
R E V I E W

Advances in the Study of Bioactive Nanoparticles 
for the Treatment of HCC and Its Postoperative 
Residual Cancer
Yanxu Li1, Hao Zou2,*, Zekun Zheng2, Zhuoheng Liu2,*, Huiyuan Hu2,*, Wei Wu3, Tao Wang4

1Medical College of Yangzhou University, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China; 2Dalian Medical University, 
Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China; 3Affiliated Hospital of Yangzhou University, 
Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China; 4College of Veterinary Medicine, Yangzhou University, Yangzhou 
City, Jiangsu Province, People’s Republic of China

*These authors contributed equally to this work 

Correspondence: Wei Wu; Tao Wang, Tel/Fax +86-0514-87991201; +86-187 5255 5147, Email 306834397@qq.com; wtao6550@yzu.edu.cn 

Abstract: Primary hepatocellular carcinoma (HCC, hepatocellular carcinoma) is the third leading cause of tumor death in the world 
and the second leading cause in China. The high recurrence rate at 5 years after surgery also seriously affects the long-term survival of 
HCC patients. For reasons such as poor liver function, large tumors, or vascular invasion, only relatively limited palliative treatment is 
available. Therefore, effective diagnostic and therapeutic strategies are needed to improve the complex microenvironment and block 
the mechanism of tumor development in order to treat the tumor and prevent recurrence. A variety of bioactive nanoparticles have been 
shown to have therapeutic effects on hepatocellular carcinoma and have the advantages of improving drug solubility, reducing drug 
side effects, preventing degradation in the blood, increasing drug exposure time, and reducing drug resistance. The development of 
bioactive nanoparticles is expected to complete the current clinical therapeutic approach. In this review, we discuss the therapeutic 
advances of different nanoparticles for hepatocellular carcinoma and discuss their potential for postoperative applications with respect 
to possible mechanisms of hepatocellular carcinoma recurrence. We further discuss the limitations regarding the application of NPs 
and the safety of NPs. 
Keywords: HCC, NPs, treatment

Introduction
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer in the world.1 The incidence and mortality of HCC 
continue to rise in many countries, accounting for 90% of HCC in China with a recurrence rate of over 50% 5 years after 
resection in HCC patients.1–3 Infection with hepatitis B or C virus,4 exposure to carcinogens,5 excessive alcohol 
consumption,6 obesity,7 and diabetes8 are all important causes of HCC. The aforementioned etiology that leads to 
HCC encompasses multiple stages, including multiple processes of hepatocyte injury, regeneration, fibrosis, and hetero-
geneous proliferation.9

Most patients are already in the progressive stage upon diagnosis because they are asymptomatic, which has a greater 
impact on survival. HCC can currently be diagnosed by a variety of means, such as ultrasound, CT, MRI, and puncture 
biopsy, but the accuracy and potential for medically induced metastases make it even more difficult to diagnose. HCC can 
be treated with liver transplantation, surgical resection, and local ablation; however, only 30% of newly diagnosed liver 
cancer patients are eligible for treatment.10 Despite recent advancements in the systemic treatment of HCC, long-term 
survival in patients with advanced disease is uncommon.11 Currently, systemic chemotherapy, transhepatic arterial 
chemoembolization, and radiation therapy comprise the most prevalent adjuvant treatments for HCC. However, the 
side effects and toxic effects of systemic chemotherapy are substantial and have obvious killing effects on normal 
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cells.12,13 Transhepatic arterial chemoembolization is easily affected by the formation of cancer thrombi or distant 
metastases in the blood vessels, and radiation therapy is ineffective or discontinued because patients are unable to tolerate 
it.14 Accordingly, HCC remains one of the most challenging cancers to till date.

With existing therapies, patient survival rates have not improved significantly, and continuous administration of drugs 
has exacerbated drug resistance in HCC cells. In addition, HCC, as a highly malignant tumor, is relatively less sensitive 
to chemotherapy. Therefore, there is a great need to utilize nanodrug delivery systems that can not only reduce HCC drug 
resistance but also increase chemotherapy sensitivity while promoting tumor cell apoptosis. This review will summarize 
the research progress on the therapeutic effects of different NPs in HCC and discuss the application prospects of this new 
form of HCC therapy. At the same time, we further summarized the relevant mechanism of HCC postoperative 
recurrence and further discussed whether NPs that can play a role in HCC treatment can also play a certain role in 
residual cancer after HCC.

