximately 30%,³ and cases are expected to increase as the population ages.^{4,5} Besides vascular problems, risk factors such as smoking, age, alcoholism, and diabetes should not be ignored.⁶ Currently used primary preventive drugs, including cholinesterase inhibitors and excitatory amino acid receptor antagonists, have very limited efficacy against vascular cognitive impairment,⁷ and are associated with significant side effects including gastrointestinal discomfort, vomiting, irritability, and dizziness.⁸ Therefore, the search for effective treatments for VaD remains an urgent issue.

Acupuncture has been used in China for more than 2000 years as an economical treatment with few side effects. Acupuncture is gradually being used as an adjunctive treatment for VaD. A study shows that electroacupuncture can improve memory and spatial learning via the miR-81/IL-16/PSD-95 pathway in VaD rats.⁹

The number of studies and SRs/MAs reporting the effectiveness and safety of acupuncture for VaD is increasing. As the very top of the evidence pyramid, SRs/MAs are generally considered helpful in identifying, evaluating, and synthesizing research-

© 2023 Shi et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (http://www.dovepress.com/terms.php). based evidence to assist clinical decision-making.¹⁰ However, due to the various potential risks of bias in the evidence formation process, it remains questionable whether evidence from SRs/MAs can provide decision guidance to clinical staff.¹¹ The overview is to systematically integrate current evidence by assessing quality and outcome indicators for inclusion in SRs/MAs to provide guidance for clinical decision-making and to identify critical gaps in the use of evidence.¹² Therefore, our research used an overview approach to critically assess and scientifically report the quality of SRs/MAs in acupuncture for VaD.

Methods

The currently overview written research protocol has been published in the INPLASY database under the registration number: INPLASY202280106. The methodology of this study followed the Cochrane Handbook guidelines as well as some high-quality overviews.^{13,14}

Search Strategy

Two researchers (SHS and ZXC) independently searched the Cochrane Library, PubMed, Embase, China National Knowledge Infrastructure (CNKI), China Wanfang Database, VIP Journal Database and China Biomedical Literature Database from the establishment of these databases to August 9, 2022. No language restrictions were set. We used the search method of Medical Subject Headings (Mesh) words combined with free words to search, Mesh words include, "Acupuncture", "Vascular Dementia", "Systematic Review", and "Meta Analyses". Additional references of identified literature or relevant quotes from experts were manually checked for possible missing literature. The complete search strategy for this study was provided in <u>Supplementary File 1</u>.

Eligibility Criteria

Literature Inclusion Criteria

- (a) Type of study: Based on SRs/MAs of the RCT on the topic of acupuncture for VaD.
- (b) Type of participant: Participants diagnosed with VaD by any of the internationally recognized diagnostic criteria. Diagnostic criteria were as follows: Diagnostic and Statistical Manual of Mental Disorders or International Classification of Diseases,¹⁵ Chinese Classification of Mental Disorders,¹⁶ Alzheimer's Disease Diagnosis and Treatment Center criteria,¹⁷ or National Institute of Neurological Disorders and Stroke and International Association for Neuroscience Research.¹⁸
- (c) Type of intervention and comparator: The comparator group consisted of placebo or drug therapy (DT) such as Chinese herbal medicine, cholinesterase inhibitors, memantine, psychostimulants and nootropics, or drugs with vasodilatory effects. The intervention group received acupuncture treatment, or the intervention group added acupuncture on the basis of the control group.
- (d) Type of outcome: Outcomes assessed in this study included NIH stroke scale (NIHSS), Mini-Mental State Examination scores (MMSE), Scale for the differentiation of syndromes of vascular dementia (SDSVD), ¹⁹ Activities of daily living (ADL), Hasegawa dementia scale (HDS), Functional Activities Questionnaire (FAQ), and effective rate. The effective rate of this study refers to Criteria for the Diagnosis, Syndrome Differentiation and Evaluation Standard Of Vascular Dementia, ²⁰ Diagnosis, Syndrome Differentiation and Evaluation Criteria of Senile Dementia, ²¹ and Clinical Research Guiding Principle for the New Chinese Herbal Medicine in the Treatment of Dementia.²²

Literature Exclusion Criteria

(a) Animal research; (b) SRs/MAs without quantitative synthesis, Network MAs, replication publications, case reports, conference abstracts, editorials, and narrative reviews.

Publication Screening and Data Extraction

Publication screening (SHS and ZXC) and information extraction (SHS and ZXC) were performed independently by two researchers, respectively. We first deduplicated publications in Endnote X9 bibliography management software. This was followed by an initial screening by reading the titles and abstracts of the publications. Finally, we carefully read the full text of

the remaining publications to determine the final inclusion. We collected basic information on each SR/MA, including author information, year of publication, interventions, and main conclusions, using a designed data extraction form.

Quality Assessment

Two researchers (SHS and ZXC) assessed the methodological quality, reporting quality, and quality of evidence of the included SRs/MAs. The Assessment of Multiple Systematic Reviews 2 $(AMSTAR-2)^{23}$ was used to assess the methodological quality of the included SRs/MAs, and the tool consists of 16 items. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 (PRISMA 2020)²⁴ was used to assess the reporting quality of the included SRs/MAs, and it contained 27 items. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system²⁵ was used to evaluate the quality of evidence for inclusion in SRs/MAs, which was assessed from five aspects.

Meta-Analysis

We extracted data from all RCTs from the systematic evaluation included in this study. This step was independently conducted by two evaluators. Any disagreement that arose during the process were resolved by both parties through

 $\label{eq:Figure I} \mbox{ Figure I } \mbox{ The flowchart of the screening process.}$

Author, Year, Country	Trials (Subjects)	Intervention Group	Control Group	Quality Assessment	Main Results
Jiao Lan, 2020,	(0)	SEA, SA, CA+Control	DT	Cochrane	The results of this study suggest that acupuncture may have a therapeutic effect on improving cognitive
China ²⁶		Group; TA, SEA, or CA		Criteria	function in VaD patients.
Yinghua Chen,	34 (2672)	SA, CA, EA+Control	DT	Jadad Scale	The results of this study suggest that acupuncture can improve the efficacy, HDS, MMSE, SDSVD and NIHSS
2022, China ²⁷		Group			of VaD patients.
Yanbei Chen,	23 (1706)	SA, CA, EA; CA	DT	Cochrane	The results of this study suggest that acupuncture may have a therapeutic effect on improving cognitive
2016, China ²⁸		+Control Group		Criteria	function in VaD patients.
Fei Li, 2019,	6 (434)	SA, CA+Control Group	DT	Jadad Scale	This study found that acupuncture has a significant clinical effect in the treatment of VaD, which is
China ²⁹					significantly better than drug therapy and other basic treatments.
Tong Li, 2019,	17 (1283)	SA, CA, EA	DT	Cochrane	This study showed that acupuncture compared with DT therapy had better curative effect in terms of
China ³⁰				Criteria	effective rate, MMSE score, and HDS score.
Chuan Peng, 2013,	4 (308)	SA, EA	DT	Cochrane	Compared with DT treatment, acupuncture treatment improves the overall curative effect of VaD patients
China ³¹				Criteria	more obviously.
Weina Peng, 2004,	5 (308)	EA	DT	Cochrane	Electroacupuncture treatment of VaD was more effective than the control group in improving cognitive
China ³²				Criteria	function.
Ting Wan, 2017,	6 (435)	SEA	DT	Cochrane	Electroacupuncture at the head acupoints can effectively improve the MMSE score of VaD patients, but
China ³³				Criteria	there is no significant difference between the control group and the ADL-R score.
Jiamin Wu, 2018,	9 (656)	SEA, EA	DT	Jadad Scale	Electroacupuncture is better than nimodipine in improving the intelligence and cognitive function of VaD
China ³⁴					patients, and there is no significant difference between the two in improving activities of daily living.
Ming Xin, 2018,	10 (939)	SA, CA, EA	DT	Cochrane	Acupuncture and moxibustion are better than DT in the treatment of vascular dementia in terms of clinical
China ³⁵				Criteria	efficacy, improvement of intelligence and improvement of living ability.
Ranran Yuan,	15 (1144)	CA, SA, EA; SA, EA	DT	Cochrane	Clinical verification shows that acupuncture is effective in the treatment of VaD, especially in improving the
2018, China ³⁶		+Control Group		Criteria	performance of patients on the Simple Mental State Checklist.
Manjia Zhu, 2009,	10 (753)	EA; CA+Control Group	DT	Jadad Scale	Acupuncture therapy has a satisfactory effect on the improvement of the overall curative effect of VaD
China ³⁷					patients.

Table I Characteristics of the Included SRs/MAs

Abbreviations: SEA, scalp electroacupuncture; SA, scalp acupuncture; EA, electroacupuncture; Ca, conventional acupuncture; DT, drug therapy; NIHSS, NIH stroke scale; MMSE, Mini-Mental State Examination scores; SDSVD, Scale for the differentiation of syndromes of vascular dementia; ADL, Activities of daily living; HDS, Hasegawa dementia scale; FAQ, Functional Activities Questionnaire.

discussion. First, all RCTs were retrieved and then processed with Endnote. Afterwards, the duplicate publications were removed and all the original RCTs were downloaded for data extraction. Finally, Review Manager 5.4 was employed to conduct meta-analysis on the data and a forest map was drawn. For dichotomous outcomes, the relative risk (RR) and its 95% confidence interval (CI) were used as a summary effect measure. For continuous outcomes, the mean difference (MD) and its 95% confidence interval (CI) were used as a summary effect measure. The Cochran's Q test and the I² statistic were applied to assess the heterogeneity among studies. And STATA 16 was used to conduct publication bias analysis on the data. Egger's regression was used for the quantitative evaluations of publication bias.

Results

Literature Search and Selection

A total of 133 publications were searched through 7 databases and 58 duplicates were removed. After screening the literature based on titles and abstracts, the full text was assessed based on inclusion and exclusion criteria, and finally, 12 publications²⁶⁻³⁷ were included. A flow chart of study selection was shown in Figure 1.

Description of Included SRs/MAs

Twelve included SRs/MAs were released between 2004 and 2022, and 8 (8/12, 66.7%)^{26,27,29,30,33–36} of these SRs/MAs were released after 2017. All the included SRs/MAs were published by Chinese, of which 2 SRs/MAs^{26,27} were written in English, and the remaining 10 SRs/MAs^{28–37} were written in Chinese. Each SR/MA contained several RCTs ranging from 4 to 34, and the sample size of individual studies ranged from 308 to 2672. The intervention in the control group included DT. The intervention methods of the experimental group included scalp electroacupuncture (SEA), scalp acupuncture (SA), electro-acupuncture (EA), and conventional acupuncture (CA), or the above-mentioned acupuncture treatments were added on the basis of the control group. Besides that, risk of bias was assessed for eight SRs/MAs using the Cochrane tool and the Jadad Scale for the remaining four. The characteristics of the SRs/MAs included are summarized in Table 1.

