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Background: The focus of this study is on the antibacterial properties of silver nanoparticles 

embedded within a zeolite membrane (AgNP-ZM).

Methods and Results: These membranes were effective in killing Escherichia coli and were 

bacteriostatic against methicillin-resistant Staphylococcus aureus. E. coli suspended in Luria 

Bertani (LB) broth and isolated from physical contact with the membrane were also killed. 

Elemental analysis indicated slow release of Ag+ from the AgNP-ZM into the LB broth. The 

E. coli killing efficiency of AgNP-ZM was found to decrease with repeated use, and this was 

correlated with decreased release of silver ions with each use of the support. Gene expression 

microarrays revealed upregulation of several antioxidant genes as well as genes coding for 

metal transport, metal reduction, and ATPase pumps in response to silver ions released from 

AgNP-ZM. Gene expression of iron transporters was reduced, and increased expression of 

ferrochelatase was observed. In addition, upregulation of multiple antibiotic resistance genes 

was demonstrated. The expression levels of multicopper oxidase, glutaredoxin, and thiore-

doxin decreased with each support use, reflecting the lower amounts of Ag+ released from the 

 membrane. The antibacterial mechanism of AgNP-ZM is proposed to be related to the exhaus-

tion of antioxidant capacity.

Conclusion: These results indicate that AgNP-ZM provide a novel matrix for gradual release 

of Ag+.
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Introduction
Given that we are in an era where antibiotic resistance is a growing concern, there is 

a renewed interest in developing products containing silver for use as antimicrobials. 

For thousands of years, silver has been used for food and beverage preservation, and 

in medicines.1 The use of silver as an antibacterial agent declined with the discovery 

of antibiotics, but the evolution of antibiotic-resistant pathogens has brought a revival 

in silver-based applications. Silver is now an additive in consumer products includ-

ing bandages, socks, shirts, water filters, antiperspirants, combs, paints, and washing 

machines.2

The antibacterial mechanism of silver nanoparticles (AgNP) and Ag+ has been 

explored extensively. Baker et al3 found that complete bacterial cell death could be 

achieved at 8 µg/cm2 AgNP and that smaller particles were more efficient  antibacterials. 

Others have supported this finding, and found that the amount of chemisorbed Ag+ 

and aggregation status of AgNP influences antibacterial efficacy.4 The formation 

of reactive oxygen species has been implicated in bacterial toxicity,5 and these are 
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thought to damage DNA and proteins, as well as perturb cell 

membrane integrity.6

However, there is growing concern surrounding the 

increasing use of AgNP and their impact of the environment. 

The spread of AgNP into wastewater is an environmental 

concern, in that researchers have found that the numbers of 

nitrifying bacteria found in sludge are reduced when exposed 

to large quantities of AgNP,7 which has severe implications 

on waste water treatment.

This motivated us to develop a method to immobilize 

AgNP into lithographically patterned zeolite membranes, and 

we have already reported that such membranes are effective 

in killing Escherichia coli upon contact.8 Other research in 

this area has focused on Ag+-zeolite powders as antibacterial 

agents. Ag+ ions are ion-exchanged out of the zeolite powder 

into media and are sufficient to cause bacterial cell death 

in both E coli and Staphylococcus aureus.9,10 In the case 

of Ag+-zeolite, the release of Ag+ into solution is primarily 

determined by the ionic strength of the medium, because 

this is an ion-exchange process and is media-dependent. 

Recently, there has also been a report of AgNP in zeolite 

powders and their activity towards Gram-positive and Gram-

negative bacteria.11

In this study, we investigated the antibacterial capacity 

of AgNP embedded in zeolite membranes (AgNP-ZM) and 

found that their bactericidal properties stem from the gradual 

release of Ag+ into the media. From a materials perspective, 

zeolite membranes are more attractive as supports than 

powders, since macroscopic membranes can be grown on 

ceramics, metals, and polymeric and cellulose supports,12 thus 

allowing for diverse applications, including use in the hospital 

setting. The mechanism of E. coli death was investigated 

using viability assays, gene expression arrays, and quantita-

tive reverse transcriptase polymerase chain reaction (PCR). 

The biological studies suggest that exhaustion of antioxidant 

capacity is related to antibacterial function.

Materials and methods
Materials
Silver nitrate (99%), potassium nitrate, trypan blue, polyeth-

ylene glycol, Ludox SM-30, poly(methyl methacrylate), and 

hydrazine were purchased from Sigma Aldrich (St. Louis, 

MO). PEG-600 (Fluka, Buchs, Switzerland), Darvan (RT 

Vanderbilt Co Inc, Norwalk, CT), aluminum hydroxide (Alfa 

Aesar Ward Hill, MA, 80.5%), sodium  hydroxide (Mallinck-

rodt Hazelwood, MO, 98.8%), 25 wt% tetramethyl ammo-

nium hydroxide aqueous solution (Sachem, Austin, TX), 

AKP30 high-purity alumina powder (Sumitomo Chemical Co 

Ltd, Tokyo, Japan), with an average particle size of 300 nm, 

silastic T-2  polydimethylsiloxane (Dow Corning, Midland, 

MI), 200 proof ethyl alcohol (Pharmco, Brookfiled, CT), and 

1-octanol (Puriss, Fluka, Buchs, Switzerland) were also pur-

chased and used without further purification. Luria Bertani 

(LB) broth powder agar, brain heart-infusion broth, 100 mm 

sterile Petri dishes, and chloroform were obtained from Fisher 

Scientific (Pittsburgh, USA) and 0.4 µm pore transwell plates 

and six-well plates were obtained from Corning (Lowell, 

MA). Qiagen (Valencia, CA) supplied the Puregene DNA 

purification kit, the RNeasy RNA isolation kit, DNase, and 

QuantiTect SYBR Green reverse transcriptase PCR kit. 

Primers were purchased from Integrated DNA Technologies 

(San Diego, CA). The E. coli strain, XL-1 blue, which was 

derived from the K-12 strain, was a kind gift from Dr Joanne 

Trgovcich (Department of Surgery, The Ohio State Univer-

sity Medical Center). Bioanalyzer Lab-On-A-Chip Agilent 

6000 Series II chips and E. Coli 8x15K Microarrays were 

purchased from Agilent (Santa Clara, CA).

synthesis of AgNP-ZM
Macroporous alumina oxide supports were used as the 

substrate for zeolite membrane growth, and their prepa-

ration is described in detail in earlier studies.13 Briefly, 

nanometer-sized zeolites are deposited on the alumina 

support and grown into a continuous membrane by hydro-

thermal synthesis. The zeolite membranes were then ion-

exchanged with 0.005 M AgNO
3
 solution, washed, and then 

reduced by hydrazine, as described earlier.8 After washing, 

the AgNP-ZM were extensively ion-exchanged with 1 M 

NaCl to remove unreacted silver ions from the zeolite. A 

schematic of AgNP-ZM fabrication is provided in Supple-

mental Figure 1.

chemical characterization of AgNP-ZM
Supernatants were collected from AgNP-ZM suspended in 

LB broth for various times and used for elemental analysis. 

Similar experiments were done with AgNP-ZM that were 

repeatedly exposed to LB broth. Silver content was measured 

using inductively coupled plasma optical emission spectros-

copy at Galbraith Laboratories, Knoxville, TN.

Biological characterization
Cultures of XL-1 blue E. coli were incubated with the 

AgNP-ZM or zeolite membrane controls and assessed for 

viability using traditional colony counts. LB broth solu-

tion was prepared using a concentration of 25 g/L of LB. 

LB agar plates were prepared with 1.5% agar. Individual 
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clones were inoculated in 3 mL of LB broth and shaken at 

225 rpm overnight at 37°C. Prior to exposing bacteria to the 

zeolite membranes, bacterial cultures were adjusted to obtain 

an initial optical density between 0.2 and 0.8, with viable 

colony counts ranging between about 1 × 105 and 1 × 108 

colony-forming units (cfu)/mL. For the initial viability 

experiment, one zeolite membrane and one freshly prepared 

AgNP-ZM were tested three times. Membranes were placed 

into six-well tissue culture plates and 5 mL (approximately 

1 × 106 cells/mL) of bacterial suspension was added to each 

well. Experimental plates were then incubated at 37°C 

and continuously shaken. For each experiment, samples 

were removed at 0, 30, 60, 120, and 180 minutes, where 

100 µL was taken from wells containing zeolite controls 

or AgNP-ZM and added to a tube containing 0.9 mL of LB 

broth. Samples were further diluted in LB broth by 10-fold 

six more times. To obtain colony counts, 100 µL of samples 

were plated from each dilution. LB plates were incubated at 

37°C overnight and cfu were counted to determine bacteria 

viability. Optical densities of culture supernatants were mea-

sured after exposure to two separate AgNP-ZM for 60, 120, 

or 180 minutes using a Shimadzu spectrophotometer at an 

absorbance wavelength of 600 nm.

We also tested the preliminary antibacterial activity of 

AgNP-ZM against a methicillin-resistant strain of S. aureus 

(MRSA, a kind gift from Dr Vijay Pancholi, Department 

of Pathology, The Ohio State University). Here, a clone of 

MRSA was grown overnight in brain-heart infusion broth. 

A fresh stock was inoculated into brain heart-infusion 

broth from the overnight culture and grown at 37°C under 

continuous shaking until the optical density reached 0.3. 

