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Abstract: The conversion of ammonia into urea by the human liver requires the coordinated 

function of the 6 enzymes and 2 transporters of the urea cycle. The initial and rate-limiting 

enzyme of the urea cycle, carbamylphosphate synthetase 1 (CPS1), requires an allosteric 

activator, N-acetylglutamate (NAG). The formation of this unique cofactor from glutamate 

and acetyl Coenzyme-A is catalyzed by N-acetylglutamate synthase (NAGS). An absence of 

NAG as a consequence of NAGS deficiency may compromise flux through CPS1 and result in 

hyperammonemia. The NAGS gene encodes a 528-amino acid protein, consisting of a C-terminal 

catalytic domain, a variable segment, and an N-terminal mitochondrial targeting signal. Only 22 

mutations in the NAGS gene have been reported to date, mostly in the catalytic domain. NAGS 

is primarily expressed in the liver and intestine. However, it is also surprisingly expressed in 

testis, stomach and spleen, and during early embryonic development at levels not concordant 

with the expression of other urea cycle enzymes, CPS1, or ornithine transcarbamylase. The 

purpose of NAGS expression in these tissues, and its significance to NAGS deficiency is as yet 

unknown. Inherited NAGS deficiency is the rarest of the urea cycle disorders, and we review 

the currently reported 34 cases. Treatment of NAGS deficiency with N-carbamyglutamate, a 

stable analog of NAG, can restore deficient urea cycle function and normalize blood ammonia 

in affected patients.

Keywords: urea cycle, urea cycle disorder, N-acetyl-L-glutamate, N-acetylglutamate synthase, 

hyperammonemia, N-carbamyl-L-glutamate

Introduction
In humans, detoxification of ammonia occurs in the liver via the urea cycle, a biochemi-

cal pathway consisting of 6 enzymes and 2 mitochondrial membrane transporters.1,2 

The metabolic consequence of a defect in any step of the urea cycle has been well 

documented in man.1–3 A common feature of all urea cycle disorders is elevated blood 

ammonia which may lead to mental retardation, coma, and possibly death.

N-acetylglutamate (NAG) is the required allosteric activator of carbamylphosphate 

synthetase (CPS1; EC 6.4.3.16), the first and rate limiting enzyme of urea cycle.4,5 

NAG, in turn, is synthesized from glutamate and acetyl Co-enzyme A6,7 by the hepatic 

mitochondrial enzyme, N-acetylglutamate synthase (NAGS; EC 2.3.1.1). In the 

absence of NAG, the activity of CPS1 is virtually nil,8,9 thus a deficiency of NAGS 

(MIM #237310) may result in hyperammonemia.

Herein, we describe the clinical and biochemical phenotype of NAGS deficiency, 

review the current published mutations in the NAGS gene, discuss the epidemiology 

of NAGS deficiency and review its treatment with N-carbamylglutamate.
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NAGS deficiency
In humans, the only known sequelae of NAGS deficiency 

result from decreased flux through the CPS1 reaction.10 

Indeed, the clinical and biochemical features of NAGS defi-

ciency are identical to those seen in CPS1 deficiency.

In published cases to date, NAGS deficiency has pre-

sented at ages ranging from the neonatal period11 to the fifth 

decade of life.12 Clinical features of NAGS deficiency are 

those resulting from hyperammonemia, and include poor 

feeding, vomiting, altered level of consciousness, seizures, 

and coma. Patients with late-onset NAGS deficiency may 

present with chronic headaches and nausea. In such patients, 

acute decompensation has been precipitated by illness,13 

pregnancy,14,15 or surgery,16 and symptoms include confusion 

and combativeness.

Biochemical features of NAGS deficiency include an 

elevated plasma ammonia and glutamine, whereas the 

concentrations of other urea cycle intermediates are low-to-

normal. As in other proximal urea cycle disorders, plasma 

citrulline is frequently low or undetectable.16–29 However, 

unlike in OTC deficiency,30 urinary orotic acid is not elevated, 

as the interruption in the urea cycle occurs before the forma-

tion of carbamylphosphate.

Initial diagnoses of NAGS deficiency were based on 

measurements of hepatic NAGS activity,11,31 but in some 

cases, enzymatic assays were not reliable.32–35 Cloning of the 

human NAGS gene in 200236 has allowed molecular testing 

to become the primary method of diagnosis. Mutations in the 

coding region of the NAGS gene have been identified in all but 

1 reported case of NAGS deficiency since 2002 (Table 1).