Advantages of Nanoparticles in the Treatment of HCC
In recent years, the development of nanotechnology and biomaterials has led to applications in many areas of cancer 
treatment, as well as new ideas for the treatment of patients with recurrence of HCC following palliative resection. 
Nanoparticles (NPs) are solid particles with diameters between 10 and 1000 nm that can encapsulate or adsorb drugs for 
disease-specific diagnosis or treatment.15 Biologically active NPs are able to carry a wide variety of drugs and protect 
them from degradation in harsh environments while achieving long-term controlled drug release function via biocompat-
ibility and target recognition properties, thereby significantly reducing the side effects of drugs and demonstrating a very 
positive role in the treatment of tumors.16–18 In addition, NPs can be modified by specific ligands, such as galactose, 
mannose, lactose and maltose, which can enhance specificity, lower toxicity, lower immunogenicity, and prolong 
circulation time. And can aid in the targeting and internalization of specific cell populations, including cancer cells.19 

Furthermore, endocytosis allows for intracellular drug staging, and drugs can be released with altered cellular micro-
environment acidity and alkalinity, particularly in the acidic environment of cancer cells. In comparison to conventional 
radiotherapy and chemotherapy, the NPs-mediated hepatic-targeted drug delivery system (HTDDS) enhances the 
therapeutic efficacy of targeted therapy for HCC.20 Correspondingly, the ability to achieve liver-targeted drug delivery, 
temporarily store drugs in the liver, and actively identify liver cancer cells is highly promising for the treatment of 
postoperative residual carcinoma patients.21

Nanoparticles have been widely used as carriers for loading bioactive agents, particularly those with low solubility in 
water, due to their unique properties.22,23 The advantages of encapsulating drugs in NPs include increased drug solubility, 
decreased drug side effects, prevention of drug degradation in the blood, increased drug exposure time, and decreased 
drug resistance.24 Additionally, NPs facilitate the development of protein-based therapeutics. Meanwhile, NPs have 
a number of benefits, including enhancing protein uptake and cellular responses, activating specific genes and intracel-
lular signaling, and modulating cellular responses to soluble factors.25,26 During their action, NPs can mimic the natural 
morphology and function of the extracellular matrix (ECM) and deliver and release bioactive substances, including 
proteins, peptides, and small molecules, to numerous tissues.27–30 During the course of action, not only is drug target 
recognition achieved but also the zero-level drug release characteristics at the tumor site are controlled, decreasing the 
frequency of local drug delivery, and the ability to maintain the drug release rate (Figure 1).31,32

Application of NPs in the Treatment of HCC
NPs and Chemotherapy for HCC
Metal and non-metal NPs can be loaded with chemotherapeutic agents that inhibit tumor cell proliferation and 
angiogenesis during therapy, such as sorafenib (Sora),33 thereby reducing the dose of chemotherapeutic drugs and 
achieving relatively satisfactory therapeutic effects. After modification, metal nanoparticles (metal NPs) such as iron, 
gold, and silver can significantly reduce their biotoxicity and be used to treat HCC. Among them, Fe NPs can be loaded 
with Sora and i RGD peptide with amino acid sequence CRGDK/RGPD/EC (MIL-101(Fe)@sor + i RGD), which 
decreases glutathione (GSH) and glutathione peroxidase 4 (GPX-4) levels while providing iron ions to effectively inhibit 
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tumor growth, with good biosafety.34 Fe3O4 has very low biotoxicity and can be doped with poly (ADP-ribose) 
polymerase 1 (PARP-1) inhibitor (ABT-888) and temozolomide (TMZ) in Fe3O4 / Fe nano-scaffolds, Compared with 
drug alone, ABT-888/TMZ/NPs can significantly cause DNA damage, cell cycle arrest, PARP-1 fragmentation, Caspase- 
3 gene activation, and reduce the expression of poor prognostic related genes, so as to achieve the objective of treating 
tumors.35 Raptinal is a novel anticancer drug that can initiate the apoptotic pathway through the release of cytochrome 
C and caspase 3, encapsulate mitochondrial function, and significantly induce the expression of apoptotic genes. 
In addition, Raptinal loaded with Ag NPs significantly reduced bilirubin and AFP levels in the treated group compared 
with free Raptinal, which indicates a significant reduction in the aggressiveness of the tumor.36 Additionally, platinum 
has some utility in the treatment of recurrent tumors. Due to the high glucose consumption of HCC cells and the 
excessive production of reactive oxygen species (ROS), Shoshan et al prepared titanium-coated, non-oxidized platinum 
nanoparticles. The titanium-coated, non-oxidized platinum nanoparticles not only enable tumor cells to take up Pt NPs 
more efficiently but also cause DNA damage when the internal Pt NPs are oxidized to oxidized platinum when they come 
into contact with reactive oxygen species. Thus, the therapeutic effect on HCC cells can be achieved.37