Bacterial cultures (5 mL in brain heart-infusion broth, about 

5 × 107 cell/mL) were then exposed to zeolite membranes 

or AgNP-ZM for up to 180 minutes. Samples were taken 

and serially diluted as described above. Samples from each 

dilution (100 µL) were streaked onto brain heart-infusion 

agar and incubated for 24 hours at 37°C prior to counting. 

Zeolite membranes were reused after decontamination by 

steam autoclave or with 70% ethanol for 20 minutes prior 

to air drying.

To determine if the antibacterial action of AgNP-ZM 

is contact-dependent, two approaches were taken. We first 

exposed two AgNP-ZM and one zeolite membrane control 

to 5 mL of LB broth for three hours. E. coli (at a concentra-

tion of approximately 1 × 105 cells/mL in 5 mL of LB broth) 

was pelleted by centrifugation (3250 × g) for 15 minutes. 

The supernatants were discarded and the bacteria were 

resuspended in supernatants that had been exposed to the 

membranes. Samples were incubated at 37°C and 100 µL 

samples were taken at 30, 60, and 120 minutes. Colony counts 

were performed in the same manner as stated above, where a 

series of 10-fold dilutions were prepared, and 100 µL from 

each dilution was plated on LB agar. Plates were incubated 

for 24 hours at 37°C prior to counting.

To test further whether the antibacterial action of 

AgNP-ZM is contact-dependent, two AgNP-ZM and one 

zeolite membrane control were each placed in separate wells 

of six-well transwell plates with a membrane pore size of 

0.4 µm. The membranes did not touch the bottom surface 

of the transwells. E. coli (approximately 1 × 105 cells/mL 

in 5 mL LB broth) was applied to the apical chamber of the 

transwell plates. Plates were continuously shaken and incu-

bated at 37°C. From the apical and basal chambers, 100 µL 

samples were taken after 30, 60, and 120 minutes, diluted 

using the serial dilution scheme described above, plated, and 

incubated overnight at 37°C.

The efficacy of AgNP-ZM was tested by exposing the 

same AgNP-ZM to approximately 1 × 106 cells/mL of E. coli 

in 5 mL of LB broth a total of six times. LB broth samples 

(100 µL) were collected at 30, 60, and 120 minutes during 

each of the six experimental exposures. Colony counts were 

performed in the same manner stated earlier in the Materials 

and Methods section, where a series of 10-fold dilutions were 

prepared from the samples, and 100 µL from each dilution 

was plated on LB agar. Plates were incubated for 24 hours at 

37°C prior to counting. In between each use, the AgNP-ZM 

were sterilized by steam autoclave, much like surgical instru-

ments found in a hospital setting.

DNA and rNA extraction
E. coli genomic DNA was isolated using a Puregene DNA 

purification kit according to the manufacturer’s instructions. 

Bacterial RNA was extracted using standard procedures 

from E. coli exposed to zeolite membranes or exposed to 

AgNP-ZM for 30–45 minutes (see Supplemental Methods). 

The quality of RNA was examined using an Agilent 2100 

Bioanalyzer Lab-On-A-Chip Agilent 6000 Series II chip. 

RNA samples were checked for DNA contamination by run-

ning PCR using samples with primers with or without reverse 

transcriptase. The presence of PCR products was determined 

by gel electrophoresis using 1% agarose gel.

gene expression microarrays
Four individual zeolite supports containing AgNPs and four 

zeolite support controls were exposed to approximately 

1 × 108 cfu/mL of bacteria for 30 minutes prior to RNA 
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isolation, and bacterial viability was determined via colony 

counts (Supplemental Figure 2). RNA samples were stored at 

−80°C until processing. Sample labeling and hybridizations 

were performed by the Nationwide Children’s Hospital’s 

Biomedical Genomics Facility (http://genomics.nchresearch.

org/index.html). The RNA was of high quality and all 

samples passed the standard quality control cutoff. Sample 

labeling and hybridization was performed according to the 

manufacturer’s protocols. Samples were hybridized to the E. 

coli 8 × 15 K Microarray (AMADID 020097). Parameters 

regarding gene array methodology, quality control, and sta-

tistical analyses are included in the Supplemental Materials 

section.

Quantitative reverse transcriptase Pcr
E. coli at a concentration of 1 × 108 cfu/mL were exposed to 

zeolite membranes alone or containing AgNPs for 45 minutes 

prior to RNA isolation. Quantitative reverse transcriptase 

PCR analyses were completed using a Quantitect SYBR 

Green reverse transcriptase PCR kit under the following 

conditions. Master mixes were prepared using 12.5 µL 

2× QuantiTect SYBR Green Master Mix, 0.25 µL Quan-

tiTect reverse transcriptase mix, and 10.25 µL RNase-free 

water per reaction. Forward and reverse primers were added 

using 0.5 µL from 25 µM stocks, and primer sequences are 

listed in Supplemental Table 1. Master mixes were aliquoted 

into 96-well plates (24 µL/well) along with 1 µL of RNA 

at a concentration of 1 ng/reaction. Reactions were cycled 

under the following conditions. Reverse transcription was 

performed for 30 minutes at 50°C. PCR activation was 

performed at 95°C for 15 minutes. Denaturation occurred 

at 94°C for 15 seconds, annealing occurred for 30 seconds 

at 58°C and extension occurred at 72°C for one minute. 

Cycling conditions were repeated 35 times. The ABI Prism 

7500 sequence detection system was used to quantify gene 

expression using a gene-specific standard curve generated 

with bacterial DNA.

statistical analysis
Significant differences in E. coli viability after incubation 

with AgNP-ZM and negative controls were determined 

by one-way analysis of variance using SigmaPlot version 

11.0. For the gene expression data, bacteria were exposed to 

four independent zeolite membranes and four independent 

AgNP-ZM, and changes in expression that were two-fold or 

greater are considered statistically significant. In the figures, 

the number of AgNP-ZM used for each experiment and the 

statistics are included.

Results
AgNP-ZM synthesis and characterization
Synthesis of AgNP-ZM starts with the synthesis of porous 

alumina supports, on which a seeded layer of zeolite is 

deposited.13 The zeolite membrane is then grown on the 

seeded side via secondary hydrothermal growth. Figure 1A 

shows the powder x-ray pattern of a typical membrane. The 

three strong peaks (marked with an asterisk) arise from the 

alumina support. All of the other peaks are from the zeolite, 

the major phase being zeolite Y with minor quantities of 

zeolite A (strongest peak 7° 2θ). Figure 1B shows a scanning 

electron microscopic cross-sectional image of the membrane 

with the dense 2–3 µm layer of zeolite on the porous alumina 

(2 mm). In order to make the AgNP, the zeolite membrane 

is ion-exchanged with Ag+, reduced with hydrazine to make 

Ag nanoclusters on the zeolite membrane, and extensively 

ion-exchanged with Na+ to remove any unreacted Ag+.8 

 Figure 2A shows a scanning electron microscopic top view 

of the AgNP-ZM, and Figure 2B is a magnified image that 

clearly shows the presence of Ag clusters on the zeolite 

(,50 nm). Figure 2C is the elemental analysis of the surface 

of the membrane showing the presence of Ag, Si, and Al.
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Figure 1 (A) Powder diffraction pattern of a zeolite membrane grown on an alumina 
support (the strongest peaks marked with an asterisk are due to the alumina, the 
rest are zeolite peaks. (B) cross-section of the zeolite/alumina membrane by 
scanning electron microscopy.
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Figure 2 (A) Top view of the zeolite part of the silver-loaded zeolite/alumina membrane 
by scanning electron microscopy. (B) Magnified image of the top view of A showing 
discrete Ag particles on the zeolite. (C) elemental analysis of the silver nanoparticles 
embedded in zeolite membranes, showing the presence of Ag, si, and Al.

The AgNP-ZM were incubated in LB broth (5 mL), 

and the amount of Ag+ released over time was analyzed by 

elemental analysis. In order to estimate an upper limit of 

the amount of Ag+ that can be released from the membrane, 

freshly prepared (autoclaved) AgNP-ZM were exposed to 

LB broth for 48 hours under gentle shaking and the amount 

of Ag+ was found to be approximately 20 ppm. When this 

same AgNP-ZM was exposed to media for 30 minutes for 

a second time, 5.7 ppm Ag+ was released. After a third and 

fourth exposure (sample autoclaved prior to each exposure) of 

the same AgNP-ZM for 30-minutes and 60-minutes, contact 

with media released 1.9 and 1.7 ppm of Ag+, respectively. 

The goal of these elemental analysis studies was to evaluate 

an upper limit upon single exposure for an extended time 

period (48 hours), and to demonstrate that the AgNP-ZM have 

a large reservoir of Ag (primarily due to the large internal 

surface area of the zeolite) so that even a second, third, and 

fourth exposure leads to release of Ag+ at ppm levels.

