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Abstract: Neoplasm (Glioblastoma) and Alzheimer’s disease (AD) comprise two of the most chronic psychological ailments. 
Glioblastoma is one of the aggressive and prevalent malignant diseases characterized by rapid growth and invasion resulting from 
cell migration and degradation of extracellular matrix. While the latter is characterized by extracellular plaques of amyloid and 
intracellular tangles of tau proteins. Both possess a high degree of resistance to treatment owing to the restricted transport of 
corresponding drugs to the brain protected by the blood–brain barrier (BBB). Development of optimized therapies using advanced 
technologies is a great need of today. One such approach is the designing of nanoparticles (NPs) to facilitate the drug delivery at the 
target site. The present article elaborates the advances in nanomedicines in treatment of both AD as well as Gliomas. The intention of 
this review is to provide an overview of different types of NPs with their physical properties emphasizing their importance in 
traversing the BBB and hitting the target site. Further, we discuss the therapeutic applications of these NPs along with their specific 
targets. Multiple overlapping factors with a common pathway in development of AD and Glioblastoma are discussed in details that 
will assist the readers in developing the conceptual approach to target the NP for an aging population in the given circumstances with 
limitations of currently designed NPs, and the challenges to meet and the future perspectives. 
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Introduction
Neoplasia and Alzheimer’s disease (AD) comprise two of the most chronic psychological ailments. Age is a major risk 
factor associated with the deterioration of psychological functions in both diseases.1,2 Multiple factors including 
uncontrolled proliferative signals, downregulation of growth suppressors, development of immortal characters, resistance 
to apoptosis, development of angiogenesis, activation of invasion and metastasis are a few hallmarks of neoplasm.3 

Further epigenetics alterations, genomic instability, avoidance of immune destruction, tumor microenvironment and 
inflammation associated with reactive oxygen species are other such markers associated with cancer.4,5 Alzheimer’s 
disease is one of the most common neurodegenerative disorders in the aged population, affecting about 36 million people 
around the globe and projected to impact 115 million people by the year 2050.6 Clinical manifestations include 
progressive dysfunction and loss of neurons, histological alterations, marked by the presence of intracellular tangles of 
neurofibrils along with extracellular amyloid plaques with reduced cognition functions,7,8 further characterized by loss of 
synaptic plasticity, misfold of amyloid β (Aβ) and Tau, hyperphosphorylated at various sites.9,10 Progressive and 
spontaneous aggregation of Aβ forming oligomers and fibrils with final deposition of senile plaques are the main 
products responsible for memory deficit and synaptic damage in AD patients.11,12 Along with Aβ proteins, metabolomics, 
proteomics and genomic studies have identified various markers that can predict disease development and progression 
from mild cognitive impairment (MCI) in AD.13,14 The multivalent cations in the blood plasma, including zinc, copper 
and iron, are important factors besides markers in the diagnosis of AD.15
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Among all brain disorders from the family of cancer disease, Glioblastoma (GBM) (a type of Glioma) is one of the 
aggressive and prevalent types of malignant disease.16 Overuse of statins,17 hormonal including contraceptive pills and 
reproductive factors are associated with increased incidence of Glioma.18 Compared to other malignant tumours, very 
little progress is made in its clinical outcome due to limitations in the effective drug delivery mechanism.19 High 
invasiveness,20 frequent recurrence 21 and increased mortality rates22 made the treatment of Glioma a biggest challenge 
to neuro health scientists. The present therapeutic approach is limited to a combination of radiotherapy, chemotherapy 
and surgical resection.23 Though researchers have tried cancer-selective cell killing by boron neutron capture therapy 
(BNCT) it is still in the juvenile phase before it can be completely used in humans.24 Incomplete or ineffective treatment 
of Glioma can infiltrate the residual cells to penetrate the other parts of the brain, making the survival time-limited to 12– 
15 months. In one cohort study, Glioma (GBM) patients survive up to 5 years and only 0.7% of them can live to 10 
years,25 making treatment of GBM one of the non-competitive trials for researchers with advanced drug delivery 
technology. Many signaling pathways are associated with GBM but the most important among all is the signal transducer 
and activator of transcription 3 (STAT3) pathway,26 involved in cancer proliferation, invasion and progression27 along 
with evasion to the immune system.28 The properties of evasion to the immune system and increased proliferation are 
assisted by cytokines like interleukin (IL)-6 and growth factors such as epidermal growth factor (EGF) and fibroblast 
growth factor (FGF) that can activate STAT329,30 through tyrosine phosphorylation.31 The activated STAT3 increases the 
expression of all genes that are involved in cell proliferation, inhibition of apoptosis and metastasis.32–34 Further, STAT3 
is also associated with stemness and cell death of GBM.35