Arsenic trioxide (ATO) was initially discovered and utilized in the treatment of acute promyelocytic leukemia (APL), 
but the current formulation has applications in the treatment of other types of cancer.38 Huang et al,39 prepared ATO- 
loaded ZnAs@SiO2 nanoparticles (NPs) to test the efficacy of ATO in the treatment of HCC, and found that the SHP-1/ 
JAK2/STAT3 signaling pathway was activated, which significantly inhibited the growth and metastasis of hepatocellular 
carcinoma cells and could be applied to the treatment of HCC. DNA methyltransferases 1 (Dnmt1) protein and PCNA 
were highly correlated with the prognosis of HCC, and ATO-filled m PEG-PLGA-PLL NPs were able to decrease the 
expression of Dnmt1 gene and DNA methylesterase gene, induce caspase 3 activation, release free N-terminal structural 
domain of gasdermin-E (GSDME), and ultimately induce apoptosis in HCC cells.40 Chitosan is a nontoxic, cation-rich, 
biodegradable carrier that can protect DNA from nuclease degradation, and chitosan nanoparticles have shown high 
activity against hepatocellular carcinoma cells.41,42 In this regard, triptolide (TP) is highly effective against a variety of 
cancers, including hepatocellular carcinoma; however, its high toxicity, low solubility in water, and unknown therapeutic 
targets limit its clinical application.43,44 Nevertheless, galactosylated chitosan TP nanoparticles (GC-TP-NPs) with high 
drug-carrying capacity can overcome this problem, as they have a sustained release pattern, effective in vitro cellular 
uptake, and high hepatic tumor accumulation in vivo, in addition to exhibiting lower systemic toxicity and androgenic 

Figure 1 Schematic diagram of NPs acting on tumor cells. Reprinted with permission from Figdraw (www.figdraw.com). 
Abbreviation: NPs, nanoparticles.
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toxicity, with the same pro-apoptotic and anti-proliferative effects on HCC cells in vitro and in vivo.44 In addition, 
dextran-based nanocarriers are biocompatible, have low toxicity, and can be used to target and control the release of 
curcumin to hepatocellular carcinoma cells L929 and HepG2 with the potential to treat the HCC.45 Accordingly, poly 
(lactic acid)-glycolic acid [PLGA], one of the linear polyesters in polymeric nanoparticles, has been used in the treatment 
of hepatic carcinoma, since it can be degraded in vivo to lactic acid (LA) and glycolic acid (GA), which is further 
degraded to carbon dioxide and water and is thus not toxic to the organism. Pan et al,46 encapsulated artemisinin 
(Artesunate, ART) in GA-modified NPs, and in vitro cytotoxicity experiments demonstrated that the GA-modified NPs 
had a higher affinity for HCC cells, a higher cellular uptake capacity, a lower cancer cell survival rate, and significant 
targeting properties, which can be utilized for the targeted treatment of HCC. Bile acids are synthesized in the liver from 
cholesterol, and in the human enterohepatic circulation, bile acids circulate frequently and efficiently. The concentration 
of GSH in the cytoplasm of tumor cells is approximately 2–10 mM, which is significantly higher than its concentration in 
the extracellular matrix (approximately 2–20 μm).47 T Fang et al,48 fabricated redox-sensitive PLGA nano-NPs (TSP/FP) 
loaded with oridonin (ORI) and GSH, which can apply to the high affinity of the APDTKTQ (Ala-Pro-Asp-Thr-Lys-Thr- 
Gln) peptide for the receptor of advanced glycation end-products (RAGE) can help cells uptake TSP or FP to release 
ORI, thus maximizing the therapeutic effect on HCC.

In the chemotherapy of liver cancer, NPs mainly promote the apoptosis of tumor cells by activating Caspase 3, and 
they can also eliminate tumor cells by regulating gene expression and activating signaling pathways (Figure 2).

NPs and Photothermal Therapy for HCC
Photothermal therapy (PTT) is a specialized treatment modality in which bioactive materials with high photothermal 
conversion efficiency are injected into the body, and light energy is converted into heat energy to kill tumor cells using 

Figure 2 Schematic diagram of NPs and chemotherapy for HCC. NPs, nanoparticles. iRGD, Peptide chain of the amino acid sequence CRGDK/RGPD/EC. GSH, glutathione. 
PARP-1, poly (ADP-ribose) polymerase 1. ABT-888, PARP-1 inhibitor. Reprinted with permission from Figdraw (www.figdraw.com). 
Abbreviations: TMZ, temozolomide; ROS, reactive oxygen species; ATO, arsenic trioxide; Dnmt, DNA methyltransferases; GSDEM, gasdermin-E; Cyt C, cytochrome C; 
ORI, oridonin; TP, triptolide; TAP/FP, redox-sensitive PLGA nano-NPs; APDTKTQ, a peptide Ala-Pro-Asp-Thr-Lys-Thr-Gln; RAGE, the receptor of advanced glycation end- 
products; ART, Artesunate.
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target recognition technology and external light sources.49 Currently, numerous NPs have been validated for use in the 
photothermal therapy of tumors.