Interaction of AgNP-ZM with E. coli
Antibacterial activity
E. coli was incubated alone, with a control zeolite membrane, 

and with a freshly prepared AgNP-ZM to determine and 
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Figure 3 (A) Turbidity analyses of supernatant samples from unexposed Escherichia 
coli and E. coli exposed to zeolite controls or zeolite-supported silver nanoparticles 
over time. Values are expressed as the mean and standard deviation of two 
experiments. (B) enumeration of viable E. coli over time upon incubation with 
zeolite supports containing silver nanoparticles and controls. 
Notes: *Significant differences versus zeolite membrane controls, n = 3, freshly-
prepared zeolite supports containing silver nanoparticles, P , 0.05. 
Abbreviation: cfu/mL, colony forming units per milliliter.
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compare the antibacterial activity of AgNP-ZM. Turbidity 

measurements performed on two separate occasions using 

freshly prepared AgNP-ZM revealed that bacterial growth was 

completely inhibited over a three-hour incubation period when 

E. coli was exposed to AgNP-ZM (optical density about 0.4), 

whereas with bacteria only and zeolite supports, prolifera-

tion increased over time, as shown in Figure 3A. Figure 3B 

shows the number of colonies after incubation with controls 

or AgNP-ZM, and a significant decrease in E. coli viability 

was observed over a three-hour period, although a decrease in 

bacterial viability was noted with AgNP-ZM after 30 minutes. 

All of the data in Figure 3B were obtained with one freshly 

prepared AgNP-ZM on three separate occasions.

To determine if antibacterial action was contact-

 dependent, a zeolite membrane control and two AgNP-ZM 

were incubated with 5 mL of LB broth for three hours. The 

membranes were then removed, and the conditioned LB 

broth (5 mL) was collected. Bacterial cultures which had 

been adjusted to about 1 × 105 cells/mL in 5 mL of LB broth 

were pelleted by centrifugation. The pellet was vortexed, 

and the conditioned broth (5 mL) was then applied to the 

culture. As Figure 4A shows, all E. coli were nonviable 

within 60 minutes in medium conditioned with AgNP-ZM. 

Medium-conditioned with zeolite membranes alone had no 

observable effect on bacterial viability. Figure 4B illustrates 

that for bacteria separated from the zeolite membranes using 

transwell plates containing inserts with a pore size of 0.4 µm, 

death was evident within 120 minutes when AgNP-ZM were 

used, while controls grew normally. To ensure that bacteria 

were unable to traverse the transwell membrane, media from 

the bottom chamber were sampled from all experimental 

treatments and plated for growth on LB agar, and no colonies 

were observed (data not shown).

The antibacterial activity of a single AgNP-ZM was 

tested a total of six times in order to evaluate the feasibility 

of repeated use of a membrane. The support was sterilized by 

steam autoclave between each use. After the AgNP-ZM had 

been used three or four times, the viability of E. coli cultures 

seeded at a concentration of approximately 1 × 106 cfu/mL 

was reduced to 0 cfu/mL within two hours (Figure 5). How-

ever, after four or more uses, complete death was apparent 

after three hours of incubation.

gene expression by e. coli exposed to AgNP-ZM
Gene expression arrays revealed significant differences between 

E. coli exposed to AgNP-ZM versus zeolite membranes. A total 

of 145 genes were upregulated greater than two-fold, while 

170 genes were downregulated  (Supplemental Tables 2 and 

3, respectively). Selected genes which were upregulated or 

downregulated by at least three-fold are included in Tables 1 

and 2, respectively. Both copper transporter gene copA and 

magnesium transporter gene mgtA were upregulated over 
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Figure 4 (A) Viability of Escherichia coli after exposure to supernatants collected 
from two zeolite supports containing silver nanoparticles and zeolite controls that 
were soaked in Luria Bertani media for three hours. (B) Viability of E. coli after 
exposure to two zeolite supports containing silver nanoparticles that were separated 
from bacteria using transwell plates. Zeolite supports containing silver nanoparticles  
are listed as zeolite + silver nanoparticle support 1 and support 2 in the Figure.
Abbreviation: cfu/mL, colony forming units per milliliter.
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Figure 5 Escherichia coli at a concentration of 1 × 106 cfu/mL was incubated with 
the same zeolite supports containing silver nanoparticles six consecutive times, with 
autoclave sterilization between each use. Bacterial viability was determined using 
plate counts. 
Abbreviation: cfu/mL, colony forming units per milliliter.
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Table 1 Increases in Escherichia coli gene expression in response to 30-minute exposures to four independent zeolite supports 
containing silver nanoparticles versus E. coli exposed to four independent zeolite controls

Gene  
name

Gene product Fold change 
AgNP-ZM vs zeolite

Description

cysP Thiosulfate transporter subunit 14.9 Thiosulfate binding protein
cysW sulfate/thiosulfate transporter subunit 11.9 sulfate transport system permease W protein
copA copper transporter 10.8 Putative ATPase
cysA sulfate/thiosulfate transporter subunit 10.3 ATP-binding component of sulfate permease A protein;  

chromate resistance
hemH Ferrochelatase 9.5 Ferrochelatase: final enzyme of heme biosynthesis
mgtA Magnesium transporter 9.0 Mg2+ transport ATPase, P-type 1
cysD sulfate adenylyltransferase, subunit 2 9.0 ATP:sulfurylase
cysU sulfate/thiosulfate transporter subunit 9.0 sulfate, thiosulfate transport system permease T protein
cysJ Sulfite reductase, alpha subunit, flavoprotein 8.7 Sulfite reductase
marA DNA-binding transcriptional dual activator  

of multiple antibiotic resistance
8.1 Multiple antibiotic resistance; transcriptional activator  

of defense systems
zraP Zn-binding periplasmic protein 7.9 orf, hypothetical protein
trxC Thioredoxin 2 7.8 Putative thioredoxin-like protein
grxA glutaredoxin 1, redox coenzyme for  

ribonucleotide reductase (rNr1a)
7.6 glutaredoxin1 redox coenzyme for glutathione-

dependent ribonucleotide reductase
marR DNA-binding transcriptional repressor  

of multiple antibiotic resistance
6.8 Multiple antibiotic resistance protein; repressor of mar 

operon
cueO Multicopper oxidase (laccase) 6.7 orf, hypothetical protein
cysI Sulfite reductase, beta subunit,  

NAD(P)-binding, heme-binding
6.1 Sulfite reductase, alpha subunit

cusF Periplasmic copper-binding protein 5.9 orf, hypothetical protein
cysH 3′-phosphoadenosine 5′-phosphosulfate reductase 5.7 3-phosphoadenosine 5-phosphosulfate reductase
arsR DNA-binding transcriptional repressor 5.6 Transcriptional repressor of chromosomal ars operon
arsB Arsenite/antimonite transporter 4.2 Arsenical pump membrane protein
soxR DNA-binding transcriptional dual regulator,  

Fe-s center for redox-sensing
4.2 redox-sensing activator of soxs

arsC Arsenate reductase 3.8 Arsenate reductase
cusB Copper/silver efflux system, membrane  

fusion protein
3.1 Putative resistance protein

cusC Copper/silver efflux system, outer  
membrane component

3.0 Putative resistance protein

nine-fold. The genes which encode the antioxidants thioredoxin 

and glutaredoxin were also upregulated greater than about 

7.5-fold compared with zeolite controls. In addition, several 

genes encoding proteins involved with sulfur transport, ie, 

cysW, cysA, cysD, and cysU, were upregulated greater than 

nine-fold (Table 1). Genes coding for multiple antibiotic 

resistance (marA and marR) were increased approximately 

eight-fold and seven-fold, respectively (Table 1). Several genes 

associated with iron transport, including fepG, fecR, fepC, 

fepA, fhuE, and fhuC, were downregulated (Table 2), although 

the gene expression of hemH (coding for ferrochelatase) was 

upregulated about 10-fold (Table 1) in E. coli exposed to 

AgNP-ZM compared with zeolite membranes.

gene expression in E. coli changes with AgNP-ZM use
Quantitative reverse transcriptase PCR was used to confirm 

gene expression microarray data. Selected genes representing 

those involved with metal transport, resistance, and oxida-

tive stress were analyzed in order to identify possible 

mechanisms of toxicity induced by exposure to AgNP-ZM. 