Results of SR/MA Quality Assessment

Methodological Quality

Based on the evaluation results of AMSTAR-2, the methodological quality of all included SRs/MAs in this study was very low. The main reasons for poor methodological quality included lack of protocol registration (0/12, 0%), lack of comprehensive literature searches (4/12, 33.3%),^{27,28,32,35} lack of exclusion lists (1/12, 8%),³⁵ and lack of funding source (2/12, 16.7%)^{28,32} were the main downgrading factors for inclusion in SRs/MAs (Figure 2).

Figure 2 Result of the AMSTAR-2 assessment. Abbreviations: Y, Yes; PY, partial Yes; N, No.

]
Section/Topic		ltems	Jiao Lan, 2020, China ²⁶	Yinghua Chen, 2022, China ²⁷	Yanbei Chen, 2016, China ²⁸	Fei Li, 2019, China ²⁹	Tong Li, 2019, China ³⁰	Chuan Peng, 2013, China ³¹	Weina Peng, 2004, China ³²	Ting Wan, 2017, China ³³	Jiamin Wu, 2018, China ³⁴	Ming Xin, 2018, China ³⁵	Ranran Yuan, 2018, China ³⁶	Manjia Zhu, 2009, China ³⁷	Number of Yes or Partially Yes(%)
Title	Title	ltem I	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
Abstract	Abstract	Item 2	PY	PY	PY	PY	PY	PY	PY	PY	PY	PY	PY	PY	100%
Introduction	Rationale	Item 3	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
	Objectives	Item 4	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
Methods	Eligibility	Item 5	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
	criteria														
	Information	Item 6	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
	sources														
	Search strategy	ltem 7	Y	Y	Y	N	N	Ν	N	N	Ν	Y	Y	N	41.67%
	Selection	Item 8	N	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	N	75%
	process														
	Data collection	ltem 9	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	N	83.33%
	process														
	Data items	Item 10(a)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
		Item 10(b)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	91.67%
	Study risk of	ltem II	Y	Y	N	N	Y	N	Y	Y	Y	Y	Y	N	66.67%
	bias assessment		v	N/	X			X	N/	N.		N.	v		1000/
	Effect measures	Item 12	Y	Y V	Y	ř V	ř V	Y V	Y V	Y	ř V	ř	ř	ř	100%
	Synthesis	Item 13(a)	Y Y	Y V	Y Y	ř V	ř	Y Y	Y Y	ř	ř V	ř	ř	ř	100%
	methods	Item 13(b)	T V	r V	r V	T V	T	T V	T V	T V	T	T V	T V	T V	100%
		Item 13(c)	Y Y	Y V	Y Y	ř V	ř	Y Y	Y Y	ř	ř V	ř	ř	ř	100%
		Item $13(d)$	T V	r V	r V	T V	T	T V	T V	T	T	T V	T	T	100%
		Item 13(e)	T	T NI	T V	T	IN NI		T V		IN NI	T V	T	IN N	66.67%
	Perewing hiss	Item 13(f)	N V	N V	T V	IN V	IN NI	T V	T V	IN NI	IN N	T V	N V	IN NI	33.33%
	Reporting bias	item 14	1	I	I	1	IN	I	1	IN	IN	1	I	IN	00.07%
	assessment	Itom I E	N	N	v	N	N	N	N	N	N	~	N	N	16 67%
	assessment	item 15	17	IN	1	IN	11		11	IN	11	1		11	10.07 /6

32

Dovepress

33

Results	Study selection	ltem 16(a)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
		Item 16(b)	N	Ν	Y	N	N	N	N	N	N	Ν	Y	N	16.67%
	Study	ltem 17	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	91.67%
	characteristics														
	Risk of bias in	Item 18	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
	studies														
	Results of	Item 19(a)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
	individual	Item 19(b)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
	studies														
	Results of	Item 20(a)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
	syntheses	Item 20(b)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
		Item 20(c)	Y	Y	Y	Y	Y	Y	Y	Ν	N	Y	Ν	N	66.67%
		Item 20(d)	Y	Y	Y	N	Y	N	N	Y	Y	Y	N	N	58.33%
	Reporting	Item 21	Y	Y	Y	Y	Y	Y	N	N	N	Y	Ν	N	58.33%
	biases														
	Certainty of	ltem 22	N	Ν	Y	N	N	N	N	N	N	Y	N	N	16.67%
	evidence														
Discussion	Discussion	Item 23(a)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
		Item 23(b)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
		Item 23(c)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
		Item 23(d)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
Other	Registration and	ltem 24(a)	N	Ν	N	N	N	N	N	N	N	Ν	N	N	0%
information	protocol	Item 24(b)	N	N	N	N	N	N	N	Ν	N	N	N	N	0%
		Item 24(c)	N	N	N	N	N	N	N	N	N	N	N	N	0%
	Support	Item 25	Y	Y	N	Y	Y	N	N	Y	Y	N	N	Y	58.33%
	Competing	Item 26	Y	Y	Y	N	N	Y	N	N	N	Y	Y	N	50%
	interests														
	Availability of	Item 27	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
	data, code, and														
	other materials														

Abbreviations: Y, yes; N, no; PY, partially yes.

Jiao Lan, 2020, China ²⁶	MMSE (Acupuncture vs DT)	-la	-Ib	0	-lc	0	Very Low
	MMSE (Acupuncture+DT vs DT)	-la	-lb	0	0	0	Low
	HDS (Acupuncture vs DT)	-la	0	0	0	0	Moderate
	HDS (Acupuncture+DT vs DT)	-la	0	0	-lc	0	Low
Yinghua Chen, 2022, China ²⁷	Effective Rate	-la	0	0	0	0	Moderate
	HDS	-la	-lb	0	0	0	Low
	ADL	-la	-lb	0	-lc	0	Very Low
	SDSVD	-la	-lb	0	-lc	-Id	Very Low
	NIHSS	-la	0	0	-lc	-Id	Very Low
Yanbei Chen, 2016, China ²⁸	Effective Rate (Acupuncture vs DT)	-la	-lb	0	0	-Id	Very Low
	Effective Rate (Acupuncture+DT vs DT)	0	-lb	0	-lc	-Id	Very Low
	MMSE (Acupuncture vs DT)	-la	-lb	0	0	-Id	Very Low
	MMSE (Acupuncture+DT vs DT)	-la	0	0	0	-Id	Low
	HDS (Acupuncture vs DT)	-la	0	0	-lc	-Id	Very Low
	HDS (Acupuncture+DT vs DT)	-la	0	0	-lc	-Id	Very Low
Fei Li, 2019, China ²⁹	Effective Rate	-la	0	0	0	-Id	Low
Tong Li, 2019, China ³⁰	Effective Rate	-la	0	0	0	-Id	Low
	HDS	-la	0	0	0	-Id	Low
	MMSE	-la	0	0	0	-Id	Low
Chuan Peng, 2013, China ³¹	Effective Rate	0	0	0	0	0	High
Weina Peng, 2004, China ³²	Effective Rate	-la	0	0	0	-Id	Low
	HDS	-la	0	0	-lc	-Id	Very Low
	FAQ	-la	0	0	-lc	-Id	Very Low
Ting Wan, 2017, China ³³	MMSE	0	-lb	0	0	-Id	Low
	ADL	0	0	0	-lc	-Id	Low
	Effective Rate	0	-lb	0	-lc	-Id	Very Low
Jiamin Wu, 2018, China ³⁴	MMSE	0	-Ib	0	0	-Id	Low
	ADL	0	-Ib	0	-lc	-Id	Very Low
	HDS	-la	0	0	-lc	-Id	Very Low
Ming Xin, 2018, China ³⁵	Effective Rate	-la	0	0	0	0	Moderate
	MMSE	-la	0	0	0	-Id	Low
	ADL	-la	0	0	0	-Id	Low
	HDS	-la	0	0	0	-Id	Low
Ranran Yuan, 2018, China ³⁶	MMSE (Acupuncture vs Nimodipine)	0	-Ib	0	−lc	-1 d	Very Low
Manjia Zhu, 2009, China ³⁷	Effective Rate (EA vs DT)	-la	-Ib	0	0	-1 d	Very Low
	Effective Rate (Acupuncture vs DT)	-la	-Ib	0	−lc	-Id	Very Low

Table 3 Results of Certainty of Quality

Notes: a, the included studies have a large bias in methodology such as randomization, allocation concealment, and blinding; b, the confidence interval overlaps less or the l^2 value of the combined results was larger; c, the sample size from the included studies does not meet the optimal sample size or the 95% confidence interval crosses the invalid line; d, the funnel chart is asymmetry.

Abbreviations: NIHSS, NIH stroke scale; MMSE, Mini-Mental State Examination scores; SDSVD, Scale for the differentiation of syndromes of vascular dementia; ADL, Activities of daily living; HDS, Hasegawa dementia scale; FAQ, Functional Activities Questionnaire.

Reporting Quality

None of the SRs/MAs fully reported studies based on the PRISMA 2020 checklist. The titles, introductions, abstracts, and discussions of the SRs/MAs included in this study were fully reported, but the completeness of reporting was otherwise unsatisfactory. The main reasons for reporting flaws included: in the methods section, lack of a complete search strategy (Item 7, 5/12, 41.7%),^{26–28,35,36} lack of sensitivity analysis (Item 13f, 4/12, 33.3%),^{28,31,32,35} and lack of certainty assessment (Item 15, 2/12, 16.7%);^{28,35} In the results section, lack of funding sources (Item 16b, 2/12, 16.7%)^{28,35} and certainty of evidence (Item 22, 2/12, 16.7%);^{28,35} in the other information section, lack of SRs/MAs protocol registration (Item 24, 0/12, 0%). More details on the quality of the report are given in Table 2.