The NAGS gene and transcript
The existence of mammalian NAGS was inferred over 50 

years ago after NAG was identified as an obligate cofac-

tor required in the biosynthesis of urea.4 Nevertheless, the 

mammalian NAGS gene was the last urea cycle gene to be 

cloned,36 probably due to the poor conservation of the NAGS 

protein sequence compared with that of the other urea cycle 

enzymes.37 The human NAGS gene is located on chromosome 

17q21.31 and consists of 7 exons and 6 introns covering 

slightly less than 5 kb.36 The human NAGS open reading 

frame encodes a 528-amino acid protein.36 A comparison 

of amino acid sequences of NAGS from 7 mammalian spe-

cies revealed 3 regions with different degrees of sequence 

conservation. At the N-terminus is a 50-amino acid-long 

mitochondrial targeting signal (MTS). This is followed by a 

40- to 46-amino acid-long variable segment and a C-terminus 

conserved segment.6,36 The MTS has approximately 60% 

sequence conservation in mammalian NAGS and removal 

of the MTS results in what is dubbed mature NAGS.38 The 

variable segment is poorly conserved in mammalian NAGS 

and is not required for NAGS enzymatic activity.39 The rest 

of the protein, the conserved segment, has 90% sequence 

identity across mammalian species, and contains the 

catalytic site and the binding site for the allosteric activator 

L-arginine.37,40

Mutations in the NAGS gene
NAGS deficiency is an autosomal recessive disorder, thus 

affected individuals carry a mutation in each of their NAGS 

alleles, whereas heterozygous carriers are unaffected. 

Twenty-two disease-causing mutations in the NAGS coding 

sequence and in intron/exon boundaries have been reported 

to date (Table 1). Although at present 2 mutations occurred 

in more than 1 family (T431I and W324X), there do not 

appear to be any mutational hot spots in the NAGS gene. 

This is particularly surprising given that the NAGS coding 

sequence is GC-rich (67% GC content) and contains 135 

CpG dinucleotides.14 Interestingly, most single base pair 

replacements in the NAGS coding sequence do not occur in 

these dinucleotides.14 Identified deleterious mutations in the 

NAGS gene include 15 missense, 1 nonsense, 4 frame-shift, 

and 2 splice-site mutations.14

A limited genotype-phenotype correlation may be inferred 

from affected patients who were homozygous for mutations 

in the NAGS gene. Homozygosity for nonsense or frameshift 

mutations, predicted to cause truncation of the NAGS protein 

and thus complete absence of functional NAGS enzyme, 

resulted in a neonatal presentation in 4 patients.21,36,41,42 

Homozygosity for missense NAGS mutations, depending on 

the effect of the single amino-acid substitution, may result in 

either absent NAGS function or diminished but significant 

residual NAGS activity. The presence of residual enzyme 

activity, as demonstrated in purified recombinant enzyme, 

is the likely explanation for a later non-neonatal presenta-

tion in some affected patients.14,16,42 In contrast, a neonatal 

presentation was observed in patients who were homozygous 

for missense mutations of conserved residues (eg, S410P) 

or where a hydrophobic residue was substituted with a polar 

or charged amino acid (eg, W484R and A518T).24,28,29,42 Four 

affected patients were homozygous for missense alterations 

involving replacement of an amino acid with proline, which 

is likely to disrupt the NAGS secondary structure resulting 

in enzyme with little or no activity.29,43–45 To date, no single 

amino-acid substitutions have been reported within either 

the mitochondrial targeting signal or the variable segment 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


The Application of Clinical Genetics 2011:4 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