Table 3 reports quantitative reverse transcriptase PCR data 

for genes encoding copper-silver efflux, glutaredoxin, multi-

copper oxidase, and thioredoxin, and their expression levels 

after each support use. With progressive use of AgNP-ZM, 

expression of the gene that encodes glutaredoxin decreased 

(fold-change of approximately 14 and 2, and virtually no 

change for trials 1, 2, and 3, respectively). The expression 

of thioredoxin was increased by approximately five-fold 

for E. coli exposed to AgNP-ZM compared with bacteria 

exposed to zeolite membranes alone for the first use, but for 

the second and third uses there was virtually no change in 

gene expression. Increased expression of the gene encoding 

multicopper oxidase remained significant with each sup-

port use, although expression decreased by approximately 
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Table 2 Decreases in Escherichia coli gene expression in response to 30-minute exposures to four independent zeolite supports 
containing silver nanoparticles versus E. coli exposed to four independent zeolite controls

Gene  
Name

Gene product Fold change 
AgNP-ZM vs zeolite

Description

fepG Iron-enterobactin transporter subunit −12.6 Ferric enterobactin transport protein
fes enterobactin/ferric enterobactin esterase −8.4 enterochelin esterase
cirA Ferric iron-catecholate outer membrane  

transporter
−7.1 Outer membrane receptor for iron-regulated colicin 

I receptor; porin; requires tonB gene product
fecR KpLe2 phage-like element; transmembrane  

signal transducer for ferric citrate transport
−5.9 regulator for fec operon, periplasmic

fepC Iron-enterobactin transporter subunit −5.6 ATP-binding component of ferric enterobactin 
transport

fes enterobactin/ferric enterobactin esterase −5.6 enterochelin esterase
fepA Iron-enterobactin outer membrane transporter −5.4 Outer membrane receptor for ferric enterobactin
fepD Iron-enterobactin transporter subunit −4.7 Ferric enterobactin
fhuE Ferric-rhodotorulic acid outer membrane  

transporter
−4.0 Outer membrane receptor for ferric iron uptake

fepB Iron-enterobactin transporter subunit −3.7 Ferric enterobactin
sodA superoxide dismutase, Mn −3.1 superoxide dismutase, manganese
fhuC iron-hydroxamate transporter subunit −3.0 ATP-binding component of hydroxymate-dependent 

iron transport

Table 3 Quantitative reverse transcriptase polymerase chain reaction analyses of select genes after three independent trials of zeolite 
support-containing silver nanoparticles. Escherichia coli at a concentration of 1 × 108 colony forming units/mL was exposed to silver 
nanoparticles embedded in zeolite membranes or zeolite membrane controls for 45 minutes prior to rNA isolation and analyses. 
Values are fold-change ± standard deviation

Gene product (gene name) Gene expression fold increase

Zeolite supported AgNP versus zeolite control
Trial 1 Trial 2 Trial 3

Copper-silver efflux (cusC) 2.11 ± 0.02 3.93 ± 1.12 2.68 ± 0.55
glutaredoxin (grxA) 14.64 ± 1.16 2.29 ± 0.26 1.22 ± 0.34
Multicopper oxidase (cueO) 43.90 ± 5.92 33.60 ± 0.89 16.41 ± 0.58
Thioredoxin (trxC) 5.30 ± 0.47 1.35 ± 0.15 0.99 ± 0.18

half with latter uses (44-fold, 33-fold, and 16-fold). Gene 

expression of cusC, which encodes copper-silver efflux, 

fluctuated slightly with each use (approximately 2-fold, 

4-fold, and 2.5-fold for trials 1, 2, and 3, respectively). These 

experiments were done with a single AgNP-ZM on three 

separate occasions.

Interaction of AgNP-ZM with other bacteria
The primary goal of this paper was to understand the 

interaction of AgNP-ZM with E. coli XL-blue, which is 

a laboratory strain. We also did some preliminary work 

using MRSA. Exposure to AgNP-ZM resulted in reduced 

replication, as interpreted by the lack of increase in super-

natant turbidity compared with controls, although the 

killing efficiency of the AgNP-ZM was found to be less 

potent compared with E. coli over the same exposure period 

(180 minutes). These data are shown in Figure 6. The gene 

expression studies were performed with E. coli, although 

further experimentation is underway using other clinically 

relevant bacterial strains.

Discussion
The discussion primarily focuses on the properties of the 

AgNP-ZM and its effect on E. coli.

release of Ag+ from AgNP-ZM
In our previous study,8 we did not address the issue of the 

interactions between bacteria and AgNP-ZM. Our pre-

liminary data indicate that AgNP-ZM were bacteriostatic 

against MRSA, a Gram-positive clinically relevant strain of 

S. aureus. However, the bactericidal properties against this 

bacterium were less potent compared with Gram-negative 

E. coli. We hypothesize that cell wall differences between 

these two bacteria may account for the differences in bacterial 
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hours.14 Oxidation of AgNP over time and release of Ag+ in 

less than 30 minutes has been noted.4 With each AgNP-ZM, 

efficacy of the membranes decreased as well upon repeated 

use (Figure 5). Ag+ released into media after the second, 

third, and fourth use was 5.7, 1.9, and 1.7 ppm, for 30-, 30-, 

and 60-minute exposures. There is clearly a decrease at the 

30-minute exposure level between the second and third use, 

and it took twice as long (60 minutes) for the fourth use to 

match the release of the third use. Thus, we hypothesize 

that the bactericidal effects of AgNP-ZM are delayed due 

to reduction in the amount of Ag+ released from AgNP-ZM 

with repeated use. As is evident from the scanning electron 

microscopy images (Figure 2B), there is a distribution of 

sizes of AgNP. Smaller AgNP are expected to undergo faster 

dissolution than larger particles, thus after each use, the Ag+ 

release should decrease. In addition, autoclaving could alter 

the surface of the AgNP, such as the formation of insoluble 

hydroxides or oxides. Interestingly, it has been reported that 

nanosilver bandages exposed to temperatures .90°C have 

diminished bactericidal activity.15 Other sterilization mea-

sures, such as ultraviolet light, are also problematic, because 

of the photochemistry of silver. We also used ethanol for 

decontamination, as reported above.

Disruption of oxidative balance
Several research groups studying AgNP have proposed that 

their antibacterial activity is due to the formation of reactive 

oxygen species. The mechanism of bacterial death was found 

to be a result of persistent surface free radicals found on 

AgNP, and that the antibacterial activity of both AgNP and 

Ag+ could be reversed by n-acetylcysteine.16 The mechanism 

of toxicity of AgNP in clay was proposed to be cell membrane 

disruption caused by the generation of reactive oxygen spe-

cies, and when incubated with the antioxidant, glutathione, 

their viability was restored.6 When bacterial reporter strains 

specifically responding to superoxide radicals were incubated 

with 100–300 ppm Ag+, it was apparent that the mechanism 

of antibacterial activity was via reactive oxygen species, 

specifically superoxide, which formed after perturbation of 

the electron transport chain.17 However, gene expression 

microarrays in the current study revealed downregulation of 

sodA, encoding a superoxide dismutase (3.1-fold decrease), 

which suggests that superoxide may not be the predominant 

reactive oxygen species driving bacterial oxidative stress. 

On the other hand, upregulation of expression of thioredoxin 

and glutaredoxin, which are crucial to maintaining oxidative 

balance, was noted after E. coli was exposed to AgNP-ZM 

(Table 3). Several genes associated with sulfur species trans-
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Figure 6 growth and viability of Staphylococcus aureus alone, exposed to a zeolite 
membrane, or exposed to zeolite supports containing silver nanoparticles was 
evaluated over time. (A) Turbidity was analyzed after 30, 60, 120 or 180 minutes 
of exposure to a single zeolite support containing silver nanoparticles. (B) Bacterial 
viability was measured after 30, 60, 120, and 180 minutes of exposure to a single 
zeolite support containing silver nanoparticles. 
Abbreviation: cfu/mL, colony forming units per milliliter.

viability upon exposure to AgNP-ZM, and studies are 

underway to investigate these findings. It is clear from the 

present study (Figure 4) that reduction of E. coli growth and 

viability does not require contact with the membrane. This 

is in contrast with the findings of Su et al,6 who found that 

Ag/clay-conditioned supernatants did not have appreciable 

antibacterial activity. With freshly prepared AgNP-ZM, 

we found that the release of Ag+ into the broth can be as  

high as 20 ppm after 48 hours. Since the zeolite membranes 

were extensively ion-exchanged with Na+ prior to these 

experiments, any Ag+ in solution would have to occur by 

AgNP oxidation and release. Slow release of Ag+ from the 

AgNP-ZM is also supported by the observation that bacteria 

sequestered in the transwell plates were not killed as quickly 

as those incubated with supernatants conditioned for three 

hours (Figure 4). It is known that solutions of Ag+ at 0.05 ppm 

result in complete reduction of E. coli viability within two 
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port and reduction were correlated with the multiple use of 

the AgNP-ZM. In the presence of silver (Ag+), bacteria may 

adjust sulfur pools to accommodate the synthesis of sulfur-

containing antioxidants.

Genes associated with iron transport (fep genes) were 

downregulated, while hemH, which codes for ferroche-

latase and plays an important role in heme synthesis, was 

upregulated. A possible response mechanism to the increased 

presence of Ag+ is that the bacteria decrease the  available 

pools of intracellular iron by increasing expression of 

 ferrochelatase, which tightly binds Fe2+, to combat and 

reduce oxidative stress.18,19 The downregulation of genes 

with a role in iron reduction and iron release from proteins 

further suggests that the bacteria are attempting to control the 

intracellular levels of Fe2+,20 thereby reducing the amount of 

iron available for Fenton reactions. Attempts by bacteria to 

regulate and restore oxidative balance are also suggested by 

the upregulation of soxR, which is involved in redox sens-

ing and controlling expression of superoxide dismutase and 

other antioxidants.21,22

Several genes encoding for metal ion influx and intra-

cellular metal transport and efflux were upregulated. E. coli 

exposed to AgNP-ZM upregulated mgtA, which encodes for 

proteins used for Mg2+ influx, and also upregulated arsR and 

arsB, which encode genes involved in arsenic resistance, but 

currently have no known role in silver toxicity. The gene 

zraP, which encodes a protein used for zinc homeostasis 

and copA, which in turn encodes for an ATPase intracellular 

copper transporter, were both upregulated. Others have found 

that copA is induced in the presence of silver salts,23 but does 

not appear to be involved in silver resistance.24 Thus, it is 

likely that the mechanisms of AgNP toxicity are similar to 

those for copper toxicity. Slawson et al25 reported that Ag+ 

toxicity was reduced when Cu2+ is also present, indicating 

that silver may compete with copper for entry into the cell. 