Table 4 Summar	y of Outcome	Measures
----------------	--------------	----------

Author, Year, Country	Outcomes	Studies (Participants)	Heterogeneity	Relative Effect (95% CI)	P-value
Jiao Lan, 2020, China ²⁶	MMSE (Acupuncture vs DT)	6 (553)	63%	MD:0.87 (-0.41, 2.15)	P = 0.18
	MMSE (Acupuncture+DT vs DT)	5 (512)	82%	MD: 2.54 (0.96, 4.12)	P = 0.002
	HDS (Acupuncture vs DT)	5 (413)	9%	MD: 1.55 (0.72, 2.38)	P = 0.0003
	HDS (Acupuncture+DT vs DT)	2 (131)	0%	MD: 1.84, (0.35, 3.33)	P = 0.02
Yinghua Chen, 2022, China ²⁷	Effective Rate	26 (1753)	0%	OR: 3.28 (2.54, 4.24)	P < 0.001
	HDS	12 (1031)	79.60%	MD: 4.31 (3.15, 5.47)	P < 0.001
	ADL	24 (1544)	97.80%	MD: 1.93 (-2.53, 6.38)	P = 0.397
	SDSVD	5 (380)	76.40%	MD: -2.15 (-4.14, -0.16)	P = 0.034
	NIHSS	5 (388)	0%	MD: - 3.90 (-4.87, - 2.94)	P < 0.001
Yanbei Chen, 2016, China ²⁸	Effective Rate (Acupuncture vs DT)	9 (751)	65%	OR: 1.20 (1.03, 1.40)	P = 0.02
	Effective Rate (Acupuncture+DT vs DT)	2 (233)	84%	OR: 1.61 (1.02, 2.53)	P = 0.04
	MMSE (Acupuncture vs DT)	17 (1255)	62%	MD: 2.10 (1.37, 2.83)	P < 0.001
	MMSE (Acupuncture+DT vs DT)	5 (436)	30%	MD: 2.46 (1.69, 3.23)	P < 0.001
	HDS (Acupuncture vs DT)	5 (396)	0%	MD: 1.59 (0.75, 2.44)	P = 0.0002
	HDS (Acupuncture+DT vs DT)	2 (140)	0%	MD: 2.19 (0.78, 3.60)	P = 0.002
Fei Li, 2019, China ²⁹	Effective Rate	6 (362)	0%	RR: 1.19 (1.10, 1.30)	P=0.0001
Tong Li, 2019, China ³⁰	Effective Rate	10 (614)	47%	RR: 1.28 (1.14, 1.44)	P < 0.0001
	HDS	8 (716)	38%	MD: 2.89 (1.89, 3.89)	P < 0.001
	MMSE	8 (687)	20%	MD: 1.74 (1.30, 2.17)	P < 0.001
Chuan Peng, 2013, China ³¹	Effective Rate	4 (308)	25%	OR: 2.62 (1.39, 4.97)	P = 0.003
Weina Peng, 2004, China ³²	Effective Rate	5 (308)	0%	OR: 5.64 (2.87, 11.09)	P < 0.001
	HDS	2 (134)	0%	MD: 6.07 (3.76, 8.38)	P < 0.001
	FAQ	2 (134)	0%	MD: -1.24 (-3.21, 0.74)	P = 0.22
Ting Wan, 2017, China ³³	MMSE	6 (435)	59%	MD: 1.92 (0.82, 3.03)	P < 0.001
	ADL	3 (264)	33%	MD: -1.55 (-4.65, 1.54)	P = 0.32
	Effective Rate	3 (264)	52%	OR: 4.97 (2.89, 8.56)	P < 0.0001
Jiamin Wu, 2018, China ³⁴	MMSE	8 (531)	55%	MD: 1.71 (1.17, 2.25)	P = 0.003
	ADL	6 (416)	83%	MD: 0.58 (- 3.60, 4.76)	P = 0.78
	HDS	3 (156)	0%	MD: 2.25 (0.99, 3.51)	P = 0.005
Ming Xin, 2018, China ³⁵	Effective Rate	9 (671)	1%	RR: 1.26 (1.15, 1.38)	P < 0.001
	MMSE	11 (884)	0%	MD: 1.64 (1.34, 1.93)	P < 0.001
	ADL	10 (824)	0%	MD: 2.37 (1.57, 3.18)	P < 0.001
	HDS	4 (415)	4%	MD: 3.00 (2.08, 3.93)	P < 0.001
Ranran Yuan, 2018, China ³⁶	MMSE (Acupuncture vs Nimodipine)	3 (340)	83%	SMD: 0.58 (-0.04, 1.20)	P = 0.07
Manjia Zhu, 2009, China ³⁷	Effective Rate (EA vs DT)	7 (517)	61.60%	OR: 2.94 (1.86, 4.64)	P < 0.001
	Effective Rate (Acupuncture vs DT)	3 (236)	79.40%	OR: 8.53 (4.30, 16.88)	P < 0.001

Abbreviations: NIHSS, NIH stroke scale; MMSE, Mini-Mental State Examination scores; SDSVD, Scale for the differentiation of syndromes of vascular dementia; ADL, Activities of daily living; HDS, Hasegawa dementia scale; FAQ, Functional Activities Questionnaire.

Shi et al

Evidence Quality

Thirty-six outcomes related to acupuncture for VaD were extracted from the included SRs/MAs. The results of the GRADE assessment showed that of the 36 outcomes, there was 1 high-quality (1/36, 2.8%) evidence, 3 moderate-quality (3/36, 8.3%) evidence, 15 low-quality (15/36, 41.7%) evidence, and 17 very low-quality (17/36, 47.2%) evidence. The main reasons for unsatisfactory quality of evidence included risk of bias (28/36, 77.8%) and publication bias (28/36, 75%). Details were listed in Table 3.

Figure 3 Network diagram incorporating SRs/MAs with RCTs. Note: Red represents included SRs/MAs; orange represents RCTs.

Summary of Included Outcomes

We summarized the outcomes included in the SRs/MAs in this study as shown in Table 4.

Effectiveness of Acupuncture on VaD Patients

Nine SRs/MAs^{26,28–35,37} reported that acupuncture could significantly improve the effective rate of VaD patients compared with the control group. Seven SRs/MAs^{26,28,30,33–36} reported the effect of acupuncture on MMSE in patients with VaD, including nine outcomes, of which seven showed that acupuncture could significantly improve MMSE in patients with VaD. Results for 9 outcomes out of 7 SRs/MAs^{26–28,30,32,34,35} indicated that acupuncture therapy could significantly improve HDS in VaD patients. Four SRs/MAs^{27,33–35} reported the effect of acupuncture on ADL, and the results of two SRs/MAs indicated that acupuncture was effective in improving ADL in VaD patients. One SR/MA²⁷ result showed that acupuncture significantly reduced SDSVD and NIHSS in VaD patients.

Safety of Acupuncture on VaD Patients

There were 7 SRs/MAs^{26–28,30,32,35,36} in the results section that described no adverse events in clinical studies of acupuncture for VaD.

Summary of the Meta-Analysis

First, we searched the RCTs and removed the duplicate publications, and finally we got 110 publications. We constructed a network diagram incorporating SRs/MAs with relevant original studies (Figure 3). Then, all the original RCTs were downloaded for data extraction. In the process of information extraction, we extracted the relevant outcome indicators in GRADE evaluation for the next quantitative synthesis calculation. These outcome

	Experim	ental	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 SEA+DT vs. DT							
Hong Zhang 2008 Subtotal (95% CI)	71	82 82	35	81 81	4.3% 4.3%	2.00 [1.54, 2.61] 2.00 [1.54, 2.61]	
Fotal events	71		35	• ·			-
Heterogeneity: Not an	nlicable		00				
Fest for overall effect:	Z = 5.16 (F	e < 0.000	001)				
I.1.2 CA+DT vs. DT							
Bing Li 2015	36	43	32	43	5.3%	1 13 [0 90 1 40]	
30 Sun 2011	27	30	19	30	3.7%	1 42 [1 06 1 91]	
Rotao Wang 2019	21	23	14	20	3.4%	1 30 [0 95, 1 78]	
Chang Liu 2020	47	50	42	50	7.5%	1 12 [0 07 1 20]	
Jui Zhao 2004	20	34	20	32	3.6%	1.12 [0.37, 1.23]	
linguon Chon 2010	23	20	20	20	5.0%	1.30 [1.01, 1.03]	
liaguan Chen 2019	21	29	22	29	0.170	1.23 [0.96, 1.54]	
anglao Au 2015	41	43	32	43	0.1%	1.20 [1.06, 1.55]	
	28	30	25	30	6.1%	1.12 [0.93, 1.35]	
2004	26	28	22	20	5.9%	1.10 [0.90, 1.33]	
Jiyun Niu 2017	48	50	39	50	7.0%	1.23 [1.05, 1.44]	
Shipu Tan 2018	40	45	33	45	5.6%	1.21 [0.99, 1.49]	
Fao Yang 2017	49	53	39	53	6.3%	1.26 [1.05, 1.50]	
Veiping Hao 2012	40	43	27	37	5.4%	1.27 [1.03, 1.58]	
Kihua Lv 2015	31	35	14	35	2.2%	2.21 [1.45, 3.38]	
/ali Zhang 2015	33	40	23	40	3.6%	1.43 [1.06, 1.94]	
Yang Liu 2011	17	30	22	30	2.6%	0.77 [0.53, 1.13]	
∕anxia Zong 2020	38	40	32	40	6.6%	1.19 [1.00, 1.41]	
Subtotal (95% CI)		646		633	86.2%	1.22 [1.14, 1.29]	•
Fotal events	578		457				
Heterogeneity: Tau ² =	0.00; Chi ²	= 21.32,	df = 16 (P = 0.1	7); l ² = 25	%	
Fest for overall effect:	Z = 6.32 (F	9 < 0.000	001)				
.1.3 SA+DT vs. DT							
liamei Chu 2008	29	33	21	32	4.0%	1.34 [1.01, 1.77]	
Kiaohong Dai 2013	32	35	27	35	5.6%	1.19 [0.96, 1.46]	
Subtotal (95% CI)		68		67	9.5%	1.24 [1.05, 1.46]	-
Total events	61		48				
Heterogeneity: Tau ² =	0.00; Chi2	= 0.49, d	f = 1 (P =	= 0.48);	l ² = 0%		
Test for overall effect:	Z = 2.50 (F	9 = 0.01)					
「otal (95% CI)		796		781	100.0%	1.25 [1.17, 1.34]	•
Fotal events	710		540				
Heterogeneity: Tau ² =	0.01; Chi2	= 37.91,	df = 19 (P = 0.0	06); l ² = 5	0% -	
- /			· • · · · `				0.5 0.7 1 1.5 2

Figure 4 Continued.