129

N-acetylglutamate synthase deficiency

T
ab

le
 1

 C
lin

ic
al

 p
re

se
nt

at
io

n,
 g

en
ot

yp
e,

 N
-c

ar
ba

m
yl

gl
ut

am
at

e 
(N

C
G

) 
tr

ea
tm

en
t 

an
d 

ou
tc

om
e 

of
 3

4 
pa

tie
nt

s 
re

po
rt

ed
 t

o 
ha

ve
 N

A
G

S 
de

fic
ie

nc
y

Fa
m

ily
P

at
ie

nt
O

ns
et

 o
f  

sy
m

pt
om

s
P

re
se

nt
at

io
n

G
en

ot
yp

e
O

ns
et

 o
f  

N
C

G
 t

he
ra

py
In

it
ia

l N
C

G
 d

os
e

C
hr

on
ic

 N
C

G
 d

os
e

O
ut

co
m

e
R

ef
er

en
ce

 1
*

 1
FH

, 3
 d

A
sy

m
pt

om
at

ic
10

 d
10

0 
m

g/
kg

/d
18

0 
m

g/
kg

/d
 a

t 
13

 m
A

ta
xi

a,
 s

pa
st

ic
ity

,  
ps

yc
ho

m
ot

or
  

re
ta

rd
at

io
n,

 d
ea

th
 a

t 
9 

y

Ba
ch

m
an

 e
t 

al
51

 
Ba

ch
m

an
 e

t 
al

11
  

Sc
hu

bi
ge

r 
et

 a
l49

 2
 2

6 
d

Po
or

 fe
ed

in
g,

 t
ac

hy
pn

ea
,  

so
m

no
le

nc
e

N
/A

D
ea

th
 a

t 
8 

d
Ba

ch
m

an
 e

t 
al

17

 3
*

 3
13

 m
D

ec
re

as
ed

 le
ve

l o
f  

co
nc

io
us

ne
ss

 fo
llo

w
in

g 
 

fe
br

ile
 il

ln
es

s

N
/A

D
ea

th
 a

t 
13

 m
el

pe
le

g 
et

 a
l22

 4
‡

 4
5 

w
Se

iz
ur

es
 fo

llo
w

in
g 

a 
vi

ra
l  

ga
st

ro
en

te
ri

tis
N

/A
N

or
m

al
 d

ev
el

op
m

en
t 

 
at

 1
8 

m
Pa

nd
ya

 e
t 

al
27

 5
FH

, 2
6 

d
D

ia
rr

he
a

N
/A

M
ild

 p
sy

ch
om

ot
or

  
re

ta
rd

at
io

n 
an

d 
 

sp
as

tic
ity

 a
t 

6 
m

 5
 6

2 
m

Fr
eq

ue
nt

 e
pi

so
de

s 
 

of
 v

om
iti

ng
 a

nd
 le

th
ar

gy
,  

hy
po

to
ni

a

N
/A

Pr
of

ou
nd

 p
sy

ch
om

ot
or

  
re

ta
rd

at
io

n 
at

 2
 y

Bu
rl

in
a 

et
 a

l18

 6
 7

4 
y 

10
 m

v
om

iti
ng

, l
et

ha
rg

y,
  

he
pa

to
m

eg
al

y
N

/A
N

or
m

al
 d

ev
el

op
m

en
t 

 
at

 5
 y

 7
 m

v
oc

kl
ey

 e
t 

al
34

 7
 8

3-
4 

d
Po

or
 fe

ed
in

g,
 s

ei
zu

re
s

S4
10

P/
S4

10
P

25
 d

22
0 

m
g/

kg
/d

80
 m

g/
kg

/d
 a

t 
1 

y
N

or
m

al
 d

ev
el

op
m

en
t 

 
at

 1
 y

G
uf

fo
n 

et
 a

l24
 

Sc
hm

id
t 

et
 a

l29

 9
FH

, 1
 d

A
sy

m
pt

om
at

ic
1 

d
11

4 
m

g/
kg

 ×
 1

 d
os

e
N

or
m

al
 d

ev
el

op
m

en
t

G
uf

fo
n 

et
 a

l23

 8
10

1.
5 

y
C

on
fu

si
on

, c
om

ba
tiv

e 
 

be
ha

vi
or

20
 y

60
 m

g/
kg

/d
50

 m
g/

kg
/d

 a
t 

22
 y

C
er

eb
ra

l d
ys

fu
nc

tio
n,

  
pa

ra
pl

eg
ia

, i
nc

on
tin

en
ce

  
at

 2
2 

y

H
in

ni
e 

et
 a

l25

 9
11

3-
4 

d
Po

or
 fe

ed
in

g,
 v

om
iti

ng
,  

cy
cl

in
g 

m
ov

em
en

ts
 a

nd
  

fis
t 

cl
en

ch
in

g

af
te

r 
10

 w
10

0 
m

g/
kg

/d
10

0 
m

g/
kg

/d
  

at
 2

0 
m

N
or

m
al

 d
ev

el
op

m
en

t 
 

at
 2

0 
m

M
or

ri
s 

et
 a

l26

10
12

13
 m

v
om

iti
ng

, s
om

no
le

nc
e,

  
hy

po
to

ni
a

A
27

9P
/A

27
9P

13
 y

10
0 

m
g/

kg
/d

10
0 

m
g/

kg
/d

iQ
 =

 7
8 

at
 1

3 
y

Pl
ec

ko
 e

t 
al

28
 

H
ab

er
le

 e
t 

al
42

11
13

2.
7 

y
Pa

ro
xy

sm
al

 c
ry

in
g,

  
le

th
ar

gy
, m

ea
t 

an
d 

da
ir

y 
 

av
er

si
on

, “
R

ey
e 

 
sy

nd
ro

m
e”