There appears to be some promiscuity of bacterial metal 

transport proteins, the functions of which have not been 

fully elucidated.

Developing resistance to silver
The genes known to encode silver resistance in E. coli are 

ybdE, ylcD, ylcC, ylcB, ylcA, and ybcZ.26 Most silver-resistant 

bacterial strains have developed tolerance by utilizing Ag+ 

ATPase efflux pumps and antiporters rather than chemical 

detoxification mechanisms.27 However, in the current study, 

only cusC (ylcB) and cusF (ylcC), the genes encoding for 

copper-silver efflux outer membrane protein and periplas-

mic copper and silver binding proteins, respectively, were 

upregulated when the bacteria were exposed to AgNP-ZM as 

compared with zeolite membrane controls. Further, we were 

able to confirm the upregulation of copper-silver efflux outer 

membrane protein (cusC) gene transcripts using quantitative 

reverse transcriptase PCR, although expression levels fluctu-

ated with AgNP-ZM use, which may be a result of variations 

in Ag+ release. The increase in gene transcription of multiple 

antibiotic resistant genes marA and marR is remarkable. 

The increased expression of mar genes is associated with 

antibiotic resistance (including tetracycline and ampicillin 

resistance).28 This work indicates that multiple antibiotic 

resistance genes may also play a role in the evolution of silver 

resistance in E. coli, and warrant further investigation.

Conclusion
The concept of using intrazeolitic space for storage of specific 

molecules and their slow release has found many applications. 

For example, controlled release of the preservative, cresol, 

from zeolite was successfully demonstrated by Erikkson29 

where E. coli and S. aureus viability was reduced. Another 

study demonstrated the feasibility of zeolites as a vehicle for 

drug delivery by releasing ketoprofen under different physi-

ological conditions.30 We have shown that surface-modified 

zeolites can release paraquat under controlled conditions.31 

However, this study is the first to demonstrate that zeolite 

membranes can serve as supports, and we demonstrate this 

functionality using AgNP for antibacterial use. The impact of 

using membranes is that such membranes can be grown on 

various supports, including plastics, cellulose, and metals.12 

Possible uses of this technology could include antibacterial 

coatings for a wide variety of applications. Further, these 

membranes have the propensity to be tailored for controlled 

release, thus dictating the amount of cargo released into 

the environment. Gene expression studies suggest that the 

mechanism for the antibacterial activity of AgNP-ZM is 

centered around the depletion of cellular antioxidant capacity 

by gradual release of Ag+ from zeolite membranes.
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Supplemental Methods
rNA isolation
Bacteria were collected from each well and pelleted at 4°C 

in 15 mL centrifuge tubes at 3250 × g for 15 minutes. Super-

natants were discarded and the pellets were homogenized in 

5 mL Trizol for five minutes. Each tube was shaken vigor-

ously for 30 seconds after the addition of 1 mL of chloroform. 

The tubes were incubated at room temperature for three min-

utes prior to centrifugation at 4°C and 3250 × g for 15 min-

utes. The organic layer was then removed and placed into 

clean RNase free microfuge tubes. Equal amounts of 100% 

ethanol were added to each tube and mixed by pipetting. RNA 

purification was then performed using RNeasy mini kits as 

per the manufacturer’s instructions, during which DNase was 

added to remove contaminating DNA. At the final elution 

step, RNA was resuspended in 20 µL of RNase-free H
2
O and 

stored at −80°C until further use in gene expression arrays and 

Alumina substrate

Dip coating seed layer

α-alumina with zeolite-Y seed

Membrane growth

Ion exchange with 0.005 M AgNO3

solution/reduction using hydrazine

Zeolite membrane on α-alumina

Zeolite membrane with nanosilver

Figure S1 schematic of fabrication of zeolite support containing silver nanoparticles. 
Alumina supports were used as the substrate for zeolite membrane synthesis. 
Zeolite was grown into a continuous membrane by hydrothermal synthesis. Zeolite 
membranes were then ion-exchanged with 0.005 M AgNO3 solution, washed, and 
then reduced by hydrazine.
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Figure S2 Viability of Escherichia coli after exposure to zeolite support containing 
silver nanoparticles for 30 minutes. The viability of E. coli was determined after 
exposure to zeolite support containing silver nanoparticles for 30 minutes. rNA 
was harvested from these experiments and used for the gene expression microarray 
analyses. Viability was significantly reduced after incubation with zeolite support 
containing silver nanoparticles for 30 minutes, compared with zeolite controls. 
Statistical significance was determined using the Student’s t-test ( n = 4 for zeolite 
controls and zeolite support containing silver nanoparticles, P , 0.02).

quantitative reverse transcription polymerase chain reaction 

experiments. The concentration of the samples provided was 

determined using the NanoDrop® ND-1000 ultraviolet-visible 

spectrophotometer.

gene arrays
Microarray slides were hybridized overnight, washed, and 

then scanned with an Agilent G2505C microarray scanner. 

This high-resolution scanner features an industry-leading 

extended dynamic range of 106 (20-bits) for high sensitivity 

scanning without saturation, low-level detection resulting 

from optimized precision optics, broad dynamic range, 

and minimal spectral cross talk that enables detection of 

weak features. The information about each probe on the 

array was extracted from the image data using Agilent 

Feature Extraction 10.9. This data was stored in Feature 

Extraction “.txt” files. The raw intensity values from these 

files were imported into the mathematical software pack-

age “R”, which is used for all data input, diagnostic plots, 

normalization, and quality checking steps of the analysis 

process using scripts developed inhouse specifically for 

this analysis. These scripts call on several Bioconductor 

packages (http://www.bioconductor.org/). Bioconductor 

is an open source and open development software project 

that provides tools for the analysis and comprehension of 

genomic data.1 Significance analyses of microarrays (SAM) 

is a powerful tool for analyzing microarray gene expression 

data useful for identifying differentially expressed genes 

between two conditions.2 SAM was used to calculate a test 
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Table S1 E. coli primer sequences for quantitative real-time Pcr (QrT-Pcr)

Gene product (gene name) Sequence Tm(C) Product size

Multi copper oxidase (cueO) F TTccgTATcTTgTcAgAAAATggcA 58.7 195 bp
Multi copper oxidase (cueO) r TAccgTAAAcccTAAcATcATcccc 58.2
Thioredoxin (trxC) F AcAcTcgAcAAATTgcTgAAggATg 58.3 164 bp
Thioredoxin (trxC) r AATTcAcgTTcAgcTTcggTATTcAc 58.7
glutaredoxin (grxA) F TTgcccTTAcTgTgTgcgTgc 58.4 151 bp
glutaredoxin (grxA) r cggcAcggTTTcTAcgggTT 58.5
Copper/silver efflux (cusC) F TTATgAAcAgAAAATccAgAAcgccT 58.3 228 bp
Copper/silver efflux (cusC) r TAATTcAgATcAAgTAAAgTTTgTcgggT 58

Abbreviations: F = Forward sequence; r = reverse sequence; bp = base pairs.

statistic for relative difference in gene expression based on 

permutation analysis of expression data and calculated a 

false discovery rate using the q-value method presented by 

Storey and Tibshirani.3 In outline, SAM identified statisti-

cally significant genes by carrying out gene-specific t-tests 

and computed a statistic for each gene. This test statistic 

measured the strength of the relationship between gene 

expression and a five-response variable. This analysis used 

no-parametric statistics, given that the data may not fol-

low a normal distribution. The response variable described 

and grouped the data based on experimental conditions. In 

this method, repeated permutations of the data were used 

to determine if the expression of any gene is significantly 

related to the response. The use of permutation-based 

analysis accounted for correlations in genes and avoided 

parametric assumptions about the distribution of individual 

genes. For this experiment, SAM analysis was implemented 

in R using the Bioconductor Siggenes package. Also, Rela-

tive Log Expression values were computed for each probe 

set by comparing the expression value in each array against 

the median expression value for that probe set across all 

arrays. Gene expression arrays were analyzed using a 10% 

false discovery rate to generate the list of significantly dif-

ferentially expressed genes. The q-values (false discovery 

rate) for each gene are provided in the results table, and the 

lower the value the more significant the result.