В

	Experim	ental	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
1.1.1 EA vs. DT							
Feizhi Mo 2000	18	30	7	30	0.4%	2.57 [1.26, 5.24]	
Jiangiang Li 2001	29	34	7	34	0.4%	3.86 [1.95, 7.63]	
Xiaoxi Yu 2003	28	34	20	34	1.5%	1.40 [1.02, 1.93]	
Xin Lun 2003	55	57	24	32	2.6%	1.29 [1.05, 1.58]	
Xinsheng Lai 1997 b	20	23	11	23	0.9%	1.82 [1.15, 2.87]	
Zhenhu Chen 2000 Subtotal (95% CI)	19	23	12	23	1.0%	1.58 [1.03, 2.44]	· · · · · · · · · · · · · · · · · · ·
Total events	196	234	100	209	0.4 /0	1.00 [1.32, 2.13]	-
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	06; Chi² = 1 = 4.24 (P <	15.63, df 0.0001)	= 6 (P =	0.02); I	² = 62%		
1.1.2 TA vs. DT							
Ziping Li 2008	34	40	28	38	2.3%	1.15 [0.92, 1.45]	<u> </u>
Subtotal (95% CI)		40		38	2.3%	1.15 [0.92, 1.45]	-
I otal events Heterogeneity: Not applic Test for overall effect: Z =	34 able = 1.22 (P =	0.22)	28				
1 1 2 8EA va DT							
Hong Zhang 2008	10	21	13	21	1 3%	1 46 [1 02 2 10]	
Jing Wang 2014	28	34	27	34	2.3%	1.04 [0.82, 1.31]	_
Jun Liu 1998	38	40	34	40	3.4%	1.12 [0.96, 1.30]	
Lizhu Hu 2017	22	25	15	25	1.3%	1.47 [1.03, 2.08]	
Xinsheng Lai 1997 a	38	47	38	45	2.8%	0.96 [0.79, 1.15]	<u> </u>
Zhibin Liu 2008 Subtotal (95% CI)	53	60 227	49	225	3.4%	1.08 [0.93, 1.26]	
Total events	198	~~~	176	225	14.378	1.11[1.00, 1.20]	•
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	01; Chi² = 7 = 1.89 (P =	7.55, df = 0.06)	= 5 (P = 0	1.18); I²	= 34%		
1.1.4 SA vs. DT							
Gang Feng 2014	19	21	13	21	1.3%	1.46 [1.02, 2.10]	
Jingjing Hu 2009	28	34	27	34	2.3%	1.04 [0.82, 1.31]	
Sikang Li 2012	38	40	34	40	3.4%	1.12 [0.96, 1.30]	
Xin Lun 2004 Xichong Liu 2008	22	25	15	25	1.3%	1.47 [1.03, 2.08]	
Zhibin Liu 2007	53	60	49	60	3.4%	1.08 [0.93, 1.26]	
Subtotal (95% CI)		227		225	14.5%	1.11 [1.00, 1.23]	◆
Total events	198		176				
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	01; Chi² = 7 = 1.89 (P =	7.55, df = 0.06)	= 5 (P = 0	18); l²	= 34%		
115 CA vs DT							
Bo Sun 2011	22	30	19	30	1.4%	1.16 [0.82, 1.64]	
Chenlin Ye 2011	26	30	23	30	2.2%	1.13 [0.89, 1.44]	
Gaxi Ye 2011	32	35	29	34	3.0%	1.07 [0.90, 1.27]	+
Haiyan Wang 2009	33	34	32	34	4.1%	1.03 [0.93, 1.14]	T
Hongliang Cheng 2015	33	36	27	36	2.5%	1.22 [0.99, 1.51]	
Huadong Liu 2003	72	98	25	47	1.7%	1.38 [1.03, 1.85]	
Jiangwei Shi 2015	61	82	62	84	2.9%	1.01 [0.84, 1.21]	
Jianping Mi 2004	54	64	23	32	2.2%	1.17 [0.92, 1.49]	
Jianxin Zhao 2000	36	36	27	32	3.3%	1.18 [1.01, 1.39]	
Li Li 2020 Lingmin Oion 2014	26	28	20	28	2.1%	1.30 [1.01, 1.68]	
Miaoiun Lin 2015	21	25	23	27	2.2%	1.08 [0.83, 1.41]	_
Min Wang 2005	25	31	19	30	1.5%	1.27 [0.92, 1.76]	+
Pi Min 2003	35	40	25	40	1.9%	1.40 [1.07, 1.83]	
Rui Zhang 2010	25	30	16	30	1.2%	1.56 [1.08, 2.26]	
Shanbin Sun 2009	26	28	18	26	1.9%	1.34 [1.02, 1.77]	
Silvang Li 2014	37	40	30	40 29	2.7%	1.23 [1.01, 1.51]	
Tao Tan 2017	28	30	22	30	2.3%	1.27 [1.01, 1.61]	
Xiaodong Bian 2009	27	30	17	30	1.4%	1.59 [1.14, 2.22]	· · · · ·
Xiaoyan Wang 2011	15	20	17	20	1.6%	0.88 [0.65, 1.21]	
Xueteng Meng 2009	39	40	34	40	3.5%	1.15 [1.00, 1.32]	1
Yeming Guan 2009	∠8 28	30 30	25 25	30 30	∠.8% 2.8%	1.12 [0.93, 1.35] 1.12 [0.93, 1.35]	+
Zaisheng Wen 2012	15	19	14	19	1.3%	1.07 [0.75, 1.53]	
Zhijie Li 2013	66	96	19	48	1.2%	1.74 [1.19, 2.53]	———
Zhou Xie 2014	13	17	11	17	0.9%	1.18 [0.76, 1.83]	
Subtotal (95% CI)		1073		939	60.3%	1.17 [1.11, 1.23]	▼
I UTAL EVENTS	900 10: Chi² - 3	1 21 AF	667 = 27 /P ·	= 0.161	1 ² = 21%		
Test for overall effect: Z =	= 6.24 (P <	0.00001))	- 0.10),	21/0		
Total (95% CI)		1801		1636	100.0%	1.19 [1.13, 1.25]	•
Total events	1526		1147				
Heterogeneity: Tau ² = 0.0	01; Chi ² = 8	38.05, df	= 47 (P =	= 0.000	3); l² = 47	%	0.2 0.5 1 2 5
Test for overall effect: Z =	= 7.18 (P < nces: Chi² :	0.00001 = 10.72,) df = 4 (P	= 0.03), l² = 62.7	%	Favours [experimental] Favours [control]

Figure 4 Forest plot on the effective rate of acupuncture therapy for VaD. (A) Acupuncture+DT vs DT; (B) Acupuncture vs DT.

indicators include: effective rate, MMSE, ADL, HDS, FAQ, SDSVD, and NIHSS. In the meta-analysis, we analyzed according to acupuncture+DT vs DT and acupuncture vs DT respectively. In addition, we also conducted subgroup analysis according to the way of acupuncture. The forest plots of effective rate, MMSE, HDS, ADL, FAQ, NIHSS, and SDSVD are shown in Figures 4–7, Figure 8A–C respectively. These results also suggest that acupuncture therapy was effective rate and can be used to improve MMSE and HDS in patients with VaD. These results may also be subject to some publication bias (Table 5).

Discussion

Because there is no specific clinical treatment method, it is difficult for VaD patients to receive effective clinical treatment. Acupuncture as a potential modality for VaD management, this study comprehensively assessed the current scientific evidence for acupuncture for VaD in terms of methodological quality, reporting quality, and evidence quality.

Summary of Key Findings

This overview includes 12 SRs/MAs from 133 publications, of which 8 (8/12, 66.7%) SRs/MAs were published in the last five years (2017–2022), representing the growing interest of researchers in acupuncture interventions for VaD. From the reporting of outcome indicators, the results of 30 (30/36, 83.3%) outcome indicators indicated that VaD patients could benefit from acupuncture therapy. In addition, safety assessments indicated that acupuncture had no serious side effects. However, the methodological quality, reporting quality, and quality of evidence of the SRs/

Figure 5 Continued.

В

Mean Difference

IV. Random, 95% CI

Mean Difference Experimental Control Study or Subgroup SD Total Mean SD Total Weight IV, Random, 95% CI Mean 1.1.1 EA vs. DT Jiangwei Shi 2015 26.63 4.55 28 21.23 3.01 1.9% 5.40 [3.36, 7.44] 26 30 17.94 1.5% 2.04 [-1.03, 5.11] Leilei Wang 2013 19.98 5.99 6.15 30 2.65 [0.48, 4.82] 20.26 4.32 28 17.61 3.94 28 1.8% Qiaowei Li 2015 Subtotal (95% CI) 86 84 5.2% 3.53 [1.42, 5.63] Heterogeneity: Tau² = 1.97; Chi² = 4.68, df = 2 (P = 0.10); l² = 57% Test for overall effect: Z = 3.29 (P = 0.001) 21.43 5.02 40 20.86 4.86 0.57 [-1.62, 2.76] 38 1.8% 40 38 1.8% 0.57 [-1.62, 2.76] 23.45 4.28 78 20.04 81 2.1% 3.41 [1.86, 4.96] 5.6 19.73 1.65 30 18.5 1.7 30 2.3% 1.23 [0.38, 2.08] 23.44 2.92 60 20.83 3.64 60 2.2% 2.61 [1.43, 3.79] 23.57 3.17 23 23.96 4.37 -0.39 [-2.57, 1.79] 24 1.8% 24.19 3.853 27 20.5 5.501 26 1.7% 3.69 [1.12, 6.26] 22.92 5.66 30 22.24 5.12 30 1.6% 0.68 [-2.05, 3.41] 248 251 11.7% 1.93 [0.81, 3.05] 1.9% 23.06 4.63 31 23.35 3.49 30 -0.29 [-2.34, 1.76] 2.0% 5.00 [3.19. 6.81] 26.57 3.97 30 21.57 3.12 30 0.38 [-0.38, 1.14] 25.34 1.46 30 24.96 1.56 30 2.3% 23.2 4.5 40 21.4 4.1 40 2.0% 1.80 [-0.09, 3.69] 22.53 4.15 40 20.59 4.35 40 2.0% 1.94 [0.08, 3.80] 23.06 4.63 47 23.35 3.39 45 2.0% -0.29 [-1.94, 1.36] 218 215 12.2% 1.39 [-0.09, 2.86] 21.24 3.63 30 20.69 2.1 30 2.1% 0.55 [-0.95, 2.05] 30 21.47 4.06 2.0% 1.53 [-0.31, 3.37] 23 3.15 30 17.54 3.22 50 11.08 3.21 50 2.2% 6.46 [5.20, 7.72] 20.2 3.83 30 17.87 3.31 30 2.0% 2.33 [0.52, 4.14] 25.32 1.56 20 22.37 2.03 20 2.2% 2.95 [1.83, 4.07] 17.41 19.04 2.12 28 28 1.63 [0.46, 2.80] 2.34 2.2% 21.88 17.49 4.39 [2.26, 6.52] 4.01 35 4.96 34 1.8% 21.45 4.6 34 19.04 4.51 34 1.8% 2.41 [0.24, 4.58] 36 27.83 0.25 36 27 0.21 2.4% 0.83 [0.72, 0.94] 2.90 [1.32, 4.48] 20.73 2.95 17.83 3.27 30 2.1% 30 82 22.03 4.16 -0.16 [-1.39, 1.07] 21.87 3.91 84 2.2% 22.03 5.1 36 19.6 4.48 32 1.8% 2.43 [0.15, 4.71] 23.03 28 16.21 0.12 28 2.1% 6.82 [5.30, 8.34] 4.11 28.63 1.69 120 27.11 1.45 120 2.4% 1.52 [1.12, 1.92] 22.93 2.96 50 19.44 3.14 50 2.2% 3.49 [2.29, 4.69] 25.6 2.81 36 22.9 2.72 36 2.2% 2.70 [1.42, 3.98] 25.76 4.32 25 21.92 5.03 27 1.7% 3.84 [1.30, 6.38] 21.89 31 19.96 1.93 [-0.26, 4.12] 4.79 3.89 30 1.8%