 a
fte

r 
 

va
lp

ro
at

e 
ad

m
in

is
tr

at
io

n

4 
y

10
0 

m
g/

kg
/d

10
0 

m
g/

kg
/d

M
en

ta
l d

ev
el

op
m

en
t 

,
2 

 
SD

 b
el

ow
 a

ge
-m

at
ch

ed
  

co
nt

ro
ls

 a
t 

4 
y

Fo
rg

et
 e

t 
al

50

12
14

4 
d

Se
iz

ur
es

, c
om

a
c.

10
36

in
sC

/
c.

10
36

in
sC

36
 m

15
0 

m
g/

kg
/d

N
ot

 in
di

ca
te

d
Ps

yc
ho

m
ot

or
 r

et
ar

da
tio

n 
 

at
 4

 y
el

pe
le

g 
et

 a
l22

15
FH

, 1
 d

A
sy

m
pt

om
at

ic
3 

m
15

0 
m

g/
kg

/d
N

ot
 in

di
ca

te
d

Ps
yc

ho
m

ot
or

 r
et

ar
da

tio
n 

 
at

 2
 y

13
16

,
2 

d
T

ac
hy

pn
ea

, j
itt

er
in

es
s

w
32

4X
/w

32
4X

N
/A

D
ea

th
 a

t 
4 

d
C

al
do

vi
c 

an
d 

T
uc

hm
an

20

(C
on

tin
ue

d)

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


The Application of Clinical Genetics 2011:4submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

130

Ah Mew and Caldovic

T
ab

le
 1

 (C
on

tin
ue

d)

Fa
m

ily
P

at
ie

nt
O

ns
et

 o
f  

sy
m

pt
om

s
P

re
se

nt
at

io
n

G
en

ot
yp

e
O

ns
et

 o
f  

N
C

G
 t

he
ra

py
In

it
ia

l N
C

G
 d

os
e

C
hr

on
ic

 N
C

G
 d

os
e

O
ut

co
m

e
R

ef
er

en
ce

14
17

2 
d

Le
th

ar
gy

, a
no

re
xi

a,
  

vo
m

iti
ng

, r
es

pi
ra

to
ry

  
di

st
re

ss
, c

om
a,

 s
ei

zu
re

s

c.
10

25
de

lC
N

/A
N

ot
 in

di
ca

te
d

C
al

do
vi

c 
an

d 
T

uc
hm

an
20

18
2 

d
Le

th
ar

gy
, a

no
re

xi
a,

  
vo

m
iti

ng
, r

es
pi

ra
to

ry
  

di
st

re
ss

, c
om

a,
 s

ei
zu

re
s

N
ot

 in
di

ca
te

d

15
19

3 
d

N
ot

 in
di

ca
te

d
c.

13
06

in
sT

/ 
iv

S3
-2

A
.