Table S2 Increases in E. coli gene expression in response to 30-minute exposures to four independent zeolite supports containing 
AgNPs versus E. coli exposed to four independent zeolite controls

Gene product Fold change 
AgNP-ZM  
vs zeolite

Description

Thiosulfate transporter subunit 14.9 Thiosulfate binding protein
Predicted protein 14.6 Multiple antibiotic resistance protein
Predicted transcriptional regulator 13 orf, hypothetical protein
sulfate/thiosulfate transporter subunit 11.9 sulfate transport system permease W protein
copper transporter 10.8 Putative ATPase
sulfate/thiosulfate transporter subunit 10.3 ATP-binding component of sulfate permease A protein; 

chromate resistance
Ferrochelatase 9.5 Ferrochelatase: final enzyme of heme biosynthesis
Magnesium transporter 9 Mg2+ transport ATPase, P-type 1
sulfate adenylyltransferase, subunit 2 9 ATP:sulfurylase
sulfate/thiosulfate transporter subunit 9 sulfate, thiosulfate transport system permease T protein
Predicted DNA-binding transcriptional regulator 8.8 orf, hypothetical protein
Sulfite reductase, alpha subunit, flavoprotein 8.7 Sulfite reductase
DNA-binding transcriptional dual activator of multiple  
antibiotic resistance

8.1 Multiple antibiotic resistance; transcriptional activator of defense 
systems

Predicted inner membrane protein 8.1 Putative transport system permease protein
conserved protein 8 orf, hypothetical protein
Predicted protein 7.9 orf, hypothetical protein
Zn-binding periplasmic protein 7.9 orf, hypothetical protein
Pseudo 7.8 Attaching and effacing protein, pathogenesis factor
Thioredoxin 2 7.8 Putative thioredoxin-like protein

(Continued)
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Table S2 (Continued)

Gene product Fold change 
AgNP-ZM  
vs zeolite

Description

glutaredoxin 1, redox coenzyme for ribonucleotide  
reductase (rNr1a)

7.6 glutaredoxin1 redox coenzyme for glutathione-dependent 
ribonucleotide reductase

sulfate transporter subunit 7.6 Periplasmic sulfate-binding protein
Predicted oxidoreductase with NAD(P)-binding  
rossmann-fold domain

7.2 Putative oxidoreductase

Predicted cyanide hydratase 7.1 orf, hypothetical protein
5,10-methylenetetrahydrofolate reductase 7.1 5,10-methylenetetrahydrofolate reductase
DNA-binding transcriptional repressor of multiple antibiotic  
resistance

6.8 Multiple antibiotic resistance protein; repressor of mar operon

Multicopper oxidase (laccase) 6.7 orf, hypothetical protein
Sulfite reductase, beta subunit, NAD(P)-binding, heme-binding 6.1 Sulfite reductase, alpha subunit
Predicted quinol oxidase subunit 6 orf, hypothetical protein
Predicted protein 5.9 orf, hypothetical protein
Periplasmic copper-binding protein 5.9 orf, hypothetical protein
Alkyl hydroperoxide reductase, F52a subunit,  
FAD/NAD(P)-binding

5.8 Alkyl hydroperoxide reductase, F52a subunit; detoxification of 
hydroperoxides

Predicted DNA-binding transcriptional regulator 5.8 orf, hypothetical protein
DNA-binding transcriptional activator, homocysteine-binding 5.7 regulator for mete and meth
3´-phosphoadenosine 5´-phosphosulfate reductase 5.7 3-phosphoadenosine 5-phosphosulfate reductase
DNA-binding transcriptional repressor 5.6 Transcriptional repressor of chromosomal ars operon
Is1 transposase InsAB’ 5.6 Is1 protein InsB
conserved protein 5.4 orf, hypothetical protein
conserved protein 5 orf, hypothetical protein
Predicted membrane protein 4.9 orf, hypothetical protein
sulfate adenylyltransferase, subunit 1 4.9 ATP-sulfurylase
Predicted protein 4.4 orf, hypothetical protein
Alcohol dehydrogenase class III/glutathione-dependent  
formaldehyde dehydrogenase

4.4 Alcohol dehydrogenase class III; formaldehyde dehydrogenase

N-ethylmaleimide reductase, FMN-linked 4.3 N-ethylmaleimide reductase
conserved protein 4.3 orf, hypothetical protein
rNA polymerase, sigma 32 (sigma h) factor 4.3 rNA polymerase, sigma
Nitrate reductase 1, beta (Fe-s) subunit 4.2 Nitrate reductase 1, beta subunit
Arsenite/antimonite transporter 4.2 Arsenical pump membrane protein
DNA-binding transcriptional dual regulator, Fe-s center  
for redox-sensing

4.2 redox-sensing activator of soxs

respiratory NADh dehydrogenase 2/cupric reductase 3.9 respiratory NADh dehydrogenase
Predicted inner membrane protein, part of terminus 3.9 Putative transport protein
envelope stress induced periplasmic protein 3.8 Periplasmic protein related to spheroblast formation
Fused fructose-specific PTS enzymes: IIA component/HPr  
component

3.8 PTS system, fructose-specific IIA/fpr component

Arsenate reductase 3.8 Arsenate reductase
Fructose-1-phosphate kinase 3.6 Fructose-1-phosphate kinase
DNA-binding transcriptional repressor 3.6 orf, hypothetical protein
Predicted transporter 3.6 Part of a kinase
Nitrate reductase 1, alpha subunit 3.6 Nitrate reductase 1, alpha subunit
Predicted esterase 3.5 Putative esterase
Molybdenum-cofactor-assembly chaperone subunit  
of nitrate reductase 1

3.5 Nitrate reductase 1, delta subunit, assembly function

3-oxoacyl-[acyl-carrier-protein] synthase II 3.4 3-oxoacyl-
DL-methionine transporter subunit 3.3 ATP-binding component of a transporter
Predicted (D)-galactarate transporter 3.3 Putative transport protein
Fused chorismate mutase T/prephenate dehydrogenase 3.3 chorismate mutase-T and prephenate dehydrogenase
Nitrate reductase 1, gamma (cytochrome b(Nr)) subunit 3.2 Nitrate reductase 1, cytochrome b
Fumarate hydratase (fumarase c), aerobic class II 3.2 Fumarase c= fumarate hydratase class II; isozyme
Copper/silver efflux system, membrane fusion protein 3.1 Putative resistance protein

(Continued)
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Table S2 (Continued)

Gene product Fold change 
AgNP-ZM  
vs zeolite

Description

Membrane protein of efflux system 3.1 orf, hypothetical protein
Copper/silver efflux system, outer membrane component 3 Putative resistance protein
regulator protein that represses frmrAB operon 3 Putative alpha helix chain
homoserine O-transsuccinylase 3 homoserine transsuccinylase
Predicted pirin-related protein 3 orf, hypothetical protein
Fused nitric oxide dioxygenase/dihydropteridine reductase 2 3 Dihydropteridine reductase, ferrisiderophore reductase activity
Nitrite reductase, large subunit, NAD(P)h-binding 2.9 Nitrite reductase
Predicted inner membrane protein 2.9 Putative transport protein
Adenosine 5’-phosphosulfate kinase 2.8 Adenosine 5-phosphosulfate kinase
Maltose regulon periplasmic protein 2.8 Periplasmic protein of mal regulon
conserved protein 2.8 orf, hypothetical protein
carbon-phosphorus lyase complex subunit 2.8 Phosphonate metabolism
Maltose transporter subunit 2.7 Periplasmic maltose-binding protein; substrate recognition for  

transport and chemotaxis
Fructuronate transporter 2.7 gluconate transport system permease 3
Predicted regulator of cell morphogenesis and  
cell wall metabolism

2.6 orf, hypothetical protein

DNA-binding transcriptional dual regulator, glycolate-binding 2.6 Transcriptional activator for glc operon
Predicted endopeptidase 2.6 heat shock protein, integral membrane protein
conserved protein 2.6 orf, hypothetical protein
Formate dehydrogenase-N, Fe-s (beta) subunit,  
nitrate-inducible

2.6 Formate dehydrogenase-N, nitrate-inducible, iron-sulfur beta 
subunit

Predicted glucarate dehydratase 2.6 Putative glucarate dehydratase
calcium/sodium:proton antiporter 2.5 sodium-calcium/proton antiporter
Formate dehydrogenase-N, alpha subunit, nitrate-inducible 2.5 Formate dehydrogenase-N, nitrate-inducible, alpha subunit
Gluconate transporter, high-affinity GNT I system 2.5 High-affinity transport of gluconate/gluconate permease
Predicted peptidoglycan peptidase 2.5 orf, hypothetical protein
Formate dehydrogenase-N, cytochrome B556  
(gamma) subunit, nitrate-inducible

2.4 Formate dehydrogenase-N, nitrate-inducible, cytochrome B556

e14 prophage; predicted DNA-binding transcriptional regulator 2.4 orf, hypothetical protein
Nitrite reductase, NAD(P)h-binding, small subunit 2.4 Nitrite reductase
Predicted zinc-dependent peptidase 2.4 orf, hypothetical protein
conserved protein required for cell growth 2.4 orf, hypothetical protein
cystathionine gamma-synthase, PLP-dependent 2.4 cystathionine gamma-synthase
conserved protein 2.4 orf, hypothetical protein
L-serine deaminase I 2.4 L-serine deaminase
Predicted reductase 2.4 Putative reductase
Alpha-dehydro-beta-deoxy-D-glucarate aldolase 2.4 orf, hypothetical protein
D-serine ammonia-lyase 2.4 D-serine dehydratase
serine endoprotease (protease Do), membrane-associated 2.3 Periplasmic serine protease Do; heat shock protein htrA
NADh-azoreductase, FMN-dependent 2.3 Acyl carrier protein phosphodiesterase
Isopentenyl diphosphate isomerase 2.3 Putative enzyme
Nitrite reductase, NAD(P)h-binding, small subunit 2.3 Nitrite reductase
Porphobilinogen synthase 2.3 5-aminolevulinate dehydratase = porphobilinogen synthase
Fused predicted pyruvate-flavodoxin oxidoreductase 2.3 Putative oxidoreductase, Fe-s subunit
Nitrite reductase, NAD(P)h-binding, small subunit 2.3 Nitrite reductase
sorbitol-6-phosphate dehydrogenase 2.3 glucitol
e14 prophage; predicted DNA-binding transcriptional  
regulator