1.1.2 TA vs. DT Ziping Li 2008 Subtotal (95% CI) Heterogeneity: Not applicable Test for overall effect: Z = 0.51 (P = 0.61) 1.1.3 SEA vs. DT Hong Zhang 2008 Jianguan Yin 2011 Jing Wang 2014 Ling Zhao 2009 Xiaohong Peng 2009 Zhibin Liu 2008 Subtotal (95% CI) Heterogeneity: Tau² = 1.14; Chi² = 14.31, df = 5 (P = 0.01); I² = 65% Test for overall effect: Z = 3.39 (P = 0.0007) 1.1.4 SA vs. DT Jingjing Hu 2009 Licun Wang 2007 Peng An 2014 Sikang Li 2012 Wenmin Niu 2014 Yichena Liu 2008 Subtotal (95% CI) Heterogeneity: Tau² = 2.67; Chi² = 26.86, df = 5 (P < 0.0001); I² = 81% Test for overall effect: Z = 1.84 (P = 0.07) 1.1.5 CA vs. DT Benhua luo 2015 Bo Sun 2011 Chang Liu 2020 Chenlin Ye 2011 Cuiru Lin 2012 Dongming Xie 2019 Gaxi Ye 2011 Haiyan Wang 2009 Hongliang Cheng 2015 Hongyan Zhang 2012 Jiangwei Shi 2015 Jianxin Zhao 2000 Li Li 2020 Lili Li 2014 Lingmin Qian 2014 Li Xue 2013 Miaojun Lin 2015 Ming Wei 2013 Min Wang 2005 18.35 45 30 15.8 5.03 30 1.7% 2.55 [0.13, 4.97] Renfeng Huang 2020 19.91 3.95 35 17.43 4.34 35 1.9% 2.48 [0.54, 4.42] Rui Zhang 2010 21.49 4.58 30 19.48 4.1 30 1.8% 2.01 [-0.19, 4.21] Shanbin Sun 2009 19.68 0.77 28 19.28 0.76 26 2.4% 0.40 [-0.01, 0.81] Sikang Li 2014 21.23 4.13 28 20.41 4.01 29 1.9% 0.82 [-1.29, 2.93] 2.06 [1.49, 2.63] 21.73 30 2.4% Tao Tan 2017 1.31 19.67 0.89 30 2.20 [-0.30, 4.70] Tao Yu 2007 21.3 6.28 30 19.1 3.03 30 1.7% Xiaodong Bian 2009 26.36 2.42 30 21.33 2.38 30 2.2% 5.03 [3.82, 6.24] Xiaovan Wang 2011 18.5 3.08 20 18.8 3.03 20 1.9% -0.30 [-2.19, 1.59] Xuefeng Meng 2009 19.87 3.98 40 17.06 4.29 40 2.0% 2.81 [1.00, 4.62] Xu Yun 2020 21.73 7.15 30 18.19 7.04 30 1.3% 3.54 [-0.05, 7.13] Yanxia Zong 2020 23.29 3.41 40 19.51 3.26 40 2.1% 3.78 [2.32, 5.24] Yeming Guan 2009 24.16 5.46 35 64.67 9.43 33 1.2% -40.51 [-44.20, -36.82] 3.77 2.26 [-0.30, 4.82] Zaisheng Wen 2012 21.63 19 19.37 4.28 19 1.7% Zhibin Liu 2007 21.92 5.66 60 21.24 5.12 60 1.9% 0.68 [-1.25, 2.61] Zhixuan Zhao 2013 23.3 2.81 30 20.93 2 53 30 2.2% 2.37 [1.02, 3.72] 17 17 1.4% 1.83 [-1.32, 4.98] Zhou Xie 2014 20.53 4.2 18.7 5.12 Subtotal (95% CI) 1263 1258 69.1% 1.62 [0.87, 2.37] Heterogeneity: Tau² = 4.30; Chi² = 792.22, df = 34 (P < 0.00001); I² = 96% Test for overall effect: Z = 4.21 (P < 0.0001) Total (95% CI) 1855 1846 100.0% 1.73 [1.14, 2.32] Heterogeneity: Tau² = 3.72; Chi² = 860.80, df = 50 (P < 0.00001); l² = 94% -10 -5 10 Test for overall effect: Z = 5.73 (P < 0.00001) Favours [experimental] Favours [control] Test for subgroup differences: $Chi^2 = 4.29$, df = 4 (P = 0.37), $I^2 = 6.8\%$

Figure 5 Forest plot on the MMSE of acupuncture therapy for VaD. (A) Acupuncture+DT vs DT; (B) Acupuncture vs DT.

MAs included in this study were flawed, so the results of inclusion of SRs/MAs may differ from the true results and thus fail to provide reliable evidence for clinician decision-making.

Summary of Included SRs/MAs

As assessed by the methodological quality and reporting quality of the AMSTAR-2 and PRISMA 2020 scale, all SRs/ MAs were of very low methodological quality and incomplete reporting. All SRs/MAs were not registered with the study protocol. A study found that the research protocol helped to increase the transparency of the methods used and improve the overall methodological quality of SRs/MAs.³⁸ In terms of literature searches, only 5 SRs/MAs reported complete database search strategies, which made publication searches less reproducible and thus less reliable. In addition, there was a lack of manual searches versus grey literature searches (4/12, 33.3%), which may increase potential publication bias. The omission of the retrieval process may directly affect the results of pooling estimated effects. Most studies (11/ 12, 91.7%) did not provide lists of excluded articles, which may lead authors to incorrectly exclude key articles, thereby undermining the rigour of reporting. Only 2 (2/12, 16.7%) SRs/MAs provided a full source of research funding, which may reduce the confidence in the results of RCTs, as the results of industry-funded clinical trials may benefit funders. In addition, most SRs/MAs (10/12, 83.3%) were not assessed for quality of evidence, which was the significance of this overview.

For the GRADE assessment, only one of the 36 outcome measures assessed was of high quality. The most important downgrading factors for low quality of evidence were risk of bias and publication bias. Going back to the source, most RCTs claimed to perform randomization but did not clearly state the specific method by which randomization was achieved, secondly, these clinical trials do not describe whether and how allocation concealment was performed, and finally, there was a lack of blinding of both patients and outcome assessors. The reason for the high publication bias of the included outcomes was that the number of RCTs assessed by the outcome was insufficient, so that most of the outcomes were not assessed for publication bias, leading to downgrades.

In this study we also performed a comprehensive summary of RCTs included in SRs/MAs and performed a metaanalysis of relevant outcome indicators. For the evaluation of effective rate, acupuncture showed good advantages with low heterogeneity, which shows that the evidence is more reliable. In addition to this, acupuncture therapy was also effective in the improvement of MMSE with HDS, however, there was a high level of heterogeneity, which may

	Expe	erimen	tal	С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.1.1 CA+DT vs. DT									
Bo Sun 2011	11.8	2.9	30	9.7	2.5	30	10.4%	2.10 [0.73, 3.47]	-
Hui Zhao 2004	24.71	2.96	43	19.36	3.65	37	10.4%	5.35 [3.88, 6.82]	-
Jiamei Chu 2008	24.68	3.02	53	19.41	3.32	53	10.5%	5.27 [4.06, 6.48]	-
Ping Sun 2004	19.58	4.49	38	17.08	3.96	37	10.0%	2.50 [0.59, 4.41]	
Shenghui Zheng 2011	23	3.2	28	17.9	4.2	26	9.9%	5.10 [3.10, 7.10]	
Tao Yang 2017	18.84	4.01	34	17.03	4.25	32	9.9%	1.81 [-0.19, 3.81]	
Weiping Hao 2012	24.13	4.48	50	17.98	4.38	50	10.2%	6.15 [4.41, 7.89]	
Yang Liu 2011	9.5	3.94	30	7.33	2.98	30	10.1%	2.17 [0.40, 3.94]	
Subtotal (95% CI)			306			295	81.5%	3.84 [2.58, 5.10]	•
Test for overall effect: 2	z = 5.99 (1	= 33.0 ⊃ < 0.0	0, af = 0001)	7 (P < (0.0001); * = 7	9%		
1.1.2 SA+DT vs. DT									
Chang Liu 2020	23	6	35	35	6	22	8.7%	-12.00 [-15.20, -8.80]	
Xiaohong Dai 2013	18.95	4.41	33	17.12	4.16	32	9.8%	1.83 [-0.25, 3.91]	
Subtotal (95% CI)			68			54	18.5%	-5.03 [-18.58, 8.52]	
Heterogeneity: $Tau^2 = 9$ Test for overall effect: 2	93.74; Ch 7 = 0 73 (i² = 50. ⊃ = 0.4	40, df : 7)	= 1 (P <	0.000	01); l² :	= 98%		
		0.1	• ,						
Total (95% CI)			374			349	100.0%	2.25 [0.17, 4.33]	•
Heterogeneity: Tau ² = 7	10.29; Ch	i² = 128	3.12, di	f = 9 (P	< 0.00	001); l ^a	= 93%	-	
Test for overall effect: 2	2 = 2.12 (⊃ = 0.0	3)						Favours [experimental] Favours [control]
Test for subgroup differ	ences: C	hi² = 1.	63, df :	= 1 (P =	0.20).	l ² = 38	.7%		

Figure 6 Continued.