With good biocompatibility and relatively good therapeutic effects, graphene derivatives and their hybrids have 
garnered a great deal of attention from researchers in recent years and are widely used in cancer nanomedicine; they also 
have a certain amount of potential in the PTT tumor species. Graphene quantum dots (QDS)-mediated chitosan magnetic 
nanodelivery system (DOX-Fe3O4@CGA), with conjugated bonds, can adsorb photons and convert them into heat, 
promote the heating of the surrounding environment and the production of reactive oxygen species (ROS), and realize the 
targeted photothermal synergistic chemotherapy of HCC.50

Metal NPs play a relatively broad role in PTT treatment, and superparamagnetic iron oxide (SPION) NPs can induce 
lysosomal membrane permeabilization (LMP) in tumor cells, protect small interfering RNA (siRNA) from degradation 
by biological systemic nucleotides, improve the heating efficiency of π -π conjugation enhanced magnetic saturation, and 
induce apoptosis in hepatocellular carcinoma (HCC) cells in a controlled manner, which can be applied for the treatment 
of HCC.51–53 Adipose-derived mesenchymal cells (AD-MSCs) have the ability to homing and damage the liver. After 
encapsulation of AD-MSCs with SPIO-coated gold nanoparticles (SPIO @ AuNPs), they can be successfully transfected 
into AD-MSCs. SPIO @ AuNP-loaded AD-MSCs can thermally ablate surrounding liver cancer tumor cells.54

PTT achieves targeted therapy for HCC patients, thereby improving patient comfort and therapeutic outcomes 
(Table 1).

Altered Gene Expression Levels of HCC
Inhibiting the cell cycle, modifying gene expression levels, and regulating signaling pathways can be used to treat HCC. 
To achieve tumor cell-specific apoptosis and death, Fe3O4 can be combined with FITC-binding cyclic the exposed 
arginine-glycine-aspartic (RGD) tripeptide to create nanoprobes that target and identify genes regulating integrin αvβ3 
and vascular endothelial growth factor receptors (VEGFRs), which are highly expressed in many tumor tissues.55–57 In 
targeted gene therapy for HCC Fe3O4 NPs are anticipated to be applied to postoperative residual carcinoma in HCC. 
HCC cell lines and tissues can negatively regulate the expression of miR326 through the PI3K/AKT/c-myc axis, and its 
down-regulation is positively correlated with the prognosis of HCC. AuNPs carrying miR326 can inhibit the expression 
of cell cycle factors in vitro and in vivo, leading to tumor cell cycle transition disorders and inhibiting the PI3K/AKT/ 
c-myc axis through a negative feedback loop, further inhibiting the proliferation of HepG2, Hep3B, Huh-7, and other cell 
lines.58 Enterococci-mediated AuNPs inhibit the proliferation of HepG2 cells via intracellular ROS-mediated apoptosis, 
decrease the expression of the proliferating cell nuclear antigen (PCNA) gene, and have therapeutic potential for HCC.59

MSN carries ursolic acid (UA) (USMNs-CL) with good anticancer activity and hepatoprotective effects, which 
exhibited strong proliferation and cell cycle inhibition and apoptosis in HepG2 cells at the G2/M phase, inhibition and 
cell cycle arrest, blocking tumor cell DNA replication, and significantly causing early and late apoptosis in HepG2 cells, 
thereby providing a means to improve the bioavailability and prolong the release of anticancer drugs.60 Xue et al,61 

discovered that MSNs containing Adriamycin hydrochloride (DOX) and miR-375 significantly increased DOX uptake, 

Table 1 Photothermal Therapy

NPs Mechanism References

DOX-Fe3O4@CGA Adsorb photons and convert them into heat.
Producing reactive oxygen species (ROS). [50]

SPION Induce lysosomal membrane permeabilization (LMP) in tumor cells.

Protect small interfering RNA (siRNA),
Improve the heating efficiency of π -π conjugation.

Induce apoptosis. [51–53]

SPIO @ AuNP- AD-MSCs Transfection of AD-MSCs.
Thermally ablate surrounding liver cancer tumor cells. [54]
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and miR-375 reduced p-glycoprotein (P-gp) overexpression, which leads to multidrug resistance (MDR) in tumor cells, 
by inhibiting the expression of astrocyte elevated gene 1 (AEG-1) and targeting AEG-1-induced apoptosis.

Chitosan has numerous benefits, including biodegradability and low toxicity, and can be used in gene therapy. 
Accordingly, folic acid-chitosan nanoparticles (FA-CS) loaded with mouse interferon-inducible protein-10 (IP-10) 
plasmid DNA may achieve antitumor effects by inhibiting HCC cell proliferation and inducing HCC cell apoptosis by 
modulating immune responses and inhibiting tumor neovascularization, which is a novel HCC therapy.62 In addition, Xue 
et al,63 discovered that the preparation of galactosylated carboxymethyl chitosan-magnetic iron oxide nanoparticles (Gal- 
CMCS- Fe3O4 -NPs) enhanced the transfection efficiency of the Ras-related region family 1A (RASSF1A) gene, which 
is capable of inhibiting hepatocellular carcinoma cells, inhibiting tumor growth, and increasing the sensitivity of 
hepatocellular. Chitosan NPs can also encapsulate anionic albumin, which can alter redox homeostasis and inhibit NF- 
κB expression and ALDH1A1 in cancer cells, causing high apoptosis-mediated toxicity with great potential for inhibiting 
CSCs and treating HCC (Figure 3).64

Combination Therapy for HCC
Combination therapy refers to the rational combination of drugs or other cellular metabolites with comparable but 
distinct effects for the treatment of disease. In addition to reducing the toxic side effects of drugs, combination therapy 
also inhibits the development of drug resistance in tumor cells.