2.3 orf, hypothetical protein

Inhibitor of replication at Ter, DNA-binding protein 2.2 DNA-binding protein; inhibition of replication at Ter sites
glycerol-3-phosphate O-acyltransferase 2.2 glycerol-3-phosphate acyltransferase
Predicted DNA-binding transcriptional regulator 2.2 orf, hypothetical protein
(D)-glucarate dehydratase 1 2.2 Putative glucarate dehydratase
sodium:serine/threonine symporter 2.2 Putative transport protein
conserved protein 2.2 orf, hypothetical protein

(Continued)
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Table S3 Decreases in Escherichia coli gene expression in response to 30-minute exposures to four independent zeolite supports 
containing silver nanoparticles versus E. coli exposed to four independent zeolite controls

Gene  
name

Gene product Fold change 
AgNP-ZM vs  
zeolite

Description

fliQ Flagellar biosynthesis protein −2 Flagellar biosynthesis
mdtQ Pseudo −2 orf, hypothetical protein
yhdE conserved protein −2 orf, hypothetical protein
yciT Predicted DNA-binding transcriptional  

regulator
−2 Putative DeOr-type transcriptional regulator

yjcC Predicted signal transduction protein  
(eAL domain containing protein)

−2 orf, hypothetical protein

yehE Predicted protein −2 orf, hypothetical protein
sdiA DNA-binding transcriptional activator −2 Transcriptional regulator of ftsQAZ gene cluster
yeeA conserved inner membrane protein −2 orf, hypothetical protein
yncH Predicted protein −2 orf, hypothetical protein
ndk Multifunctional nucleoside diphosphate kinase −2 Nucleoside diphosphate kinase
yebW Predicted protein −2 orf, hypothetical protein
ycjW Predicted DNA-binding transcriptional  

regulator
−2 Putative LAcI-type transcriptional regulator

(Continued)

Table S2 (Continued)

Gene product Fold change 
AgNP-ZM  
vs zeolite

Description

D-xylose transporter 2.2 Xylose-proton symport
sodium-proton antiporter 2.2 Na+/h antiporter, ph dependent
endonuclease IV with intrinsic 3’-5’ exonuclease activity 2.2 endonuclease IV
Pseudo 2.2 Putative transport system permease protein
conserved protein 2.2 orf, hypothetical protein
KpLe2 phage-like element; Is2 insertion element  
transposase InsAB’

2.2 Is2 hypothetical protein

4-alpha-glucanotransferase (amylomaltase) 2.1 4-alpha-glucanotransferase
Predicted transporter subunit: periplasmic-binding  
component of ABc superfamily

2.1 Putative transport periplasmic protein

Predicted DNA-binding transcriptional regulator 2.1 Putative transcriptional regulator LYsr-type
conserved protein 2.1 orf, hypothetical protein
catalase/hydroperoxidase hPI(I) 2.1 catalase; hydroperoxidase hPI
crotonobetaine reductase subunit II, FAD-binding 2.1 Probable carnitine operon oxidoreductase
cP4-6 prophage; predicted ferric transporter subunit 2.1 Putative ATP-binding component of a transport system
exonuclease III 2.1 exonuclease III
Dihydroxyacid dehydratase 2.1 Dihydroxyacid dehydratase
sn-glycerol-3-phosphate dehydrogenase, aerobic,  
FAD/NAD(P)-binding

2.1 sn-glycerol-3-phosphate dehydrogenase

Fused DNA-binding response regulator in two-component  
regulatory system with Zra

2.1 response regulator of hydrogenase 3 activity

Nitrite reductase, NAD(P)h-binding, small subunit 2.1 Nitrite reductase
3-deoxy-D-arabino-heptulosonate-7-phosphate  
synthase, tyrosine-repressible

2.1 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase

conserved inner membrane protein 2.1 orf, hypothetical protein
DNA-binding protein, hemimethylated 2 orf, hypothetical protein
conserved protein 2 Putative receptor
conserved inner membrane protein 2 orf, hypothetical protein
Dihydroxyacetone kinase, c-terminal domain 2 Putative dihydroxyacetone kinase
Predicted transporter subunit: ATP-binding component  
of ABc superfamily

2 Putative ATP-binding component of a transport system
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Table S3 (Continued)

Gene  
name

Gene product Fold change 
AgNP-ZM vs  
zeolite

Description

ycgN conserved protein −2.1 orf, hypothetical protein
alsA Fused D-allose transporter subunits of ABc  

superfamily: ATP-binding components
−2.1 Putative ATP-binding component of a transport system

sugE Multidrug efflux system protein −2.1 suppresses groeL, may be chaperone
ybbD pseudo −2.1 orf, hypothetical protein
yjhI KpLe2 phage-like element; predicted DNA- 

binding transcriptional regulator
−2.1 Putative regulator

glcF glycolate oxidase iron-sulfur subunit −2.1 glycolate oxidase iron-sulfur subunit
ybdO Predicted DNA-binding transcriptional  

regulator
−2.1 Putative transcriptional regulator LYsr-type

mcrA e14 prophage; 5-methylcytosine-specific  
restriction endonuclease B

−2.1 restriction of DNA at 5-methylcytosine residues; at locus  
of e14 element

efeB conserved protein −2.1 orf, hypothetical protein
yabP Pseudo −2.1 orf, hypothetical protein
arnT 4-amino-4-deoxy-L-arabinose transferase −2.1 orf, hypothetical protein
ais conserved protein −2.1 Protein induced by aluminum
rsxC Fused predicted 4Fe-4s ferredoxin-type  

protein/conserved protein
−2.1 Putative membrane protein

yagU conserved inner membrane protein −2.1 orf, hypothetical protein
yciF conserved protein −2.1 Putative structural proteins
yifK Predicted transporter −2.1 Putative amino acid/amine transport protein
yncD Predicted iron outer membrane transporter −2.1 Putative outer membrane receptor for iron transport
yhcO Predicted barnase inhibitor −2.1 orf, hypothetical protein
elaD Predicted enzyme −2.1 Putative sulfatase/phosphatase
eamA Cysteine and O-acetyl-L-serine efflux system −2.1 orf, hypothetical protein
glcD glycolate oxidase subunit, FAD-linked −2.1 glycolate oxidase subunit D
ydgC conserved inner membrane protein associated 

with alginate biosynthesis
−2.2 orf, hypothetical protein

sugE Multidrug efflux system protein −2.2 suppresses groeL, may be chaperone
alsC D-allose transporter subunit −2.2 Putative transport system permease protein
yifK Predicted transporter −2.2 Putative amino acid/amine transport protein
yhhY Predicted acetyltransferase −2.2 orf, hypothetical protein
fhuB Fused iron-hydroxamate transporter subunits  

of ABc superfamily: membrane components
−2.2 hydroxamate-dependent iron uptake, cytoplasmic membrane  

component
hdeB Acid-resistance protein −2.2 orf, hypothetical protein
yfhA Predicted DNA-binding response regulator  

in two-component system
−2.2 Putative 2-component transcriptional regulator

glgS Predicted glycogen synthesis protein −2.2 glycogen biosynthesis, rpos dependent
ydaQ rac prophage; conserved protein −2.2 orf, hypothetical protein
ylbH Pseudo −2.2 orf, hypothetical protein
rfaP Kinase that phosphorylates core heptose  

of lipopolysaccharide
−2.2 Lipopolysaccharide core biosynthesis; phosphorylation of 

core heptose
stpA DNA binding protein, nucleoid-associated −2.2 DNA-binding protein; h-Ns-like protein; chaperone activity
lpxT Undecaprenyl pyrophosphate phosphatase −2.2 orf, hypothetical protein
ydhY Predicted 4Fe-4s ferridoxin-type protein −2.2 Putative oxidoreductase, Fe-s subunit
yifK Predicted transporter −2.2 Putative amino acid/amine transport protein
hisP histidine/lysine/arginine/ornithine transporter  

subunit
−2.2 ATP-binding component of histidine transport

yhgE Predicted inner membrane protein −2.2 Putative transport
thiQ Thiamin transporter subunit −2.2 Putative ATP-binding component of a transport system
ycgZ Predicted protein −2.2 orf, hypothetical protein
glcG conserved protein −2.2 orf, hypothetical protein

(Continued)
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Table S3 (Continued)