Inverse comorbidity between cancer and AD has been reported in many clinical and epidemiological studies. 
A transcriptomic meta-analysis of AD and cancer reported significant overlapping factors in association with genes 
enough to establish the relation between the two disorders.36–38 Despite advancements in technology and mammoth 
efforts, present diagnostic and therapeutic options are limited and ineffective in the treatment and prevention of AD and 
Glioma, making them a high-risk disorder for pharmaceutical and health scientists. Effective and safe development of 
a new strategy is paramount to understanding the etiology and molecular physiology involved in pathogenesis that can 
target the new drug entity. The underlying factor for a limited option in the treatment of AD is the presence of the blood– 
brain barrier (BBB),38 which protects the brain tissues from all toxic and perilous substances in the blood, retarding the 
activity of pharmaceutical compounds.39 The protection and control of solute movement toward the brain are strictly 
governed by the BBB, composed of basal membrane, neurons, pericytes, astrocytes, tight junctions and microvascular 
endothelial cells.40,41 The limitations of various molecules are very strict to cross the BBB including that the molecular 
weight should be ˂500 Da,42 with a varying degree of brain to plasma partition coefficient,43 high lipid solubility and 
non-charge at physiological pH.

The permeability to the BBB is dependent on the age factors and it is altered in AD both in structure and functions.44 

The limited options and age of the patients prompted health scientists to develop on an urgent basis a new and effective 
drug delivery mechanism, that can easily cross the BBB, have minimum adverse effects and maximum bioavailability for 
treatment of AD. To overcome the limitation of the conventional approach, nano drug carriers were designed to deliver 
the therapeutic agent at the required site.45 This limitation of drug delivery therapy for AD and Gliomas can be overcome 
by nanotechnology in providing a better option and strategy in the field of CNS related diseases, and further the high 
biocompatibility, low toxicity and stability in the blood can be better hope in the field of therapeutics and for the 
pharmaceutical industry. Nanoparticles (NPs) facilitate the delivery of drugs to the brain with proper modification 
required by brain tissue. Table 1 details the selected NPs under investigation potential to cross the BBB. The present 
review provides some prospective application of nanomedicine in the treatment of AD and Glioma.

Overlapping Biological Molecules Between Glioma and Alzheimer Disease
Tumor suppressor p53 contributes to around 50% of all malignancies46 including Glioma. The mutation in p53 facilitates 
angiogenesis,47 genomic instability,48 progression of cell cycle, cell survival and escape of cell death,49–51 migration and 
invasion,52 anchorage independence survival and growth.53 Further, it alters impaired detoxification of reactive oxygen 
species (ROS) via decreasing Phase 2 ROS-detoxifying enzymes, quinone oxidoreductase 1 (NQ01) and heme oxyge-
nase-1 (HO-1), thus resulting in imbalanced redox homeostasis.54,55 In contrast to cancer, p53 expression increases in 
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Alzheimer’s disease,56 and promotes apoptotic neural cell death.57,58 Accumulation of Aβ level with increased expression 
of mutated amyloid precursor protein/presenilin (APP/PS) strongly supports the correlation between p53 and AD59 in the 
transgenic mice model. Further, functionally altered tertiary structure, called conformational mutant p53, is distinctly 
observed in AD patients.60 It is reported that the expression of triggering receptor expressed on myeloid cells 2 (TREM2) 
in AD is regulated by an altered level of p53.61 Impaired redox status of Superoxide Dismutase (SOD) and Glutathione 
Reductase in neurodegenerative diseases like AD62 corresponds to an increase in the level of unfolded p53,63 which 
strongly suggests a possible role of ROS in conformational changes of this gene in AD patients.

Cyclins, the cell cycle regulators in the dysregulated state, lead to cancer initiation and progression, through cyclin- 
dependent kinase (CKDs) in humans.64,65 In addition to the cell cycle regulation, Cyclins also modulate and regulate the 
functions of terminally differentiated neurons, thereby imparting a significant contribution in the maintenance of the 
normal physiology of neurons.66 Most extensively studied are Cyclins D, E, F and Y for their role in human diseases. 
Cyclin D acts as a checkpoint in the cell cycle,67 controlling the entry of cells from the G0 to G1 phase in Glioma via 
CKD2/4/6.67 Cyclin D mutant mice were resistant to cancer via inactivation of CKD 4/6.68,69 Cyclin D knockdown 
induced oxidative imbalance in cancer cells by high ROS generation, which promoted the senescence of cancer cells, 
making it one of the essential targets for Glioma therapy,70 and besides this, the brains of AD patients have demonstrated 
high levels of CKD4. Studies have reported that Cyclin D upregulation in AD patients is associated with tau and caspase 
3 proteins in cultured hippocampal neurons that are responsible for apoptosis.71 Recently, it has been deciphered that 
Cyclin D/CKD4-mediated ROS alters mitochondrial functions and facilitates neurodegeneration in AD.72

Cyclin E, a subunit of CDK2, is essential for DNA replication at G1/S checkpoints.73 Its over-expression in breast 
cancer,74 gastric cancer75 and many other neoplasms76,77 including Glioma78 causes genomic instability.79 Ubiquitin 
specific peptidase 27 (USP27), a novel therapeutic molecule, targets Cyclin E and retards the migration and metastasis of 
cancer cells.80,81 Its expression in AD regulates synaptic plasticity and memory formation,82 with induction of cell cycle 
activation in a Drosophila tauopathy model of AD.83 However, deficiency of Cyclin E reduced spine volume and 
synapses and potentiated the memory impairment84 key factors in AD pathogenesis.