MSNs can target tumors via surface modification and accumulate sufficiently within tumor cells for tumor combina-
tion therapy, as well as capture/insert metals for PTT.65,66 Yang et al,67 utilized MSNs loaded with Sora and PTT near- 
infrared PTT reagent indocyanine green (ICG), which was found to increase the secretion of IFN-G from CD8+ T cells 
and enhance the number of immune cells in the tumor and spleen, as well as reduce angiogenesis, with potent immune 
response and recurrence-preventing activity, having a wide application for the treatment of HCC. Meanwhile, Zheng 

Figure 3 Schematic diagram of Altered Gene Expression Levels of HCC. Reprinted with permission from Figdraw (www.figdraw.com). 
Abbreviations: NPs, nanoparticles; ROS, reactive oxygen species; VEGDF, vascular endothelial growth factor receptors; RGD, the exposed arginine-glycine-aspartic 
tripeptide; P-gp, p-glycoprotein; FA-CS, folic acid-chitosan nanoparticles; Gal-CMCS- Fe3O4 -NPs, galactosylated carboxymethyl chitosan-magnetic iron oxide nanoparticles; 
RASSF1A, Ras-related region family 1A.
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et al,68 prepared MSNs co-loaded with Sora and vascular endothelial growth factor-targeting siRNA (siVEGF) NPs 
(Sora/ siVEGF@MSNs-LA), which could target the induction of S-cell cycle arrest, enhanced the anti-cancer effect of 
Sora and siVEGF, and had great potential in the treatment of HCC. In addition, MSN modified by polyamidoamine 
ligand (PAMAM-APT) co-loaded Sora and pEGFR (SEHPA), which effectively promoted the uptake of Sora by HCC 
cells while synergistically inhibiting the expression of EGFR and downstream PI3K-Akt pathway, jointly inhibiting 
angiogenesis and achieving efficient EGFR gene therapy, is a promising dual gene-chemotherapy drug delivery system,69 

which has promising applications in the treatment of HCC. Among the shape-controlled magnetic mesoporous silica 
nanoparticles (M-MSNs), rod-shaped MSNs have stable drug release function and low cytotoxicity, which can assist 
clinicians in monitoring treatment outcomes by MRI, which might used to suicide gene therapy of HCC.70

The use of N-galactosylated chitosan-5-fluorouracil (GC-FU) for electrostatic condensation with miRNA-122 and the co- 
delivery of miRNA-122 and the anticancer drug 5-Fu, which improved blood salt stability, effectively induced apoptosis and 
inhibited the proliferation of HCC cells,71 may have great potential for the future synergistic treatment of HCC.

Multiple NPs contribute to the reduction of tumor cell resistance. Sora inhibits multiple receptor tyrosine kinases and 
downstream Raf signaling molecules (Raf-1 and B-Raf), but within 6 months, the vast majority of patients develop 
resistance to sorafenib.72 Using CXCR4-targeted PLGA-PEG NPs to encapsulate sorafenib and mestinon and modifying 
the surface of PLGA-PEG NPs with the CXCR4 antagonist LFC131 peptide enhanced the delivery and accumulation of 
anticancer drugs at the tumor site, thereby enhancing the antitumor effect.73 Polyethylene glycol (PEG) and polyethy-
leneimine (PEI) conjugated ultrasmall nano-graphene oxide (NGO-PEG-PEI) loaded with C6 - ceramide in combination 
with Sora (NGO-PEG-PEI/Cer) exhibited a synergistic effect, significantly inhibiting tumor growth and improving 
survival time in vivo, and may also play a role in the destruction of HCC by inactivating MDR and Akt signaling 
in HCC cells role as a promising potential therapeutic strategy for the treatment of drug-resistant HCC.74

Other Treatment Modalities
In addition to their therapeutic effects in the aforementioned therapeutic modalities, NPs can also be altered to exert 
therapeutic effects. Mesoporous hollow alumina nanoparticles (MHA) prepared using alumina and grafted with hya-
luronic acid (HA) exhibited significantly enhanced targeting effects and significant pro-apoptotic and tumor suppressive 
effects.75 Moreover, Zhang et al,76 synthesized an amphiphilic polymer containing bile acid (CA) and adsorbed it onto 
the surface of PLGA NPs. According, they demonstrated that the binding of CA to the bile acid transporter on the cell 
membrane increased the adhesion of NPs to cells, accelerated the intracellularization of NPs, and inhibited the 
proliferation of HCC cells. Comparative in vitro cytotoxicity studies of silver-containing reduced graphene oxide (rGO- 
Ag) nanoparticles revealed that compared with normal liver cells, hepatocellular carcinoma cells (HepG2) cells were 
more susceptible to the effects of oxidases such as lipid peroxidase, superoxide dismutase, and catalase, and the GSH 
level decreased and DNA damage was more obvious (Table 2).77

Table 2 Combination Therapy and Other Treatment Modalities

NPs Mechanism References

MSN@Sora-ICG Increase the secretion of IFN-G from CD8+ T cells.
Enhance the number of immune cells.