	Expe	erimen	tal	С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.1.1 EA vs. DT									
Jiangiang Li 2001	19.41	5.72	34	12.68	6.83	34	3.5%	6.73 [3.74, 9.72]	
Leilei Wang 2013	20.13	6.08	30	18.77	6.32	30	3.4%	1.36 [-1.78, 4.50]	
Qiaowei Li 2015	17.67	3.05	28	14.97	3.13	28	5.1%	2.70 [1.08, 4.32]	
Zhenhu Chen 2006	19.87	4.48	23	17.96	3.48	23	4.3%	1.91 [-0.41, 4.23]	<u>+</u>
Subtotal (95% CI)			115			115	16.2%	3.08 [1.09, 5.06]	
Heterogeneity: Tau ² = 2	2.48; Chi	² = 7.97	7, df = 3	3 (P = 0	.05); l²	= 62%			
Test for overall effect: 2	2 = 3.04 ((P = 0.0	002)		·				
1.1.2 TA vs. DT									
Ziping Li 2008 Subtotal (95% CI)	24.23	4.38	40 40	22.26	3.56	38 38	4.9% 4.9%	1.97 [0.20, 3.74] 1 .97 [0.20, 3.74]	•
Heterogeneity: Not app	licable								
Test for overall effect: 2	2 = 2.18 ((P = 0.0	03)						
1.1.3 SEA vs. DT									
Lizhu Hu 2017	25.76	3.24	30	23.5	3.61	30	5.0%	2.26 [0.52, 4.00]	
Zhibin Liu 2008	24.01	4.26	30	22.97	3.64	30	4.6%	1.04 [-0.97, 3.05]	
Subtotal (95% CI)			60			60	9.6%	1.74 [0.43, 3.05]	•
Heterogeneity: Tau ² = 0 Test for overall effect: 2	0.00; Chi Z = 2.59 (² = 0.8′ (P = 0.0	1, df = 009)	1 (P = 0	.37); l²	= 0%			
1.1.4 SA vs. DT									
Jingjing Hu 2009	18.45	5.42	31	18.56	6.13	30	3.6%	-0.11 [-3.02, 2.80]	
Peng An 2014	18.35	5.33	30	15.35	3.12	30	4.4%	3.00 [0.79, 5.21]	
Wenmin Niu 2007	23.08	4.26	30	22.19	3.64	30	4.6%	0.89 [-1.12, 2.90]	
Yichena Liu 2008	18.45	5.42	47	18.56	6.13	45	4.2%	-0.11 [-2.48, 2.26]	
Zhibin Liu 2007	24.01	4 26	60	22.97	3 64	60	5.3%	1 04 [-0 38 2 46]	
Subtotal (95% CI)	2		198		0.0.	195	22.2%	1.05 [0.08, 2.03]	◆
Heterogeneity: Tau ² = 0 Test for overall effect: 2).15; Chi Z = 2.12 (² = 4.5 (P = 0.0	5, df = 4 03)	4 (P = 0	.34); l²	= 12%			
1.1.5 CA vs. DT									
Bo Sun 2011	7 29	3.16	30	7 22	2.98	30	5.2%	0.07 [-1 48 1 62]	_ _
Ganghui Jiang 1998	19.63	7.32	33	14 53	7 72	33	2.9%	5 10 [1 47 8 73]	
Gaxi Ye 2011	22 01	4 26	35	17.97	3 64	34	4.8%	4 04 [2 17 5 91]	
Hongyan Zhang 2012	16 15	3 73	30	13 35	3 73	30	4.8%	2 80 [0 91 4 69]	
lianning Mi 2004	17 22	5 47	6/	15.50	6.01	32	4.0%	1 70 [-0 78 4 18]	
	27.06	3 17	29	10.02	3 /1	28	5.0%	7 90 [6 18 9 62]	
	10 15	5 12	20 120	15.10	6 1 2	20 120	5 2%	3 80 [2 43 5 35]	
Min Wang 2005	23.70	5.76	21	21 21	5 56	30	3 7%	2 01 [-0 83 / 85]	
Rui Zhang 2000	10.04	5.70	30	15 06	6.32	30	3.1 /0	2.01 [-0.03, 4.03]	
Yuofong Mong 2000	10.42	1.67	30	17 20	3.00	30	J.J /0	2 05 [0 12 , 0.04]	
Xueleng weng 2009	19.43	4.07 6.1F	3U 24	10.96	ວ.ອZ	20	4.4%	2.00 [-0.10, 4.20]	
Subtotal (95% CI)	23.08	0.10	اد ⊿62	19.00	0.2	ےد 120	3.3% 47 1%	3.22 [U.17, 0.27] 3.25 [1.80 4.70]	
Heterogeneity: $Tau^2 = 4$	1.58; Chi	² = 50.0	04, df =	: 10 (P <	< 0.000)01); l ² :	= 80%	0.20 [1.00, 4.70]	-
Test for overall effect: 2	Z = 4.40 ((P < 0.0	0001)						
Total (95% CI)			875			837	100.0%	2.51 [1.66, 3.36]	
Heterogeneity: Tau ² = 2 Test for overall effect: 2	2.98; Chi Z = 5.81 (² = 81.6 (P < 0.0	68, df = 00001)	: 22 (P <	< 0.000	001); l ² :	= 73%	-	-10 -5 0 5 10 Favours [experimental] Favours [control]

Figure 6 Forest plot on the HDS of acupuncture therapy for VaD. (A) Acupuncture+DT vs DT; (B) Acupuncture vs DT.

be explained, on the one hand, by the diversity of acupuncture point selection and, secondly, by the different ways of incorporating DT in VaD patients.

Implications for Future Research and Clinical Practice

Thromboembolism leads to decreased cerebral blood flow and chronic cerebral hypoperfusion with the development and progression of VaD, which causes cerebral hypoxia, inflammation, and oxidative stress, and ultimately leads to cognitive impairment.³⁹ Studies have shown that acupuncture can improve cognitive impairment by inhibiting inflammatory responses, anti-oxidative stress, improving vascular function and hippocampal synaptic plasticity, and promoting dopamine secretion.^{40,41} In addition to this, a preclinical meta-analysis of acupuncture for VaD showed that acupuncture

could enhance oxygen and glucose metabolism as well as anti-apoptotic and antioxidant properties to protect neurons during VaD.⁴²

For future SRs/MAs on this topic, it is strongly recommended to register or publish research protocols in advance on international platforms or academic journals (eg Cochrane Library, Medicine, BMJ Open, INPLASY, PROSPERO, etc.).⁴³ In the next published SRs/MAs, researchers need to supplement the grey literature search, the complete search strategy of each database, the list of excluded literature, and the list of funding support to improve the credibility and scientificity of the results.

High-quality SRs/MAs were derived from high-quality and large-sample clinical trials. Researchers should improve the top-level design of clinical research through comprehensive evaluation and detailed analysis. For acupuncture-related RCTs, the Consolidated Standard for Clinical Trial Reporting (CONSORT)⁴⁴ and the Standard for Precision Clinical Trial Intervention Reporting (STRICTA2010) should be adopted to improve the quality of evidence of RCTs and improve their guiding significance for clinical decision-making. In addition, the specificity of acupuncture treatment makes blinding of RCTs difficult. Although it is difficult to blind the clinical operator, it should be tried to blind the patient, outcome evaluators, and other caregivers, which can minimize the risk of bias. The selection of acupuncture points is diversified. With the development of evidence-based acupuncture, it is hoped that future clinical operation process of acupuncture (including point selection and operation methods). Finally, in future clinical trials, when discussing acupuncture treatment of VaD, the evaluation of hemorheology, lipid metabolism and various bioactive substances related to vasoconstriction can be added on the basis of the evaluation of acupuncture efficacy and safety, so as to better explore the internal mechanism of acupuncture.

Figure 7 Continued.

	Exp	erimental		c	ontrol			Mean Difference	Mean Difference
Study or Subaroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% CI	IV. Random. 95% CI
1.1.1 CA vs. DT									
Bo Sun 2011	39.37	5.22	30	39.37	6.55	30	2.6%	0.00 [-3.00, 3.00]	 _
Cuiru Lin 2012	35.57	6.94	20	40.37	8.02	20	2.6%	-4.80 [-9.45, -0.15]	
Dongming Xie 2019	45.21	6.15	28	51.63	8.62	28	2.6%	-6.42 [-10.34, -2.50]	
Gaxi Ye 2011	76.01	6.56	35	71.68	3.66	34	2.6%	4.33 [1.83, 6.83]	
Haivan Wang 2009	77.01	7.13	34	72.98	6.99	34	2.6%	4.03 [0.67, 7.39]	
Hongliang Cheng 2015	65.28	2.03	36	58.89	2.47	36	2.7%	6.39 [5.35, 7.43]	-
Jianping Mi 2004	54.82	31.66	32	49.98	29.66	32	2.2%	4.84 [-10,19, 19,87]	
Li Li 2020	43.72	3.99	28	52.06	3.68	28	2.7%	-8.34 [-10.35, -6.33]	
Lili Li 2014	18.45	5.42	120	53.59	23.26	120	2.6%	-35.14 [-39.41, -30.87]	•
Lingmin Qian 2014	26.4512	3.67894	96	27.6667	3.62691	48	2.7%	-1.22 [-2.48, 0.05]	
Li Xue 2013	36.18	5.86	50	44.35	7.31	50	2.6%	-8.17 [-10.77, -5.57]	
Li Zhou 2013	35.4	7.53	36	40.6	7.28	36	2.6%	-5.20 [-8.62, -1.78]	
Ming Wei 2013	66.36	15.35	31	55.62	11.67	30	2.6%	10.74 [3.91, 17.57]	
Min Wang 2005	43.27	5.63	30	46.8	6.7	30	2.6%	-3.53 [-6.66, -0.40]	
Renfeng Huang 2020	51.32	4.32	35	45.01	3.94	35	2.7%	6.31 [4.37, 8.25]	
Shanbin Sun 2009	87.62	0.6	28	61.79	0.75	26	2.7%	25.83 [25.47, 26,19]	
Sikang Li 2014	51.92	20.42	28	49.42	19.43	29	2.4%	2.50 [-7.85, 12.85]	
Xiaodong Bian 2009	66.29	31.39	30	55.84	18.64	30	2.3%	10.45 [-2.61, 23.51]	
Xiaoyan Wang 2011	36.9	7.34	20	36.25	8.75	20	2.6%	0.65 [-4.36, 5.66]	
Yeming Guan 2009	64.67	9.43	30	59.88	8.46	30	2.6%	4.79 [0.26, 9.32]	
Zhixuan Zhao 2013	20.2	2.22	30	23.03	2.81	30	2.7%	-2.83 [-4.11, -1.55]	
Subtotal (95% CI)			807			756	54.3%	0.15 [-7.38, 7.69]	
Heterogeneity: Tau ² = 302	2.33; Chi ² :	= 6940.63	df = 20) (P < 0.00	0001); l ² =	100%			
Test for overall effect: Z =	= 0.04 (P =	0.97)			,,				
1.1.2 SA vs. DT									
Chenlin Ye 2011	38.8	6 21	30	41.8	62	30	2.6%	-3 00 [-6 14 0 14]	
Gang Feng 2014	32.85	13.56	21	29.99	13.87	21	2.5%	2 86 [-5 44 11 16]	
Jinging Hu 2009	32.36	20.68	31	33 59	23.26	30	2.0%	-1 23 [-12 29 9 83]	
Licup Wang 2007	39.41	13 55	30	42.98	15 56	30	2.4%	-3 57 [-10 95 3 81]	
Peng An 2014	24.96	2.65	30	28 15	3 24	30	2.0%	-3.19 [-4.69 -1.69]	
Sikang Li 2012	55.4	2.00	40	50.4	17.5	40	2.7%	5 00 [-3 64 13 64]	
Wenmin Niu 2014	36 13	9.53	40	38.89	10.25	40	2.6%	-2 76 [-7 10 1 58]	——————————————————————————————————————
Subtotal (95% CI)			222			221	17.8%	-2.81 [-4.05, -1.57]	\bullet
Heterogeneity: Tau ² = 0.0	00; Chi ² = 5	5.31, df = 6	6 (P = 0	.50); I² = 0)%				
l est for overall effect: Z =	= 4.46 (P <	0.00001)							
1.1.3 EA vs. DT									
Feizhi Mo 2000	65.29	31.99	30	59.84	18.64	30	2.3%	5.45 [-7.80, 18.70]	
Hong Zhao 2006	49.07	14.07	30	53.4	12.77	30	2.6%	-4.33 [-11.13, 2.47]	
Jianqiang Li 2001	65.29	31.99	34	59.84	18.64	34	2.3%	5.45 [-7.00, 17.90]	
Jingyang Shi 2012	38.9	2.55	28	34.75	2.4	30	2.7%	4.15 [2.87, 5.43]	
Qiaowei Li 2015	48.19	8.23	28	42.31	7.23	28	2.6%	5.88 [1.82, 9.94]	
Zhenhu Chen 2006	37.39	12.93	23	31.52	10.37	23	2.6%	5.87 [-0.90, 12.64]	
Subtotal (95% CI) Heterogeneity: $Tau^2 = 2.5$	0. Chi ² = 7	00 df = F	1/3 5 (P = 0	22): l ² = 2	0%	1/5	15.0%	3.92 [1.53, 6.32]	•
Test for overall effect: Z =	= 3.21 (P =	0.001)	, (i – 0	.22), 1 - 2	.570				
1.1.4 SEA vs DT									
Hong Zhang 2006 a	39 667	11 713	24	37 25	11 375	28	2.6%	2 42 [-3 88 8 72]	
Hong Zhang 2006 b	39.13	11 671	23	36 542	12 137	24	2.0%	2.59 [-4.22 9.30]	
Hong Zhang 2008 b	41 40	11 77	78	45 51	15 59	2- 1 81	2.6%	-4 02 [-8 30 0 26]	
Lizhu Hu 2017	66.23	15.24	30	53 51	12.65	30	2.5%	12 72 [5 63 19 81]	
Xiaohong Peng 2009	43.67	12 181	27	43.85	13 395	26	2.5%	-0.18 [-7.08 6 72]	
Subtotal (95% CI)	40.07	12.101	182	+0.00	10.000	189	12.8%	2.39 [-3.15. 7.93]	
Heterogeneity: Tau ² = 29. Test for overall effect: Z =	.73; Chi² = : 0.84 (P =	16.30, df 0.40)	= 4 (P =	: 0.003); l ²	² = 75%				
Total (95% CI)			1384			1341	100 0%	0.82 [-4 46 6 09]	
Heterogeneity: $T_{2}u^2 = 27$	1 27· Chi2	= 8445 59	df = 20		1001\· I2 -	100%	100.0 /0	0.02 [-4.40, 0.03]	++ <u> </u>
Tost for overall offect: 7 -	1.27, UII ²	- 0440.00 0.76\	, ui – 38	י ער < 0.00	500 i); i- =	100%			-20 -10 0 10 20
i catilor overall ellect. Z =	· 0.00 (F =	0.10)	- 2 (D	< 0.0001)	12 - 00 4	0/			Favours [experimental] Favours [control]