Table 1 Summary of Application of Drug Nanoparticles Delivery System with Characteristics in Crossing the BBB to Various Brain 
Targets

S. No Brain Target Sites NPs Characteristics References

Zeta Potential (mV) Mean Size (nm)

1. Compromised 
Intracellular Calcium

Felodipine laden NPs −25.7±2.52 651±2.10 224,225

Capsulated Nimodipine in Chitosan −17.60 119.54 226,227

Amlodipine NPs −13.46±0.31 to −23.45± 

0.33

31.1±8.2 228,229

2. Regeneration of 

Neuron

SPIO-AuNPs −25.1 20.8 230,231

6-Mercaptopurine- SPIO-AuNPs- 

neuron-penetrating peptide

−25.8 24.6 232

Fe3O4 NPs with NGF NA 100 233

3 PPARs Agonist PLGA-PEG Pioglitazone- loaded 
nanoparticles

−13.0±0.5 155.0±1.8 234–237

4 Aβ Plagues and Tau 
Proteins

NPs with functionalized Aβ1- 42 
monoclonal Antibody

−20 to −30 125 238

RVG@Met@VS −36.8±0.29 110.25±3.29 239

CS@Se −41±3.5 89.1±4.5 240

International Journal of Nanomedicine 2023:18                                                                                   https://doi.org/10.2147/IJN.S405454                                                                                                                                                                                                                       

DovePress                                                                                                                       
2739

Dovepress                                                                                                                                                           Anwar et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Cyclin F (FBXO1), a motif of F box proteins, contributes to proliferation and invasion of cancer cells85 and regulates 
genome stability through ubiquitin-mediated proteolysis, involved in the production of deoxyribonucleotide triphosphate, 
centrosome duplication and spindle formation in cancer cells.86,87 Upregulation of Cyclin F under metabolic stress in 
Glioma inhibits tumorigenesis via mutation in isocitrate dehydrogenase-1,88,89 which makes it a potential target for 
nanomedicine. Missense mutations in the Cyclin F gene are causative of amyotrophic lateral sclerosis (ALS) – a motor 
neuron disease characterized by a decline in motor functions, due to its binding with valosin, a protein essential for the 
normal activity of motor neurons;90 with no specific underlying mechanism still to be deciphered, it is a potential 
candidate for further investigation to understand its relevance in AD and other neurodegenerative diseases.

Intercellular Communication Between Glioma and Alzheimer Disease
As discussed above, the intracellular molecules p53 and Cyclins have a significant contribution in maintaining a normal 
homeostatic pathway; any deregulation in these molecules may lead to Glioma and AD. Some research suggests that Glioma 
and AD can affect each other through intracellular molecules, which complicates the treatment of the two diseases. Recent studies 
demonstrated that Glioma cells secrete excessive glutamate via cystine/glutamate antiporter xCT,91,92 thereby changing the 
microenvironment of neurons in the vicinity of Glioma, resulting in neuronal degeneration and death.93,94 Glioma cells implanted 
in striata of experimental animals enhanced the release of glutamate causing rapid growth of Glioma and neuronal degeneration 
in the vicinity.95 Neuronal degradation and Glioma formation was countered by blocking the glutamate and N-methyl-D-aspartate 
(NMDA) receptors with Memantine.96,97 The whole phenomenon indicates a strong correlation between Glioma and AD. Many 
chemicals including transforming growth factor β (TGF-β)-1 induced anti-apoptotic factor (TIAF-1), associated with the 
microenvironment of Glioma forming protective peritumoral capsule, are known to be toxic to neurons.98 TIAF-1 is also 
expressed in AD patients,99 along with Aβ and tumor suppressors including Smad4 and WW domain-containing 
Oxidoreductases (WWOX or WOX1).100 In research by Chou et al, a trio of TIAF1/WWOX/p53 tried to explain the tumor 
suppression; however, the combined effect of TIAF1/WWOX/p53 led to tumor progression, but may have caused brain protein 
aggregation due to functional antagonism of p53 to WWOX causing neurodegeneration.101 Zinc finger-like proteins (Zfra) 
regulate apoptosis, but was able to suppress melanoma-mediated neurodegeneration and restore memory deficit in the 
hippocampus of mice with AD, via blocking the tau and Aβ protein aggregation102 that suppresses melanoma-mediated 
neurodegeneration.103 Underlying mechanisms behind inter-, intra- and extracellular communications in the brain could be 
a new benchmark for further studies. Nonetheless, intracellular mechanisms of TIAF1 and Zfra and their crosstalk between brain 
cancer cells and neuronal cells would be interesting as illustrated in Figure 1.