T
N

/A
D

ea
th

 a
t 

3 
d

H
ab

er
le

 e
t 

al
42

16
20

3 
d

N
ot

 in
di

ca
te

d
L4

30
P/

L4
30

P
N

/A
N

ot
 in

di
ca

te
d

H
ab

er
le

 e
t 

al
42

 
Sc

hm
id

t 
et

 a
l29

17
21

6 
d

N
ot

 in
di

ca
te

d
e4

33
S/

e4
33

S
N

ot
 in

di
ca

te
d

H
ab

er
le

 e
t 

al
42

18
22

3 
d

N
ot

 in
di

ca
te

d
w

48
4R

/w
48

4R
N

/A
D

ea
th

 a
t 

6 
m

H
ab

er
le

 e
t 

al
42

 
H

ec
km

an
 e

t 
al

32

19
23

4 
d

N
ot

 in
di

ca
te

d
D

ea
th

 a
t 

22
 d

H
ab

er
le

 e
t 

al
42

24
FH

, 2
 d

A
sy

m
pt

om
at

ic
w

32
4X

/w
32

4X
3 

m
25

0 
m

g/
kg

/d
10

–2
00

 m
g/

kg
/d

N
or

m
al

 a
t 

13
 y

G
es

sl
er

 e
t 

al
41

20
25

9 
y

A
tt

en
tio

n 
de

fic
it,

 le
ar

ni
ng

  
di

sa
bi

lit
ie

s,
 e

pi
so

de
s 

of
  

an
xi

et
y 

an
d 

ir
ri

ta
bi

lit
y

12
 y

10
0 

m
g/

kg
/d

15
 m

g/
kg

/d
N

ot
 in

di
ca

te
d

Be
la

ng
er

-Q
ui

nt
an

a 
 

et
 a

l13

21
26

4 
w

v
om

iti
ng

, i
rr

ita
bi

lit
y,

  
le

th
ar

gy
R

50
9Q

/iv
S4

- 
1G

 .
 C

N
/A

N
C

G
 s

tu
dy

  
2.

2 
g/

m
2 /d

N
ot

 in
di

ca
te

d
N

ot
 in

di
ca

te
d

C
al

do
vi

c 
et

 a
l16

 
C

al
do

vi
c 

et
 a

l19

27
9 

y
Le

th
ar

gy
, a

no
re

xi
a,

 v
om

iti
ng

N
ot

 in
di

ca
te

d
22

28
33

 y
A

fte
r 

su
rg

er
y:

 h
yp

er
te

ns
iv

e,
  

co
m

ba
tiv

e,
 c

on
fu

se
d,

  
se

iz
ur

es

v
17

3e
/T

43
1i

N
/A

D
ea

th
 a

t 
33

 y
C

al
do

vi
c 

et
 a

l16

23
29

2.
5 

m
v

om
iti

ng
, w

ei
gh

t 
lo

ss
,  

hy
po

to
ni

a
C

20
0R

/C
20

0R
4 

m
18

0 
m

g/
kg

 ×
 1

 d
os

e
N

ot
 in

di
ca

te
d

N
or

m
al

 d
ev

el
op

m
en

t, 
 

ag
e 

no
t 

in
di

ca
te

d
Sc

hm
id

t 
et

 a
l29

 
G

uf
fo

n 
et

 a
l23

24
30

2 
d

ir
ri

ta
bl

ity
, p

oo
r 

fe
ed

in
g.

  
By

 4
 d

, d
ro

w
si

ne
ss

, t
re

m
or

,  
hy

po
to

ni
a

A
51

8T
/A

51
8T

4 
d

20
0 

m
g/

kg
 ×

 1
 d

os
e

N
ot

 in
di

ca
te

d
N

or
m

al
 d

ev
el

op
m

en
t, 

 
ag

e 
no

t 
in

di
ca

te
d

Sc
hm

id
t 

et
 a

l29
 

G
uf

fo
n 

et
 a

l23

25
21

27
 y

Se
iz

ur
es

, c
om

a 
du

ri
ng

  
pr

eg
na

nc
y

L3
12

P/
T

43
1i

N
/A

N
ot

 in
di

ca
te

d
G

ro
dy

 e
t 

al
15

 
C

al
do

vi
c 

et
 a

l14

26
32

3 
d

Se
iz

ur
es

, c
om

a
R

41
4P

/R
41

4P
4 

d
20

0 
m

g/
kg

/d
50

 m
g/

kg
/d

 a
t 

3 
y

N
or

m
al

 d
ev

el
op

m
en

t 
 

at
 3

 y
N

or
de

ns
tr

om
 e

t 
al

52

27
33

40
 y

M
ig

ra
in

e 
he

ad
ac

he
s,

  
in

te
rm

itt
en

t 
st

ar
in

g 
sp

el
ls

,  
na

us
ea

, r
ec

ur
re

nt
 v

om
iti

ng
,  

le
th

ar
gy

, a
ta

xi
a,

 c
om

a

v
35

0i
/L

44
2v

N
/A

N
C

G
 s

tu
dy

  
2.