Figure 7 Forest plot on the ADL of acupuncture therapy for VaD. (A) Acupuncture+DT vs DT; (B) Acupuncture vs DT.

Strength and Limitations

The rapid growth in the number of SRs/MAs in acupuncture for VaD highlights the evidence-based challenges facing medical clinical decision-makers and researchers. This overview will help inform evidence-based decision-making and guide future high-quality research by assessing the methodological, reporting, and evidence quality of current high-level evidence. However, this study also inevitably has some limitations. First, the quality of the SRs/MAs included in this research was unsatisfactory, so it may not be possible to draw firm conclusions about the clinical efficacy and safety of

Experimental Mean Difference Mean Difference Α Control IV, Random, 95% CI Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI 1.1.1 EA vs. DT Feizhi Mo 2000 20.68 6.07 30 21.23 4.96 18.0% -0.55 [-3.36, 2.26] 30 Ganghui Jiang 1998 21.04 6.13 33 23 16 6 27 33 15.8% -2.12 [-5.11, 0.87] Jianqiang Li 2001 20.68 6.07 34 21.23 4.96 34 20.4% -0.55 [-3.18, 2.08] Subtotal (95% CI) 97 97 54.2% -1.01 [-2.62, 0.61] Heterogeneity: Tau² = 0.00; Chi² = 0.75, df = 2 (P = 0.69); I² = 0% Test for overall effect: Z = 1.22 (P = 0.22) 1.1.2 SA vs. DT Zhibin Liu 2007 12.98 6.86 60 14.01 1.06 60 45.8% -1.03 [-2.79, 0.73] Subtotal (95% CI) 45.8% -1.03 [-2.79, 0.73] 60 60 Heterogeneity: Not applicable Test for overall effect: Z = 1.15 (P = 0.25) Total (95% CI) 157 157 100.0% -1.02 [-2.21, 0.17] Heterogeneity: Tau² = 0.00; Chi² = 0.75, df = 3 (P = 0.86); I² = 0% -10 10 -5 5 Test for overall effect: Z = 1.68 (P = 0.09) Favours [experimental] Favours [control] Test for subgroup differences: $Chi^2 = 0.00$, df = 1 (P = 0.99), I² = 0% Mean Difference Experimental Mean Difference Control В Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI 1.1.1 CA vs. DT Dongming Xie 2019 10.56 2.31 28 14.32 2.18 28 57.2% -3.76 [-4.94, -2.58] Gaxi Ye 2011 18.11 8.84 35 23.61 7.86 5.1% -5.50 [-9.44, -1.56] 34 Rui Zhang 2010 -4.32 [-8.38, -0.26] 10.46 8.02 30 14.78 8.03 30 4.8% Tao Yang 2017 10.08 9.47 53 14.38 4.62 53 9.8% -4.30 [-7.14, -1.46] Xu Yun 2020 10.07 9.32 40 15.31 4.39 40 7.8% -5.24 [-8.43, -2.05] Subtotal (95% CI) -4.09 [-5.06, -3.13] 186 185 84.6% Heterogeneity: Tau² = 0.00; Chi² = 1.32, df = 4 (P = 0.86); I² = 0% Test for overall effect: Z = 8.30 (P < 0.00001)1.1.2 EA vs. DT Feizhi Mo 2000 10.65 8.22 30 11.88 8.05 30 4.7% -1.23 [-5.35, 2.89] -1.23 [-5.10, 2.64] Jiangiang Li 2001 10.65 8.22 34 11 88 8 05 34 5.3% Zhenhu Chen 2006 18.09 6.77 23 21.87 6.47 23 5.4% -3.78 [-7.61, 0.05] Subtotal (95% CI) 87 87 15.4% -2.13 [-4.40, 0.14] Heterogeneity: Tau² = 0.00; Chi² = 1.11, df = 2 (P = 0.58); I² = 0% Test for overall effect: Z = 1.84 (P = 0.07) Total (95% CI) 273 272 100.0% -3.79 [-4.68, -2.90] Heterogeneity: Tau² = 0.00; Chi² = 4.88, df = 7 (P = 0.68); I² = 0% -10 0 5 10 -5 Test for overall effect: Z = 8.36 (P < 0.00001)Favours [experimental] Favours [control] Test for subgroup differences: $Chi^2 = 2.44$, df = 1 (P = 0.12), l² = 59.1% Experimental Mean Difference Mean Difference С Control Study or Subgroup SD Total SD Total Weight IV, Random, 95% CI Mean Mean IV, Random, 95% Cl 1.1.1 SEA vs. DT Hong Zhao 2006 14.7 5.03 30 16.13 4.75 30 13.9% -1.43 [-3.91, 1.05] Jing Wang 2014 30 30 16.8% -3.70 [-5.61, -1.79] 9.1 3.52 12.8 4.02 Subtotal (95% CI) 60 60 30.7% -2.71 [-4.91, -0.50] Heterogeneity: Tau² = 1.30; Chi² = 2.02, df = 1 (P = 0.15); I² = 51% Test for overall effect: Z = 2.40 (P = 0.02)

1.1.2 CA vs. DT									
Li Zhou 2013	14.939	3.81581	96	16.3095	3.85397	48	20.0%	-1.37 [-2.70, -0.04]	
Ming Wei 2013	8.27	4.14	30	11.2	4.62	30	15.2%	-2.93 [-5.15, -0.71]	
Tao Yu 2007	13.17	1.34	30	17.63	2.11	30	22.2%	-4.46 [-5.35, -3.57]	
Xiaoyan Wang 2011	7.55	4.5	20	8.5	5	20	11.8%	-0.95 [-3.90, 2.00]	
Subtotal (95% CI)			176			128	69.3%	-2.59 [-4.52, -0.65]	
Heterogeneity: Tau ² =	2.99; Chi	² = 17.08, 0	df = 3	P = 0.000	7); l² = 82%	6			
Test for overall effect:	Z = 2.62	(P = 0.009))						
Total (95% CI)			236			188	100.0%	-2.65 [-4.05, -1.24]	◆
Heterogeneity: Tau ² =	2.11; Chi	² = 19.39, o	df = 5	P = 0.002); I² = 74%				
Test for overall effect: Z = 3.68 (P = 0.0002)									-4 -2 U Z 4
		· · · · · · · · · · · · · · · · · · ·	1						Favours (experimental) Favours (control)

Figure 8 Forest plot on the acupuncture vs DT of acupuncture therapy for VaD. (A) FAQ; (B) NIHSS; (C) SDSVD.

Test for subgroup differences: $Chi^2 = 0.01$, df = 1 (P = 0.94), I² = 0%

Outcome Indicators	Egger's Regression		
	z	P value	
Effective Rate (Acupuncture vs DT)	5.83	0	
Effective Rate (Acupuncture+DT vs DT)	1.45	0.1483	
MMSE (Acupuncture vs DT)	- 4 . I	0	
MMSE (Acupuncture+DT vs DT)	-1.36	0.1749	
HDS (Acupuncture vs DT)	0.86	0.3883	
HDS (Acupuncture+DT vs DT)	-4.8	0	
ADL (Acupuncture vs DT)	0.56	0.5786	
ADL (Acupuncture+DT vs DT)	1.48	0.1395	

 Table 5 Publication Bias of Outcome Indicators

acupuncture for VaD. Second, there may be differences in the subjective evaluations of the evaluators, leading to bias and affecting the research results.

Conclusion

This study shows that acupuncture is effective and safe for VaD patients. However, these results should be treated with caution in clinical decision-making due to flaws in methodological, evidence, and reporting quality related to SRs/MAs and original clinical trials.

Funding

Shandong Province 2021 Qilu Medical School TCM Characteristic Technology Arrangement and Promotion Project, No. 20214515, "Qilu Dragon Tiger Battle Analgesic Acupuncture TCM Characteristic Technology".

Supplementary Material

Supplementary File 1: Search strategy for all databases.