Therapeutic Targets of NPs in Alzheimer Disease
The advancement in medical science has increased the life expectancy and consequently the prevalence of neurodegen-
erative diseases including AD. All the present treatments available today are effective but with limitations, thus scaling 
the complications of AD with age. Multiple molecular and cellular pathways overlap with each other that ultimately lead 
to neuronal apoptosis.104 Apoptosis, autophagy dysfunction, pathogenic proteins, impairment, oxidative damage and 
inflammatory processes are a few contributing factors for all neurodegenerative diseases.105 Inflammation and oxidative 
stress are interdependent and linked together for neurodegeneration. Generation and elimination of reactive oxygen 
species (ROS) both from exogenous and exogeneous sources play a crucial role in maintaining the redox balance.106 

Inflammatory crosstalk between periphery and central nervous system via the blood–brain barrier is observed in 
Alzheimer’s disease particularly involving cathepsin.107 Activation and dysfunction of microglial disturbs the brain 
homeostasis, that directly enhances phagocytosis, increases proinflammatory cytokine secretion and increases the release 
of ROS.108 It is observed that lipid dysfunction or dyshomeostasis disturbs the regulation of microglial cells due to 
alteration in phosphoinositides (PiPs), a key molecule in regulation of neuroinflammation. Further, PiPs also regulate the 
activities of proteins and enzymes essential for Toll-like receptor signaling, endocytosis, purinergic signaling migration 
and chemotaxis,109,110 a possible reason for alteration in AD physiology. NPs with 1–100 nm of dimensions can easily 
traverse through the BBB and prevent aggregation of proteins, reduce inflammation and alleviate stress.
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Specific Targets Linked to Aβ
Apart from the BBB, the brain parenchyma is the other major obstacle in the delivery of drugs in AD. The parenchymal 
cells reduce the effective drug concentration at the amyloid plaques, the specific target site in AD patients, thereby 
reducing its therapeutic value and efficacy.111 Spontaneous aggregation of Aβ monomers leads to the generation of fibrils 
and oligomers,112,113 a phenomenon causing neuronal malfunction and death.114 The interaction or Aβ monomers 
aggregation may be prevented by drugs that block such reactions. NPs in the form of liposomes and PEG-PLA have 
been used as conjugates to prevent this aggregation.115 KLVFF peptide is known to interfere with the Aβ aggregation,116 

but its inability to cross the BBB and poor bioavailability have retarded its use. However, when loaded in polymeric 
nanoparticles, KLVFF gave promising results in reversing Aβ-induced pathology in AD. Likewise, nano-forms of 
Epigallocatechin–gallate resulted in sustained release of the drug that significantly inhibited Aβ42 protein and reduced 
cellular toxicity from metallic elements.117,118 Liposomes have attracted great attention in transportation of drugs in AD. 
Curcumin embedded anti-TrF liposomes have shown a high affinity for amyloid deposits in brain samples of AD 
patients.119 Similarly, in a mouse model of AD nasal administration of Quercetin,120 liposomes attenuated degeneration 
of cortical and cholinergic neurons in the hippocampus.121,122 Resveratrol is reported to exhibit the neuroprotective 
function in AD.123 Liposome formulation of resveratrol, in the treatment of AD, is now well documented.124 

Immunotherapy using nano formulation with antibodies is receiving great attention in the treatment of AD.125,126 

Figure 1 Possible approaches and their mechanisms that can probably eliminate Glioma stem cells. Glioma tumor cells and their metastases originate from stem cells 
possessing self-renewal and differentiation properties. Self-renewal is attributed to activation of alternative pathways like Wnt, Shh and Notch. Targeting these stemness 
pathways can eliminate Glioma stem cells. HDAC (Histone deacetylase) enzymes catalyze the deacetylation of histones, facilitate chromatin condensation and are associated 
with oncogenic transcription factors. HDAC inhibitors may target these enzymes and alter gene transcription. Cancer stem cells exhibit overexpression of OXPHOS 
(oxidative phosphorylation), which plays a key role in cellular energy. They use stored energy in mitochondrial ATP and generate free radicals, ROS (reactive oxygen species).
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Immunoliposomes formulated as polyethylene glycol can act directly against the glial fibrillary acid protein.127 

Monoclonal antibodies that can target the Aβ protein in NPs are under the state of research and are showing some 
promising results in AD patients.128 Graphene quantum dots (GQDs) and carbon nanomaterial are the two newly 
introduced nanomaterials which have shown some promising results in treatment of AD when combined with scavenging 
materials of peptide.129,130 The charge on the graphene plays a vital role in inhibition of fibril formation, the charge may 
be transferred to the aromatic residue of protein amino acid.131 Carbon dots (CDs) have demonstrated potential to cross 
the BBB, due to presence of amino and carboxylic acid group on their surface that can be conjugated with CNS drugs,132 