2 
g/

m
2 /d

N
ot

 in
di

ca
te

d
N

or
m

al
 in

te
lle

ct
 a

t 
57

 y
T

uc
hm

an
 e

t 
al

2

28
34

3 
d

v
om

iti
ng

, f
ee

di
ng

 in
to

le
ra

nc
e,

  
ep

is
od

ic
 c

on
fu

si
on

c.
27

8d
el

C
/M

16
7v

6 
m

35
0 

m
g/

kg
/d

23
–1

40
 m

g/
kg

/d
N

or
m

al
 d

ev
el

op
m

en
t 

 
at

 2
0 

y
C

or
ne

 e
t 

al
53

N
ot

es
: F

am
ili

al
 h

yp
er

am
m

on
em

ia
 p

at
ie

nt
s 

w
er

e 
id

en
tifi

ed
 p

ro
sp

ec
tiv

el
y 

ba
se

d 
on

 a
 fa

m
ily

 h
is

to
ry

 o
f h

yp
er

am
m

on
em

ia
 o

r 
N

-a
ce

ty
lg

lu
ta

m
at

e 
sy

nt
ha

se
 d

efi
ci

en
cy

 (
N

A
G

S)
; *

O
ld

er
 s

ib
lin

gs
 d

ie
d 

of
 h

yp
er

am
m

on
em

ia
 o

f u
nk

no
w

n 
or

ig
in

; 
‡ O

ld
er

 b
ro

th
er

 d
ie

d 
of

 s
ei

zu
re

s,
 li

ve
r 

fa
ilu

re
.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


The Application of Clinical Genetics 2011:4

100

50

0

1.5

1.0

0.5

0.0

Ref
er

en
ce

 sa
m

ple E7
E11 E15 E17

Liv
er

Sm
all

 in
te

sti
ne

Tes
tis

Sto
m

ac
h

Sple
en

Ova
ry

Kidn
ey

Bra
in

Sto
m

ac
h

Sple
en

Ova
ry

Kidn
ey

Bra
in

Eye
Hea

rt

Ly
m

ph
 n

od
e

Sali
va

ry
 g

lan
d

Spin
al 

co
rd

Ute
ru

s

Neg
at

ive
 co

nt
ro

l

R
el

at
iv

e 
ex

p
re

ss
io

n
 le

ve
l

R
el

at
iv

e 
ex

p
re

ss
io

n
 le

ve
lNAGS

CPS1

OTC

Figure 1 Relative expression levels of mouse NAGS, CPS1, and OTC mRNA in mouse tissues and stages of embryonic development. insert shows relative expression of 
NAGS, CPS1 and OTC mRNA in the stomach, spleen, ovary, kidney and brain. expression of NAGS, CPS1, and OTC mRNA was measured using quantitative real-time PCR 
and normalized to their mRNA abundance in liver. 1 µg of total mouse RNA from ovary, testis, brain, eye, heart, kidney, liver, lymph node, submaxillary gland, spinal cord, 
spleen, stomach, uterus, intestine, 7-day embryo, 11-day embryo, 15-day embryo, 17-day embryo was reverse transcribed to cDNA using random primers. Real time PCR 
was carried out using primers designed to anneal to different exons to avoid amplifying genomic DNA.
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of NAGS, suggesting that these regions are perhaps tolerant 

to missense changes.

Mutations in splice sites were observed in 2 families. 

Two splice-site mutations involved changes in the consensus 

acceptor splice sites of introns 3 and 4, which are expected 

to abolish mRNA splicing.16,42

One alteration, G236C, was incidentally discovered in a 

patient whose DNA was used as wild-type control sample for 

the NAGS sequencing assay in our clinical laboratory. Whether 

or not this alteration is disease-causing is unknown, but it was 

neither identified in a study of common polymorphisms of urea 

cycle genes,46 nor found in dbSNP build 133.

Expression of the NAGS mRNA  
and protein
In NAGS deficiency, disruption of the NAGS gene results in 

reduced or absent NAGS enzyme in tissues in which it is nor-

mally expressed. NAGS mRNA is primarily expressed in the 

liver, but is also expressed in other tissues such as small intes-

tine, spleen, and testis.20,36 Because the only known function of 

mammalian NAGS, CPS1, and OTC is to synthesize citrulline, 

NAGS would be expected to be expressed in the same tissues 

as CPS1 and OTC. To test this hypothesis, we used RT-PCR to 

quantify the relative expression levels of mouse NAGS, CPS1 

and OTC mRNA in 14 tissues as well as at 4 stages (E7, E11, 

E15, and E17) of embryonic development.

As expected, liver had the highest expression of NAGS, 

CPS1, and OTC mRNA, followed by intestine (Figure 1). 