Reduce angiogenesis. [67]

Sora/ siVEGF@MSNs-LA Target the induction of S-cell cycle arrest.
Enhance the anti-cancer effect of Sora and siVEGF. [68]

SEHPA Promote the uptake of Sora.

Inhibit the expression of EGFR.
Downstream PI3K-Akt pathway.

Inhibit angiogenesis.

Achieve efficient EGFR gene therapy. [69]

(Continued)
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Discussion
For HCC patients, the advent of NPs has opened up more possibilities for their treatment. However, surgery is still the 
effective means of patient treatment, and postoperative recurrence represents a major challenge for clinicians. Surgery is 
challenging, and treatment modalities such as chemotherapy are still used to prevent postoperative HCC recurrence. In 
the study of postoperative tumor recurrence, it was found that it was mainly related to surgical stimulation and 
postoperative changes in the tumor microenvironment, and these factors have very positive implications for the 
prevention and treatment of surgical residual cancer and future HCC recurrence.

Mechanism of Residual Carcinoma After HCC Surgery
Effect of Surgical Stimulation in the Recurrence of HCC Residual Carcinoma
Although surgery offers patients with cancer the opportunity to be cured, it is also a significant factor in the recurrence of 
residual carcinoma following HCC surgery. Researchers have demonstrated that anesthetic drugs administered during 
surgical anesthesia may also promote cancer recurrence and metastasis, with intravenous anesthetic isoproterenol and 
inhaled volatile anesthetics having more profound effects on inflammation, immune cell phenol types, and cancer 
progression.78 Additionally, local recurrence can rapidly exceed the initial tumor’s volume, despite the fact that surgery 
can remove solid tumors.79,80 Moreover, studies have demonstrated an increased risk of metastatic growth following the 
resection of primary tumors.81 The primary reason for this is that surgery causes cancer cells to be shed and enter the 
circulatory system and upregulates the expression of adhesion molecules in organs.82 In addition, it induces changes in 
the target tissue as well as changes in the cancer cells themselves, thereby increasing the ability of the cells to migrate 
and invade. In light of the preceding, the effect of wide and narrow margins on macroscopic HCC has been studied in 
liver surgery, with 5-year survival rates of 74.9 and 49.1% in the wide margin and narrow margin groups, respectively; 
since the recurrence of HCC was observed in the narrow margin group, the wide margin procedure was, therefore, 
deemed advantageous for patient survival.83

Surgery also causes alterations in the physiological functions of the patient, primarily manifesting as a state of 
stress.84 Herein, the role of natural killer cells (NK cells) in recognizing and killing tumor cells is inhibited and 
postoperative immune function is impaired, with residual tumor cells gaining the potential to metastasize. In addition, 
it may also permit the continued growth of cancer cells remaining at the tumor cut edge. Surgical procedures may also 
induce hypoxia in the liver, thereby activating NF-B and hypoxia-inducing factors (HIFs) and accelerating tumor cell 
growth in regions where hypoxia and inflammation are prevalent.85 Moreover, when hepatectomy is performed, repeated 

Table 2 (Continued). 

NPs Mechanism References

GC-FU@miRNA-122 Improve blood salt stability.

Induce apoptosis.
Inhibited the proliferation of HCC cells. [71]

PLGA-PEG@Sora/ mestinon Enhanced the delivery and accumulation of anticancer drugs at the tumor site. [73]

NGO-PEG-PEI/Cer Inhibiting tumor growth.
Improving survival time.

Inactivating MDR and Akt signaling. [74]

MHA Enhanced targeting effects and pro-apoptotic and tumor suppressive effects. [75]
PLGA-CA Increase the adhesion of NPs to cells.

Accelerate the intracellularization of NPs,

Inhibit the proliferation of HCC cells. [76]
rGO-Ag Susceptible to the influence of lipid peroxidase, superoxide dismutase, and catalase.

Decreased the GSH level.

Damage DNA. [77]

https://doi.org/10.2147/IJN.S399146                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2023:18 2728

Li et al                                                                                                                                                                 Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


liver damage occurs, and hepatic stellate cells (HSC) are activated to dedifferentiate into myofibroblast-like cells, which 
leads to the development of hepatic fibrosis and the occurrence of HCC.86

Effect of Tumor Microenvironment on Residual Carcinoma Development After HCC Surgery
Numerous pro-angiogenic factors, including TGF-1, have been identified in studies involving angiogenic factors that may 
stimulate the growth of HCSCs and accelerate the proliferation and metastasis of residual carcinoma after HCC 
surgery.87,88 Accordingly, increased postoperative levels of the inflammatory mediator prostaglandin E2 (PGE2) have 
been found to mediate the transfer of anti-tumor T helper (TH1) cytokines to TH2 cytokines in tumor cells, thereby 
promoting the proliferation of regulatory T (Treg) cells, a decrease in the number of activated CD8+ T cells, and the 
promotion of an immunosuppressive tumor microenvironment.89–91 Surgery not only activates -adrenergic nerve fibers 
and receptors, thereby accelerating tumor progression, but also reshapes the tumor microenvironment, increases venous 
and tumor pressures, causes interstitial edema, and promotes tumor-associated neovascularization and neoplastic 
capillary lymphatics.92–94 This explains why tumors are considered “unhealable wounds”.95