making them an ideal nanocarrier to deliver the drugs in CNS to treat glioma and AD. Yellow-emissive CDs and 
graphene quantum dots were able to prevent the aggregation of Aβ in neuronal cells linked to tramiprosate.133,134 Similar 
results were obtained by Gong et al in glycine proline-glutamate loaded CDs to inhibit Aβ aggregation.135 Identical 
results were observed when the branched PEI loaded CDs synthesized by Chung et al exhibited cationic surface and were 
able to suppress the aggregation of Aβ.136 Preclinical and clinical research have demonstrated that some of the metallic 
ions including iron, zinc and copper play an important role in manifestation of AD137 with increased concentration above 
a certain limit. This can increase the deposition of Aβ138 and can promote the progression of disease.139 Zinc loaded 
nanoparticles in wild type (WT) and APP23 mice model alters the pathological conditions in the mice model by 
significant effect on proinflammatory cytokines IL-6 and IL-18 and reduction in plague size.140 Selenium-loaded 
nanoparticles with penicillamine can act as Aβ inhibitor, with no major toxicological effect on organs and systemic 
toxicity, making them an important product for biomedical use.141 Naresh et al successfully developed patient-friendly 
long-acting donepezil nanocrystals formulation, with a high payload for i.m administration, detectable even after 18 days 
in blood with improved spatial memory learning.142 Similar results were obtained for fabricated ApoE3 coated polymeric 
nanoparticles, enhancing the uptake of donepezil nanocarrier through oral delivery in treatment of AD.143 Drugs like 
rivastigmine formulated in novel L-lactide polymeric NP144 and Chitosan NP145 were able to alter the beta amyloid 
proteins in AD model with enhanced brain uptake via oral route and intranasal route respectively.

Specific Targets Linked to Aβ Production
Deregulation or dysregulation of β and γ secretase can lead to overproduction of Aβ protein, making a significant 
contribution to the etiology of AD.146 These enzymes can be appropriate pharmacological targets to develop new strategies 
for the management of AD. However, due to the broad range of proteolytic activity of these enzymes, the inhibition can 
favor the undesired adverse reactions or effects.147 To target β secretase, a new concept of RNA interference small 
interfering RNA (siRNA) was developed with great promising results on AD in the nanoform.148 They can directly 
block the causative gene expression with high targeting specificity, in low doses with a simple drug development process.149 

The major challenge for the siRNA in the treatment of AD is their delivery via systemic circulation that can cross the BBB, 
overcome enzymatic degradation, cell endocytosis and impaired cytosolic transport along with short circulation time. 
Present nano technology has great potential to overcome these barriers. In a recent study BACE1 siRNA to mouse brain 
through systemic injection has partially reduced AD neuropathology with low therapeutic efficacy.150,151 The delivery was 
made through glycosylated NP siRNA, in transgenic mice targeting BACE1, which has a better potential for clinical 
translation. Exosomes are naturally occurring NPs with a diameter of 40–100 nm152 and loaded with siRNA against 
BACE1, these exosomes altered the expression and production of Aβ proteins in a transgenic mice model.153

Specific Targets Linked to Aβ Dispensation/Clearance
Aβ plaques and neurofibrillary tangles are the hallmark of neuropathological lesions of AD. Aβ immunotherapy was able 
to reduce both extracellular Aβ plaques and intracellular accumulation also leading to a reduction in tau pathology,154 

indicating a direct correlation between accumulation of Aβ and tau155, where clearance is mediated by the proteasome 
and is associated with phosphorylation.156 In vivo antigens are prepared that can mimic the Aβ proteins, Abs targeting 
these antigens are products that can bind to cerebral Aβ and facilitate their dispense.157 After obtaining promising results 
at a preclinical level in animals, its translation into humans resulted in severe adverse effects including vasogenic edema, 
intracellular microhemorrhages and T cell-mediated meningoencephalopathy.158 Furthermore, Apolipoprotein (ApoE) 
and its isomeric forms APOE3 or APOE2 play a critical role in pathogenesis of neurodegenerative disease including AD 
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risk.159 The incomplete structural information of ApoE limits its role in understanding the pathogenesis of AD. Single 
amino acid substitution of ApoE2 and ApoE4 differs from ApoE3, resulting in different impact on risk of disease and its 
outcome.160 The binding or interaction of ApoE proteins with Aβ, tau, and α-synuclein alters the response of brain to 
these aggregates.161,162 Lipidation of ApoE and the conformational changes that occurs in ApoE on the lipid surface is 
essential for its binding with the ApoE receptors.163 The interdomain interaction within ApoE is an essential driving 
factor for specific isoenzyme difference of activity including Aβ, the biochemical data suggest and indicate non-lapidated 
ApoE undergoes dimerization and tetramerization at higher concentration for effective pathological activity.164 Present 
techniques are insufficient to elucidate the exact interaction of ApoE with Aβ that can eliminate these proteins 
responsible for AD, however if isoform specific structures related to lipidation and non-lipidation of ApoE complex 
are solved then newer drugs can be designed that can directly modulate the ApoE–receptor and ApoE–protein interaction 
at the molecular and submolecular level.165 Structure alteration of ApoE has already shown potential to alleviate the toxic 
effects of ApoE.166 In order to counter the adverse effects of conventional immunotherapy, NPs could give a better 
advantage over it. Antibodies designed for Aβ are trapped in NPs, and deliver to specific targets.167 The studies have 
demonstrated partial fragments of Aβ consisting of 15 amino acids formulated with PLGA have shown full response 
toward complete Aβ plague proteins via subcutaneous or intranasal route, with minimum toxicity.168 Still, the delivery of 
antibodies or antigen for the treatment of AD is in the juvenile stage but gives better hope for AD patients if successful in 
human trials.