However, substantial expression of all 3 genes was also 

seen in the testis (between 3% and 25% of the expression 

in liver) and much less in the stomach and spleen (between 

0.1% and 1.2% of the expression in the liver). Low levels 

of NAGS mRNA were also detectable in the brain, kidney, 

and ovary. In all other tissues, expression of NAGS, CPS1, 

and OTC mRNA were less than 0.1% of the expression seen 

in the liver. Surprisingly, NAGS mRNA was also expressed 

at embryonic stage E7, at levels approximately 3.7% of that 

seen in adult murine liver, in the absence of detectable levels 

of CPS1 and OTC mRNA.

In contrast, western blot of a panel of 9 mouse tissues 

revealed the presence of NAGS, CPS1, and OTC proteins in 

the liver but only CPS1 and OTC in the intestine (data not 

shown). Although NAGS activity has previously been mea-

sured in the intestine,47,48 NAGS protein was not detectable 

in the small intestine most likely due to its low abundance 

in this tissue.

The presence of NAGS mRNA in mouse embryos at 

E7, as well as testis, ovary, spleen, stomach, kidney, and 

brain, could be due to illegitimate transcription, or more 

 interestingly, to an as yet undiscovered novel function of 

NAGS. Additional studies will reveal if this expression 

pattern is also observed in humans, whether the expres-

sion of NAGS mRNA has physiological roles in tissues 

that do not express CPS1 and OTC, and whether absence of 

NAGS in these tissues contributes to the pathophysiology 

of NAGS deficiency.
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Epidemiology and incidence  
of NAGS deficiency
Inherited NAGS deficiency is the rarest of urea cycle 

disorders,2 and the true incidence of NAGS deficiency is 

not known. To date, there are 34 reported patients from 28 

families with NAGS deficiency. In the 2 decades before 

identification and cloning of the human NAGS gene,36 sus-

pected diagnoses of NAGS deficiency were reported in only 

11 families.11,17,18,22,24–28,34,49–51 Identification and cloning of 

human NAGS gene now allows accurate molecular diagno-

sis of the condition, and NAGS deficiency has since been 

reported in an additional 16 families.2,13,14,16,19–21,23,29,32,41,42,52,53  

Nearly half of patients with NAGS deficiency are homozy-

gotes, rather than compound heterozygotes, for mutations 

in the NAGS gene and these families indicated the exis-

tence of consanguinity22,23,25,26,29,42,52 or a known common 

ancestor.20

Several explanations could account for the low inci-

dence of NAGS deficiency, compared with other urea cycle 

disorders.2 First, even mutations resulting in significant 

impairment of NAGS enzymatic function may allow for the 

production of sufficient CPS1 cofactor to maintain adequate 

flux through CPS1 and thus preclude hyperammonemia. 

Additionally, in a comparison of the sequences of urea cycle 

enzymes across phyla,54–56 NAGS is the least conserved.57 

Thus, the NAGS structure may be more tolerant of amino 

acid substitutions. As a result, only individuals with rare 

amino acid substitutions that virtually abolish enzymatic 

function, either due to abolished substrate binding and 

catalysis or disruption of NAGS structure, will present with 

symptoms of NAGS deficiency. Alternatively, it is possible 

though unlikely that another enzyme is able to synthesize 

limited amounts of NAG, and that mutations in both NAGS 

and this second “moonlighting” enzyme are required to 

reduce CPS1 activity sufficiently to cause hyperammone-

mia. Finally, NAGS could potentially have other functions 

besides ammonia detoxification and a complete deficiency 

of NAGS may result in reduced embryonic survival. As 

described above, NAGS mRNA is curiously expressed in 

mouse spleen and testis (Figure 1 and Caldovic et al58) and 

also at mouse embryonic day 7, in the absence of significant 

CPS1 or OTC expression, thus positing another possible 

function of NAGS or NAG.

Treatment of NAGS deficiency  
with N-carbamylglutamate
Before the discovery of the CPS1 enzyme, Grisolia and 