Extracellular matrix (ECM) and carcinoma nodal stratification protein-5 regulate many essential cellular processes in 
postoperative residual carcinoma of HCC that are closely linked to HCC proliferation and metastasis in tumor 
tissues.96,97 In addition, it has been discovered that tumor stem cells (HCSCs) persist in cancer cell screenings and 
may reside in a particular microenvironment that maintains the balance between self-renewal and differentiation of 
HCSCs by providing the necessary substances.98,99 Accordingly, those present in interstitial microdeposits and micro-
metastases (mesenchymal or hematogenous), a type of occult tumor that remains in situ following therapeutic resection, 
are referred to as microresidual disease (MRD).100 Following primary tumor resection, the level of inhibitory factors 
secreted by cancer cells decreases, and dormant metastases or tumors in the primary lesion begins to rejuvenate, leading 
to a decrease in systemic anti-angiogenic factors, an increase in angiogenesis, and continued cancer cell growth 
(Figure 4).101

Figure 4 Mechanisms of the development of postoperative residual carcinoma in HCC. Factors such as surgical anesthesia, altered immune status, surgical stimulation, 
tumor cell entry, inadequate resection, and altered tumor microenvironment provide survival opportunities for postoperative participating tumors and are important 
mechanisms for the development of postoperative residual carcinoma in HCC. Reprinted with permission from Figdraw (www.figdraw.com).
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The Potential Application of NPs in the Recurrence of Residual Cancer After HCC 
Surgery
Recurrent HCC after surgery can be of monoclonal (single-center) origin due to intrahepatic metastasis or of polyclonal 
(multicenter) origin with ab initio carcinoma, but the determination of the mode of origin of recurrent HCC is not easy.102 

Moreover, based on the existing studies, we have little understanding of the mechanisms of HCC recurrence, which is 
a major obstacle for us to determine its origin and type. In addition, due to the complexity of postoperative recurrence of 
HCC, we are not able to identify the molecular types of recurrent tumor cells or find the exact targets to target for 
treatment, which is one of the directions of our future research.

Above, we mentioned that multiple NPs play an important role in the treatment of HCC. In PTT treatment, 
MSN@Sora-ICG, however, showed strong anti-recurrence activity and has potential in the prevention of recurrence 
after HCC treatment.67 However, no studies have confirmed that NPs can play a role in the treatment of residual cancer 
after HCC surgery or in the prevention of recurrence.

In the process of tumor recurrence, the tumor microenvironment plays an important role. It is not difficult to find that 
many nanoactive carriers can alter the tumor microenvironment, among which IL-6, TNF-α, etc. are prone to increase the 
secretion of solid tumors and the tumor microenvironment and promote the recurrence of HCC after surgery.103 The cells 
and molecules in the tumor microenvironment are in a dynamic process of change, reflecting the nature of tumor 
microenvironment evolution, which culminates in the massive accumulation of inflammatory-related factors such as IL-6, 
TNF-α, MMP, etc., which accumulate in large quantities in the tumor microenvironment and together promote tumor 
immune escape, tumor growth, and metastasis.104,105 Therefore, can we use bioactive nanocarriers to improve the tumor 
microenvironment so as to achieve prevention of tumor recurrence or therapeutic effects after tumor resection?

Traditional herbal medicine (THM) has shown a role in tumor recurrence, and it has been demonstrated that some 
THMs can play a role in the prevention of recurrence after HCC surgery. For example, cinobufacini (Huachansu), an 
aqueous extract from Bufo gargari-zans Cantor, the root of Salvia chinensis Benth [Shi-jian-chuan], the gizzard 
membrane of Gallus gallus domesticus Brisson [Ji-nei-jin], the root of Actinidia valvata Dunn [Mao-ren-shen], and 
the tuber of Pseudobulbus cremastrae seu Pleiones [Shan-ci-gu], which is anticipated to inhibit tumor growth and prolong 
the survival of patients.106 Then, can we carry the drug into the nanocarrier to achieve controlled release of the drug to 
achieve long-term therapeutic effects? In addition, GC-TP-NPs also show a certain tumor inhibitory effect in vitro, and 
have a certain application potential in the treatment of residual cancer and prevention of recurrence of HCC after 
surgery.44

At present, electrostatic spinning technology is also widely used in the medical industry, so we can prepare 
a nanofiber membrane by dispersing bioactive nanoparticles in solvent through electrostatic spinning technology and 
implant it after surgery, which not only achieves sustainable release of chemotherapy drugs after surgery but also has the 
effect of treating residual cancer and preventing tumor recurrence after surgery. Our group has successfully prepared 
nanofiber membranes with such functions. Moreover, the research on NPs for the treatment of HCC is becoming more 
and more extensive, and some scholars have also found that their NPs themselves can promote apoptosis of HCC cells. 
For example, TiO2 NPs and ZnO NPs can effectively inhibit hepatocellular carcinoma HepG2 cells through the 
production of ROS, but the cancer-inhibiting effect is reduced after the combination of the two due to the relative 
reduction of pores, which also provides a new idea for future research on the treatment of HCC.107

In conclusion, bioactive nanoparticles have great potential in the treatment and prevention of recurrence of residual 
cancer after HCC surgery.