Therapeutic NPs in Management of Glioma/GBM
Preclinical studies on GBM models with NPs emerged with certain advantages compared to their soluble counterparts. 
Polymeric NPs can easily trap the drug molecule intended for GBM therapy and can exert the required effect on target 
tissue. NPs are either synthetic like PCL, PLA and PLGA with biodegradable and compatible properties169,170 or can be 
natural, viz albumin, chitosan or gelatin.171 The NPs are modified in order to generate the effective therapeutic 
concentration in the brain due to presence of macrophage in the liver and spleen that can engulf them.172 

Bioavailability and distribution of NPs in the brain is enhanced by use of hydrophilic surfactant with an increase in half- 
life.173 Anticancer drugs like doxorubicin coated with Tween 80 as surfactant, in the form of NPs formulated from poly 
(n-butyl cyanoacrylate) (PBCA) (270±20 nm) exhibited potential therapeutic effect on GBM.174 PBCA NPs loaded with 
doxorubicin have increased the survival time by 85% compared to the untreated control 24% where drug was 
administered in solution form without NPs, and further without the Tween 80 the survival rate was 38% only.175 It 
was important to investigate the toxicological profile of DOX-loaded PBCA NPs (240±40 nm d.; injected IV) and DOX- 
loaded HAS (404±24 nm d.; injected IV) on healthy animals; both of the NP formulations were less toxic to cardiac and 
testicular tissues compared to DOX injection after 15 and 30 days respectively.176,177 Drug concentration in the brain was 
enhanced many fold administered in PBCA NP form176 compared to uncoated formulations. In spite of these encouraging 
results the specificity of the drugs to target the GBM remains a major challenge to health scientists.

Specific Target Sites in GSM
Targeted nanomedicines possess a unique advantage over a non-targeted form, increasing the amount of drug at cancer 
cells reducing the concentration at healthy cells.178 The target site achievement can be initiated by addition of target 
agent in the form of an antibody or ligand that selectively binds to a specific site or receptor on the cancer cells179 

through endocytosis facilitating the cellular uptake of the cytotoxic agent.180 In case of Glioma cells it is the CD133 
receptor that can easily bind with the antibody181 specific on them. The conjugation of anti-CD133 antibodies with 
polymeric dendrimers with mercapto-undecahydro-dodecaborate significantly increased the drug uptake.182 Receptor- 
mediated targets have great importance in target site delivery of polymeric NP. Transferrin receptors (TfR) are over- 
expressed in multiple cancers. Anti-transferrin receptor antibodies (anti-TfR) conjugated with resveratrol liposomes 
reduced the growth of Glioma cells.183 Paclitaxel loaded liposomes using arginine–glycine aspartic acid were able to 
initiate the excellent apoptosis on a Glioma cell line by binding to TfR receptor.184 Although much advancement and 
effort has been made to specifically target the tumor cells in the brain, limitations of in vivo results made the 
development of CDs (CD-Asp) with D-glucose (Glu) and L-Aspartic acid (Asp) precursors demonstrated high selectivity 
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and target potential of CD-Asp towards C6 glioma cells.185 Optimization of the ratio between Glu and Asp to improve 
target ability toward brain Glioma cells was the effort of Qiao et al186 at a molar ratio of 7:3. Over-expression of 
transferrin receptor on tumor cells and endothelial cell in the BBB lead to the development of CDs conjugate with 
transferrin,187 and further this design was modified by Hettiarachchi et al, a triple conjugated CDs based drug delivery 
system was designed with transferrin, epirubicin and temozolomide, with lot lower concentration that was able to reduce 
the cell viability of tumor cells, compared to a dual conjugated system.188 Similar work with CDs conjugation with 
gemcitabine and transferrin was able to target CNS cancer cells at extremely low concentration with high potential to 
cross the BBB.189 Laminin-411 over-expression is correlated with higher recurrence rate and short survival of GSM 
patients.190 Antisense oligonucleotides conjugated with polymeric NPs can block the expression of Laminin-411 protein 
in Glioma cells with increase in the survival time of experimental animals.191 The presence of specific and overexpressed 
receptors, particularly epidermal growth factor (EGFR) on the surface of many cancer cells,192 has made the health 
scientists explore factors for anticancer activity particularly in the nano formulations. Anti-EGFR antibodies, particularly 
Cetuximab loaded with iron-bound NPs, gave promising results by enhancing the uptake in these cancer cells.193 