Disclosure

The authors declare no conflict of interest.

References

- 1. Smith EE. Clinical presentations and epidemiology of vascular dementia. Clin Sci (Lond). 2017;131(11):1059–1068. doi:10.1042/CS20160607
- Cornelis E, Gorus E, Beyer I, Bautmans I, De Vriendt P. Early diagnosis of mild cognitive impairment and mild dementia through basic and instrumental activities of daily living: development of a new evaluation tool. *PLoS Med.* 2017;14(3):e1002250. doi:10.1371/journal.pmed.1002250
 Shi H, Sun F, Yang T, et al. Construction of a ceRNA immunoregulatory network related to the development of vascular dementia through a
- Shi H, Sun F, Yang T, et al. Construction of a ceRNA immunoregulatory network related to the development of vascular dementia through a weighted gene coexpression network analysis [published correction appears in Ann Transl Med. 2021 Jul;9(13):1110]. Ann Transl Med. 2021;9 (10):858. doi:10.21037/atm-21-1717
- 4. O'Brien JT, Thomas A. Vascular dementia. Lancet. 2015;386(10004):1698-1706. doi:10.1016/S0140-6736(15)00463-8
- Realdon O, Rossetto F, Nalin M, et al. Technology-enhanced multi-domain at home continuum of care program with respect to usual care for people with cognitive impairment: the Ability-TelerehABILITation study protocol for a randomized controlled trial. *BMC Psychiatry*. 2016;16 (1):425. doi:10.1186/s12888-016-1132-y
- 6. Shi H, Dong C, Wang M, et al. Exploring the mechanism of Yizhi Tongmai decoction in the treatment of vascular dementia through network pharmacology and molecular docking. *Ann Transl Med.* 2021;9(2):164. doi:10.21037/atm-20-8165
- Tian D, Gao Q, Chang Z, Lin J, Ma D, Han Z. Network pharmacology and in vitro studies reveal the pharmacological effects and molecular mechanisms of Shenzhi Jiannao prescription against vascular dementia. *BMC Complement Med Ther.* 2022;22(1):33. doi:10.1186/s12906-021-03465-1
- 8. Soler A, Amer G, Leiva A, et al. Continuation versus discontinuation of treatment for severe dementia: randomized, pragmatic, open-label, clinical trial to evaluate the efficacy of continuing drug treatment in patients with severe dementia (STOP-DEM). *BMC Geriatr.* 2019;19(1):101. doi:10.1186/s12877-019-1122-2
- 9. Ma C, Zhou Y, Yi W, et al. Electroacupuncture of the Baihui and Shenting acupoints for vascular dementia in rats through the miR-81/IL-16/PSD-95 pathway. Ann Transl Med. 2022;10(10):540. doi:10.21037/atm-22-2068
- 10. Siddaway AP, Wood AM, Hedges LV. How to do a systematic review: a best practice guide for conducting and reporting narrative reviews, metaanalyses, and meta-syntheses. *Annu Rev Psychol.* 2019;70:747–770. doi:10.1146/annurev-psych-010418-102803

- 11. Yao L, Sun R, Chen YL, et al. The quality of evidence in Chinese meta-analyses needs to be improved. J Clin Epidemiol. 2016;74:73–79. doi:10.1016/j.jclinepi.2016.01.003
- 12. Shi H, Dong C, Chang H, et al. Evidence quality assessment of tai chi exercise intervention in cognitive impairment: an overview of systematic review and meta-analysis. *Evid Based Complement Alternat Med.* 2022;2022:5872847. doi:10.1155/2022/5872847
- Shi H, Zhao L, Cui L, et al. A critical overview of systematic reviews and meta-analyses of acupuncture for female stress urinary incontinence. *Pain Res Manag.* 2022;2022:5887862. doi:10.1155/2022/5887862
- Dong C, Shi H, Liu P, Si G, Yan Z. A critical overview of systematic reviews and meta-analyses of light therapy for non-seasonal depression. Psychiatry Res. 2022;314:114686. doi:10.1016/j.psychres.2022.114686
- 15. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th Text Version (DSM-IV). Washington, DC: American Psychiatric Association; 2000.
- 16. Chinese Medical Association Psychiatry Branch. CCMD-3 Chinese Mental Disorder Classification and Diagnostic Criteria. Shandong Science and Technology Press; 2001.
- McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging and the Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. *Alzheimers Dement*. 2011;7:263– 269. doi:10.1016/j.jalz.2011.03.005
- 18. World Health Organization. The ICD-10 Classification of Metal and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. World Health Organization; 1992.
- Shi GX, Liu CZ, Guan W, et al. Effects of acupuncture on Chinese medicine syndromes of vascular dementia. Chin J Integr Med. 2014;20(9):661– 666. doi:10.1007/s11655-013-1323-4
- 20. Tian JZ, Han MX. The diagnosis, syndrome differentiation and evaluation standard of vascular dementia. *Beijing Zhong Yi Yao da Xue Xue Bao*. 2000;23:15–24.
- 21. Yi Z, Zhi Z. The diagnosis, syndrome differentiation and evaluation criteria of senile dementia (discussion draft). JAMA. 1991;1991:56.
- Guo Q, Yi Z, Fang Y, et al. China Association of Chinese Medicine clinical research guiding principle for the new Chinese herbal medicine in the treatment of dementia. JAMA. 2003;2003:30–32.
- Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008. doi:10.1136/bmj.j4008
- 24. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906. doi:10.1016/j.ijsu.2021.105906
- Pollock A, Farmer SE, Brady MC, et al. An algorithm was developed to assign GRADE levels of evidence to comparisons within systematic reviews. J Clin Epidemiol. 2016;70:106–110. doi:10.1016/j.jclinepi.2015.08.013
- Lan J, Miao JF, Ge SQ, et al. Acupuncture for Cognitive Impairment in Vascular Dementia, Alzheimer's Disease and Mild Cognitive Impairment: a systematic review and meta-analysis. *Eur J Integr Med.* 2020;35:101085. doi:10.1016/j.eujim.2020.101085
- Chen Y, Wang H, Sun Z, et al. Effectiveness of acupuncture for patients with vascular dementia: a systematic review and meta-analysis [published online ahead of print, 2022 Jul 16]. Complement Ther Med. 2022;70:102857. doi:10.1016/j.ctim.2022.102857
- 28. Yanbei C. A systematic review of acupuncture improving cognitive function in patients with vascular dementia. *Chengdu Univ Trad Chin Med.* 2016;2016:115.
- 29. Fei L, Yuanyuan W, Yiqin Y, Jie Y. A meta-analysis of tiaoshen tongdu acupuncture for vascular dementia. *Clin J Trad Chin Med.* 2019;31 (10):1863–1867. doi:10.16448/j.cjtcm.2019.0544
- Tong L, Qi H, Fengxia L. Systematic review and meta-analysis of acupuncture in the treatment of vascular dementia. *Shanghai J Acupunct*. 2019;38(09):1058–1064. doi:10.13460/j.issn.1005-0957.2019.09.1058
- 31. Chuan P. Meta-analysis of acupuncture in the treatment of vascular dementia. Chongging Med Univ. 2013;2013:114.
- 32. Weina P, Hong Z, Zhishun L, Baoyan L. A systematic review of electroacupuncture in the treatment of vascular dementia. *China Acupunct*. 2004;2004(05):3–7.
- Ting W, Min L, Xiaoyan P, Lidan Z, Xin Z. Meta-analysis of clinical randomized controlled trials of electroacupuncture on vascular dementia. J Liaoning Univ Trad Chin Med. 2017;19(08):67–69. doi:10.13194/j.issn.1673-842x.2017.08.018
- 34. Jiamin W, Yingqi L, Xinhao L, Guangyao L, Ting W, Min L. Meta-analysis of the clinical efficacy difference between electroacupuncture and nimodipine in the treatment of vascular dementia. Clin J Acupunct Moxibust. 2018;34(12):51–55 +95.
- 35. Ming X. A systematic review of acupuncture and moxibustion in the treatment of vascular dementia. Chengdu Univ Trad Chin Med. 2015;2015:100.
- Tong L, H Q, Fengxia L. Systematic review and meta-analysis of acupuncture for vascular dementia. Shanghai J Acupunct. 2019;38(09):1058–1064. doi:10.13460/j.issn.1005-0957.2019.09.1058
- 37. Manjia Z, Hong Z. Meta-analysis of different acupuncture methods in the treatment of vascular dementia. *Liaoning J Trad Chin Med.* 2009;36 (09):1475–1477. doi:10.13192/j.ljtcm.2009.09.39.zhumj.012
- Ge L, Tian JH, Li YN, et al. Association between prospective registration and overall reporting and methodological quality of systematic reviews: a meta-epidemiological study. J Clin Epidemiol. 2018;93:45–55. doi:10.1016/j.jclinepi.2017.10.012
- 39. Venkat P, Chopp M, Chen J. Models and mechanisms of vascular dementia. Exp Neurol. 2015;272:97-108. doi:10.1016/j.expneurol.2015.05.006
- 40. Ye Y, Zhu W, Wang XR, et al. Mechanisms of acupuncture on vascular dementia-A review of animal studies. *Neurochem Int.* 2017;107:204–210. doi:10.1016/j.neuint.2016.12.001
- 41. Du SQ, Wang XR, Zhu W, et al. Acupuncture inhibits TXNIP-associated oxidative stress and inflammation to attenuate cognitive impairment in vascular dementia rats. CNS Neurosci Ther. 2018;24(1):39–46. doi:10.1111/cns.12773
- 42. Zhang ZY, Liu Z, Deng HH, Chen Q. Effects of acupuncture on vascular dementia (VD) animal models: a systematic review and meta-analysis. BMC Complement Altern Med. 2018;18(1):302. doi:10.1186/s12906-018-2345-z
- Shi H, Liu T, Dong C, et al. Scientific evidence of traditional Chinese exercise (Qigong) for chronic obstructive pulmonary disease: an overview of systematic reviews and meta-analyses. *Biomed Res Int.* 2022;2022:7728973. doi:10.1155/2022/7728973
- 44. Svenkerud S, MacPherson H. The impact of STRICTA and CONSORT on reporting of randomised control trials of acupuncture: a systematic methodological evaluation. *Acupunct Med.* 2018;36(6):349–357. doi:10.1136/acupmed-2017-011519

Neuropsychiatric Disease and Treatment

Dovepress

Publish your work in this journal

Neuropsychiatric Disease and Treatment is an international, peer-reviewed journal of clinical therapeutics and pharmacology focusing on concise rapid reporting of clinical or pre-clinical studies on a range of neuropsychiatric and neurological disorders. This journal is indexed on PubMed Central, the 'PsycINFO' database and CAS, and is the official journal of The International Neuropsychiatric Association (INA). The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/neuropsychiatric-disease-and-treatment-journal