Cohen determined that a derivative of L-glutamic acid, 

N-carbamylglutamate (NCG), was necessary for the 

 biosynthesis of citrulline.59 While it was only later determined 

that N-acetylglutamate was the natural co-factor to the CPS1 

enzyme,4 this earlier discovery was fortuitous as it would 

subsequently provide an important avenue of treatment for 

patients with NAGS deficiency.11

In contrast to NAG, which is hydrolyzed in vivo by acyl-

amino acid acylase,60 NCG is acylase-resistant.61 Because 

both NAG and NCG can function as activating co-factors 

of CPS1, NAGS deficiency is the only inherited urea cycle 

disorder that can be specifically and effectively treated by 

a drug. In patients with NAGS deficiency, a 3-day trial of 

oral NCG at a dose of 2.2 g/m2/day was shown to restore 

ureagenesis and normalize blood ammonia, as demonstrated 

by [13C] and [15N] isotopic studies.2,19

Oral NCG has successfully rescued neonates with 

NAGS deficiency during hyperammonemic crisis.23,52 Pub-

lished data on appropriate NCG dosing are limited. The 

initial NCG dose for treatment of acute hyperammonemia 

ranged in neonates from 25 mg/kg (100 mg/kg/day in 

4 divided doses) to 200 mg/kg,23 compared with 15 mg/kg 

(60 mg/kg/day in 4 divided doses)25 to 180 mg/kg23 in those 

with late-onset NAGS deficiency who presented after the 

first month of life.

In patients receiving NCG as part of long-term chronic 

therapy, the lowest reported daily dose required to prevent 

hyperammonemia was 15 mg/kg/day in both neonatal41 

and late-onset NAGS deficiency.13 NCG therapy appears 

to correct the metabolic defect in such patients, who no 

longer require ammonia-scavenging agents.13,23,25,41,49,52 In 

fact, dietary protein was liberalized to 2–3 g/kg/day in some 

patients,24,52 but 1 patient became mildly ataxic after ingestion 

of more than 3.5 g/kg/day.52 It is possible that a higher daily 

NCG dose would allow for greater protein tolerance in these 

patients, since in other NCG-treated patients, protein intake 

has been entirely liberalized, with no adverse effects.12

Extremes of NCG dosing have been associated with 

adverse effects. One patient, in whom NCG dosing was 

reduced to 10 mg/kg/day, experienced a rise in plasma ammo-

nia from 27 to 58 µmol/L, which normalized once NCG was 

increased to 15 mg/kg/day.41 Another patient who received 

a dose of 650 mg/kg experienced tachycardia, sweating, 

bronchial hypersecretion, elevated body temperature, and 

restlessness.51

Some NAGS-deficiency patients on NCG have expe-

rienced breakthrough hyperammonemia during episodes 

of acute illness.26,49 Hyperammonemia while on NCG may 

reflect inadequate dosing. However, protein restriction 
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 during illness may be prudent if poor oral tolerance prevents 

the administration of NCG. Withdrawal of protein from 

the diet may have helped to prevent hyperammonemia in 

1 patient.26

The advantage of treating NAGS deficiency with NCG 

is that NCG increases ammonia elimination by activating 

in vivo enzymes, whereas ammonia scavenging agents act 

stoichiometrically and response to scavengers is frequently 

suboptimal. All 3 affected neonates who presented with acute 

hyperammonemia and were administered NCG in a timely 

fashion along with standard therapy, had normal psychomo-

tor development at 12 and 13 months of age.23,52 In contrast, 

some affected neonates who initially received conventional 

therapy alone, including ammonia scavenging agents and 

dialysis, have exhibited psychomotor retardation.21,50,51

It has been suggested that all hyperammonemic newborns 

with a suspected diagnosis of a urea cycle disorder should 

receive a therapeutic trial of NCG, which may provide 

a life-saving therapeutic option for patients with NAGS 

deficiency, and provide additional benefit in some cases of 

CPS1 deficiency.23 A rapid response to NCG may help to 

diagnose some cases of NAGS deficiency,23 though not all 

cases respond quickly.52

Other conditions  
with N-acetylglutamate deficiency
Secondary def iciencies of NAG may be observed in 

conditions associated with a depletion of intramito-

chondrial  Coenzyme-A, acetyl-CoA, or glutamate, or 

inhibition of the NAGS reaction. A reduction of hepatic 

NAG has been hypothesized as the mechanism of hyper-

ammonemia in the organic acidemias (eg, propionic 

academia,62,63 methylmalonic academia,62 isovaleric aci-

demia64),  hyperinsulinism-hyperammonemia syndrome,65 

and in valproic acid treatment.66,67 Exogenous benzoate may 

also decrease the intra-mitochondrial NAG concentration.68 

Treatment with NCG may effectively treat hyperammonemia 

in these disorders.12,65,68–75 Indeed, 3-day administration of 

NCG has been shown to increase ureagenesis and decrease 

plasma ammonia in propionic academia.70
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