Although there are many limitations of therapeutic nanomedicine that can be practically implemented for humans, the 
advancement of science and technology in the field of nanomedicine have given health scientists a much needed boost. 
Using the endocytosis mechanism, expression of certain proteins on these cells has utilized the NPs to target these 
options. Further, the crossing of the BBB still remains a major limitation for delivery of any kind of drugs to brain tissue. 
Hence, most of the NPs are designed in such a fashion that they can overcome the limitations of the BBB. In this aspect 
a cyclic peptide of reduced density gradient (RDG) was conjugated with antisense nucleotide against TUG1 gene in 
Notch signaling and was targeted with micelles in experimental animals. The results of such experiments were able to 
give promising output in treatment of Glioma enhanced the slicing of TUG1 gene.194 Temozolomide is Angiopep-2 a cell 
penetrating peptide conjugated NP, ingested by the cancer cells via surface modification of iron gold alloy NP a specific 
target for Glioma cells, a new cancer theranostics approach with minimal invasiveness, is under investigation for better 
treatment option.195,196 Kim and colleagues utilized angiopep-2 conjugated liposomes encapsulating gamma secretase, 
a promising target on glioblastoma stem cells197 with improved therapeutic effects. Furthermore, Angiopep-2 calcium 
arenite loaded liposomes in pH sensitive gave well calculated effects when used as anti-Glioma therapy,198 and such 
types of formulations are able to reduce tumor volume significantly and prolonged survival of animals in vivo.199 

Activated curcumin and quinacrine loaded liposomes targeted with p-aminophenyl-α-D-mannopyranoside, and this 
combination was able to target both Glioma cells that can easily cross the BBB.200 Such type of therapy has not only 
increased the median survival time but also retarded the tumor growth in experimental animals.201,202 P53 encoding 
plasmid decreased the expression of 6-methylguanine-DNAmethyltransferase loaded with chemotherapy agent under 
Phase II clinical trial (NCT02340156), and the results gave much hope to Glioma203 patients in time of need. Figure 2 
and Table 2 detail the targets in Glioma stem cells and AD.

Multiple factors both intrinsic and extrinsic like high tumor heterogenicity, drug resistance, invasiveness, and 
targetable mutation are responsible for ineffective GB therapy; further, the design of drug delivery plays a major 
important role in crossing the BBB that can be specific to tumor site. In view to overcome these limitations Novel 
design of NPs has given new hope in effective treatment of GBM. Much of the NPs are already in various phase of 
clinical trials. Oligonucleotides (ONTs) are able to target the oncogenic mechanism delivered in the form of p53 mRNA 
or PTEN siRNA overcoming the limitations of tumor heterogeneity.204 Integrins and ApoE are targeted by Dox due to 
common EGFR by EGFR(V) antibody conjugated to an EnGeneIC delivery vehicle (EDV), loaded with DOX 
(EGFR(V)-EDV-Dox).205 A similar approach was reserved with Pseudomonas exotoxin with EGFR-targeted, convection 
enhanced delivery system.206 Proteins such as Selectins are found to express both on brain endothelial and glioma cells, 
and NPs loaded with doxorubicin or other chemotherapeutic agent possess a tyrosine kinase inhibition potential,207,208 

that may improve treatment results with reduction in cell resistance.
It is still a topic of debate whether nano-formulations can eradicate Glioma and AD compared to conventional 

therapy.45 This system of delivery is much safer with reduced toxicity compared to conventional therapy.209 Drugs in the 
nano-formulation are known to improve saturation and maintain or enhanced permeability and retention effect (EPR) 
along with the concentration at the site of tumor with increase in retention time.210 The underlying mechanism with EPR 

https://doi.org/10.2147/IJN.S405454                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2023:18 2744

Anwar et al                                                                                                                                                           Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


is associated with rapid growth of tumor, blood vessels in a leaky state and low organized structure of blood vessels 
further the inefficient lymphatic drainage.211 It is observed that enhanced potency of 1,3 β-Glucan as an outer shell to 
chitosan nanoparticles loaded with paclitaxel can prevent hemolysis enabling effective therapeutic advantage against 
glioblastoma, thus overcoming the systemic toxicities due to paclitaxel alone with increased bioavailability.212 The safety 
profile of drugs in nano formulations provides additional advantage compared to free drugs,213 and further the cancer 
therapeutic is always at risk and disadvantage due to radiation toxicity, drugs like baicalein in its oral nanoform in 
preclinical evaluation have modulated the radiation response.214 Cytarabine loaded liposomes in phase I/II clinical trials 
have shown additional safety as compared to free drug215 in patients with secondary glioblastoma. Further, the NPs in 
case of delivery to glioblastoma gives the protection from enzymatic degradation, metabolism especially in the case of 
delivery of siRNAs, miRNA and other forms of nucleic acids.216 Therapeutic nucleic acids have been delivered in the 
form of polymeric NPs, lipid polymer NPs,217 gold NPs218 and superparamagnetic NPs of iron oxide.219 Such types of 
formulations increase the efficiency of the target drug to the target gene through enhanced internalization that can easily 
slice glioblastoma related genes, thus prolonging the survival time period of the model animals. Further, it has been 
observed that such type of delivery has retarded the efflux of medicine by efflux pumps220 in cancer cells including ABC 
proteins.