Gene  
name

Gene product Fold change 
AgNP-ZM vs  
zeolite

Description

fliP Flagellar biosynthesis protein −2.2 Flagellar biosynthesis
yibF Predicted glutathione s-transferase −2.2 Putative s-transferase
rpiR DNA-binding transcriptional repressor −2.4 Transcriptional repressor of rpiB expression
yojI Fused predicted multidrug transport subunits  

of ABc superfamily
−2.4 Putative ATP-binding component of a transport system

hsdS Specificity determinant for hsdM and hsdR −2.4 Specificity determinant for hsdM and hsdR
racR rac prophage; predicted DNA-binding  

transcriptional regulator
−2.4 orf, hypothetical protein

yceI Predicted protein −2.4 orf, hypothetical protein
tonB Membrane spanning protein in TonB-exbB- 

exbD complex
−2.4 energy transducer; uptake of iron, cyanocobalimin; sensitivity 

to phages
rfaS Lipopolysaccharide core biosynthesis protein −2.5 Lipopolysaccharide core biosynthesis
rutB Predicted enzyme −2.5 Putative synthetase
yciI Predicted enzyme −2.5 orf, hypothetical protein
wzyE Predicted Wzy protein involved in ecA  

polysaccharide chain elongation
−2.5 TDP-Fuc4NAc:lipidII transferase; synthesis of enterobacterial 

common Ag
nth DNA glycosylase and apyrimidinic (AP)  

lyase (endonuclease III)
−2.5 Endonuclease III; specific for apurinic and/or apyrimidinic sites

yncC Predicted DNA-binding transcriptional  
regulator

−2.5 orf, hypothetical protein

yifK Predicted transporter −2.5 Putative amino acid/amine transport protein
yjhB KpLe2 phage-like element; predicted  

transporter
−2.5 Putative transport protein

yhjR conserved protein −2.5 orf, hypothetical protein
yfdI cPs-53 (KpLe1) prophage; predicted inner  

membrane protein
-2.5 putative ligase

yifN pseudo −2.6 orf, hypothetical protein
caiF DNA-binding transcriptional activator −2.6 Transcriptional regulator of cai operon
flgA assembly protein for flagellar basal-body  

periplasmic P ring
−2.6 Flagellar biosynthesis; assembly of basal-body periplasmic P 

ring
serA D-3-phosphoglycerate dehydrogenase −2.6 D-3-phosphoglycerate dehydrogenase
can carbonic anhydrase −2.7 Putative carbonic anhdrase
yacC Predicted protein −2.7 orf, hypothetical protein
ydbL conserved protein −2.7 orf, hypothetical protein
efeO conserved protein −2.7 orf, hypothetical protein
fliF Flagellar basal-body Ms-ring and collar protein −2.7 Flagellar biosynthesis; basal-body Ms
flgC Flagellar component of cell-proximal portion  

of basal-body rod
−2.7 Flagellar biosynthesis, cell-proximal portion of basal-body rod

can carbonic anhydrase −2.7 Putative carbonic anhdrase
rsxD Predicted inner membrane oxidoreductase −2.7 orf, hypothetical protein
fliM Flagellar motor switching and energizing  

component
−2.7 Flagellar biosynthesis, component of motor switch and 

energizing
ybaN conserved inner membrane protein −2.8 Putative gene 58
proV glycine betaine transporter subunit −2.8 ATP-binding component of transport system for glycine, 

betaine and proline
fhuD Iron-hydroxamate transporter subunit −2.8 hydroxamate-dependent iron uptake, cytoplasmic membrane 

component
can carbonic anhydrase −2.8 Putative carbonic anhdrase
sufE sulfur acceptor protein −2.8 orf, hypothetical protein
sufS selenocysteine lyase, PLP-dependent −2.8 orf, hypothetical protein
ariR Predicted protein −2.8 orf, hypothetical protein
wcaM Predicted colanic acid biosynthesis protein −2.8 orf, hypothetical protein
ymgA Predicted protein −2.9 orf, hypothetical protein
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Table S3 (Continued)

Gene  
name

Gene product Fold change 
AgNP-ZM vs  
zeolite

Description

ybiX conserved protein −2.9 Putative enzyme
yacC Predicted protein −2.9 orf, hypothetical protein
sufC component of sufBcD complex, ATP-binding  

component of ABc superfamily
−2.9 Putative ATP-binding component of a transport system

can carbonic anhydrase −2.9 Putative carbonic anhydrase
yacC Predicted protein −3 orf, hypothetical protein
fhuC Iron-hydroxamate transporter subunit −3 ATP-binding component of hydroxymate-dependent iron 

transport
sodA superoxide dismutase, Mn −3.1 superoxide dismutase, manganese
can carbonic anhydrase −3.2 Putative carbonic anhydrase
cbrB Predicted inner membrane protein −3.2 orf, hypothetical protein
flgB Flagellar component of cell-proximal portion  

of basal-body rod
−3.3 Flagellar biosynthesis, cell-proximal portion of basal-body rod

ompT DLP12 prophage; outer membrane protease  
VII (outer membrane protein 3b)

−3.3 Outer membrane protein 3b

rsxE Predicted inner membrane NADh-quinone  
reductase

−3.3 orf, hypothetical protein

pqqL Predicted peptidase −3.3 Putative peptidase
fliA rNA polymerase, sigma 28 (sigma F) factor −3.3 Flagellar biosynthesis; alternative sigma factor 28
yfdH cPs-53 (KpLe1) prophage; bactoprenol  

glucosyl transferase
−3.5 Putative glycan biosynthesis enzyme

yjgL Predicted protein −3.5 orf, hypothetical protein
sufD component of sufBcD complex −3.7 orf, hypothetical protein
yfdH cPs-53 (KpLe1) prophage; bactoprenol  

glucosyl transferase
−3.7 Putative glycan biosynthesis enzyme

fepB Iron-enterobactin transporter subunit −3.7 Ferric enterobactin
fliL Flagellar biosynthesis protein −3.7 Flagellar biosynthesis
sufB component of sufBcD complex −3.7 orf, hypothetical protein
sufA Fe-s cluster assembly protein −3.8 orf, hypothetical protein
ycgF Predicted FAD-binding phosphodiesterase −3.8 orf, hypothetical protein
yfdH cPs-53 (KpLe1) prophage; bactoprenol  

glucosyl transferase
−3.8 Putative glycan biosynthesis enzyme

sufA Fe-s cluster assembly protein −3.9 orf, hypothetical protein
ybdB conserved protein −4 orf, hypothetical protein
fhuE Ferric-rhodotorulic acid outer membrane  

transporter
−4 Outer membrane receptor for ferric iron uptake

sufA Fe-s cluster assembly protein −4.3 orf, hypothetical protein
yfdH cPs-53 (KpLe1) prophage; bactoprenol  

glucosyl transferase
−4.4 Putative glycan biosynthesis enzyme

exbD Membrane spanning protein in TonB-exbB- 
exbD complex

−4.5 Uptake of enterochelin; tonB-dependent uptake of B colicins

yncE conserved protein −4.5 Putative receptor
fepD Iron-enterobactin transporter subunit −4.7 Ferric enterobactin
sufA Fe-s cluster assembly protein −4.9 orf, hypothetical protein
entB Isochorismatase −5 2,3-dihydro-2,3-dihydroxybenzoate synthetase, 

isochroismatase
entC Isochorismate synthase 1 −5.3 Isochorismate hydroxymutase 2, enterochelin biosynthesis
tdcA DNA-binding transcriptional activator −5.3 Transcriptional activator of tdc operon
fepA Iron-enterobactin outer membrane transporter −5.4 Outer membrane receptor for ferric enterobactin
fepC Iron-enterobactin transporter subunit −5.6 ATP-binding component of ferric enterobactin transport
fes enterobactin/ferric enterobactin esterase −5.6 enterochelin esterase
exbB Membrane spanning protein in TonB-exbB- 

exbD complex
−5.8 Uptake of enterochelin; tonB-dependent uptake of B colicins
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Table S3 (Continued)

Gene  
name

Gene product Fold change 
AgNP-ZM vs  
zeolite

Description

nrdH glutaredoxin-like protein −5.8 glutaredoxin-like protein; hydrogen donor
fecR KpLe2 phage-like element; transmembrane  

signal transducer for ferric citrate transport
−5.9 regulator for fec operon, periplasmic

entS Predicted transporter −6.6 Putative transport
entF enterobactin synthase multienzyme complex  

component, ATP-dependent
−6.8 ATP-dependent serine activating enzyme

cirA Ferric iron-catecholate outer membrane  
transporter

−7.1 Outer membrane receptor for iron-regulated colicin I 
receptor; porin

entA 2,3-dihydro-2,3-dihydroxybenzoate  
dehydrogenase

−7.2 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase

entE 2,3-dihydroxybenzoate-AMP ligase component  
of enterobactin synthase multienzyme complex

−7.4 2,3-dihydroxybenzoate-AMP ligase

yddB Predicted porin protein −7.9 orf, hypothetical protein
fecI KpLe2 phage-like element; rNA polymerase,  

sigma 19 factor
−8.5 Probable rNA polymerase sigma factor

nrdI Protein that stimulates ribonucleotide reduction −8.8 orf, hypothetical protein
ydiE conserved protein −9.2 orf, hypothetical protein
nrdE ribonucleoside-diphosphate reductase 2,  

alpha subunit
−10.4 ribonucleoside-diphosphate reductase 2, alpha subunit

bfd Bacterioferritin-associated ferredoxin −10.6 orf, hypothetical protein
yddA Fused predicted multidrug transporter  

subunits of ABc superfamily
−12.4 Putative ATP-binding component of a transport system

fepG Iron-enterobactin transporter subunit −12.6 Ferric enterobactin transport protein
fiu Predicted iron outer membrane transporter −13.7 Putative outer membrane receptor for iron transport
nrdF ribonucleoside-diphosphate reductase 2, beta  

subunit, ferritin-like protein
−13.9 ribonucleoside-diphosphate reductase 2, beta chain, frag

fhuF Ferric iron reductase involved in ferric  
hydroximate transport

−17.6 orf, hypothetical protein
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