Limitations of NPs in the Treatment of HCC
Although NPs are becoming more prevalent in clinical research, they still have certain limitations. First, the 
reproducibility of NPs production is highly variable, and even minute variations in the preparation process can 
result in new NPs that are distinct from the original NPs. Because new particles in any ensemble have different 
surface location distributions (eg, small surfaces, vertices, defects, etc.) and the size and shape of new particles can 
vary widely, it is reasonable to anticipate that the characterization of individual new particles may deviate 
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significantly from that of the original new particles; therefore, to ensure their accuracy, comprehensive character-
ization of the nanoparticles at each stage and in each batch is required prior to application.108,109 Second, in the 
construction of HCC models, 3D models are superior to the original 2D models for simulating the key roles of the 
tumor microenvironment and for understanding the interactions between HCC and NPs; therefore, whenever 
possible, 3D models are chosen to maximize the restoration of the normal life state of the model.110,111 

Moreover, since the target recognition receptors of target organs may mutate, this may result in off-targeting of 
targeted NPs and produce off-target side effects.112 In addition, NPs are foreign to the patient’s body, have a small 
diameter, and are likely to be captured by macrophages during vascular infiltration.113 However, if NPs are modified, 
the clearance of NPs in vivo may pose a new and significant challenge. Lastly, NPs should be used sparingly, rather 
than in pursuit of therapeutic effects that would lead to the accumulation of NPs in vivo, causing toxic effects and 
putting the cart before the horse.

Warm therapy is contraindicated in the treatment of mesoendometriosis, which can lead to worsening of the 
disease.114 In the treatment of patients who are not on anticoagulants and do not have cardiovascular or diabetic 
morbidity, systemic and topical a-type TXA appears to significantly reduce postoperative bleeding and the need for 
RBC transfusion after TKA.115 When treating NPs, we should also be concerned about the effects of NPs on other 
organs; for example, Ni NPs can be toxic to testes.116 Therefore, we cannot ignore the safety of drug adminis-
tration, and we have to test NPs for the treatment of HCC to ensure that there are no or few adverse effects other 
than therapeutic effects to maximize the safety of patients’ lives.

Summary and Outlook
HCC is one of the most malignant tumors known, and after diagnosis, most patients with advanced hepatocellular 
carcinoma have limited clinical options and a poor prognosis.117 The development of a tumor is dependent not only on 
the tumor cells themselves but also on the “soil” in which they reside, ie, the tumor microenvironment. Therapeutic tools 
mediated by NPs can modify the tumor microenvironment by targeting one or more cytokines in the tumor microenviron-
ment, thereby significantly inhibiting the biological behavior of HCC cells, such as their proliferation, metastasis, and 
apoptosis. In addition, NPs can effectively target HCC cells and CSCs, as well as capture CTCs, which are extremely rare 
in vivo, to facilitate early monitoring of residual carcinoma recurrence after HCC surgery and buy more treatment time for 
recurrence patients. It is also observed that drug-loaded nanoparticles exert their toxic killing effects on HCC cells by 
affecting signaling pathways, regulating the cell cycle, and inducing apoptosis, which can be used for the treatment of HCC.

HCC recurrence and postoperative residual cancer are also a major difficulty in the treatment of HCC, which is 
caused by the recurrence and metastasis of HCC is a multistage, multigene process characterized by dynamic 
alterations. NPs play a role in the treatment of HCC by regulating gene expression, inhibiting signaling pathways, 
and the production of pro-apoptotic substances to achieve the effect of cancer suppression, therefore, whether NPs 
can be placed on the surgical wound by other means to achieve prolonged release of chemotherapeutic drugs and 
further achieve postoperative treatment of residual cancer and prevent the effect of NPs on the surgical wound can 
be achieved by other means. This is also one of the directions of our group’s subsequent research.

We also should be noted that the drug-release effect of various NPs may not achieve the desired targeting effect and 
that there is no assurance that there is no toxic effect on normal tissues or organs. Therefore, more in-depth research on 
NPs is required to develop a multifunctional and multifaceted cancer treatment modality, which would be a boon for 
patients with HCC. And simultaneously, With the advancement of technology and extensive research by scholars, it is 
believed that NPs will play an irreplaceable role in the treatment of residual carcinoma following HCC surgery.
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