Future Direction and Limitations
The majority of these novel drug delivery system results available are only preliminary in vitro or in the mouse model. 
Many challenges may arise during clinical application of these NPs in humans. A poorly explored aspect is any change in 
the functional activities of a tissue or cell encountered by the nanoparticles while approaching their target. Also, it is not 
much reported whether and how the electrical impulse conduction of the neurons targeted by NPs are affected. Further, 

Figure 2 Mechanisms of overlapping fragments in cancer and Alzheimer’s disease. Cyclin D1 endorses tau phosphorylation in presence of GSK3β (which is again 
dephosphorylated by PP2A), and induces apoptosis through a Caspase-3-mediated pathway. Reduced activity of SOD and GR tend to increase ROS production, which causes 
a conformational change in p53 by unfolding it. This unfolded p53 is also observed in Alzheimer’s disease. Mutant p53 decreases the expression of NQO1 and HO-1, the 
ROS- detoxifying enzymes, and thus induces ROS production. LMW cyclin E forms a complex with CDK2 in the cytoplasm, and activates oncogenic functions like cell 
invasion and metastasis. APP produces Aβ proteins, Aβ fibrils and plaques. 
Abbreviations: APP, Amyloid precursor proteins; Aβ, Amyloid β; CDK2, Cyclin-dependent Kinase 2; GR, Glutathione Reductase; GSK3β, Glycogen synthase kinase 3β; 
HO1, Heme Oxygenase 1; LMW, Low molecular weight; NQO1, Quinine-oxidoreductase 1; PP2A, Protein phosphatase 2A; ROS, Reactive Oxygen Species; SOD, 
Superoxide Dismutase.
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Table 2 Summary of In Vivo and In Vitro with Drug Nano Formulation Demonstrating the Encapsulation Efficiency in Treatment of 
Glioma and AD

Drugs Nano 
Formulation/ 
Product

Nanoparticle 
Encapsulation 
Efficiency (%)

Results

In Vivo In Vitro References

Mercapto- 
undecahydro- 

dodecaborate

Polyamide 
amine 

dendrimers

76.2±4.5 Xenograft model 
Anti-CD-133

SU2 U-87 241

Resveratrol Liposomes >90% Xenograft mouse model of GBM 

anti-TfR antibody

U-87 183

Paclitaxel 

arginine– glycine 
aspartic acid

Liposomes 85.45±1.43 Transgenic male BALB/c mice 

initiate apoptosis

C6 242

Antisense 
oligonucleotides 

conjugated

Polymeric 
micelles

83.27±1.14 Xenograft model induces 
cytotoxicity through anti-EGFR 

mAb

U-87 patient derived cells 243,244

Cetuximab Iron oxide NPs Xenograft model Cetuximab 

induces cytotoxicity

U-87 patient derived cells 193,245

Antisense 

oligonucleotides 

conjugated

Polymeric 

micelles

Xenograft model induces 

apoptosis and enhances TUG1 

silencing

194

Temozolomide Liposomes 71±0.8% Xenograft model increases 

cytotoxicity and alters tumor size

U-87 patient derived cells 196,246

Resveratrol Nano capsules 99.89±1.3 Increases microglial and astrocyte 

accumulation with impaired 
memory and learning potential in 

Aβ graft model of AD rats

247–249

SLNs 75–100 Improved passage is observed in 

human endothelial cells/pericytes 

model of BBB

Apocynin Polyanhydride 

NPs

0.029 Protective against oxidative stress 

in LUHMES cells 
Reduction in cytotoxicity of N27 

prevention against oxidative 

stress

250,251

Curcumin Nanogels NA Protection in SH-SY5Y cells 

against Aβ induced cytotoxicity

252–254

Polymeric NPs 77.99±0.91 Protection in SH-SY5Y cells 

against Aβ induced cytotoxicity 
from oxidative damage

Liposomes NA In APP/PS1 mouse model: acted 
on Aβ aggregates

Rutin Lipid polymer 
hybrid NPs

68.06±1.50 In white male albino rats: 
biodistribution study confirmed 

brain accumulation

In erythrocytes separated from 
rat blood: hemolysis test 

confirmed biocompatibility

255

(Continued)
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another important aspect to be considered is that nanomaterials may themselves be cytotoxic and their administration 
may cause neurotoxicity. Further, as these nanomaterials interfere with BBB integrity, they may create a passage not only 
for therapeutic drugs, but also favor the entry of toxic substances or pathogens to the brain. Additionally, NPs can 
interfere with normal cellular metabolism, resulting in increased ROS and altered gene expression. Alhough these 
challenges are still to be met, extensive research is going on, and every modification in nanotechnologies for drug 
delivery bypasses the presenting obstacles. Significance of nanoparticle driven drug delivery is increasing. New targets 

Table 2 (Continued). 

Drugs Nano 
Formulation/ 
Product

Nanoparticle 
Encapsulation 
Efficiency (%)

Results

In Vivo In Vitro References

Berberine Multi-walled 

carbon 
nanotubes

NA In Aβ-injected AD rat model: 

recovered memory performance, 
reduced Aβ aggregates and 

oxidative stress damages

In SH-SY5Y cells: efficient cellular 

uptake of the NPs

256

Ginsenoside Rg3 PLGA 65–70 In C6 cells: cellular uptake  

In THP-1 cells: reduced Aβ- 

induced amyloid plaques 
formation, oxidative stress 

damages and pro-inflammatory 

cytokine levels, reduced 
expression of gene encoding the 

β-amyloid A4 precursor 

In BMVECs/C6 cells BBB model: 
BBB crossing

257

EGCG 
epigallocatechin- 

3-gallate

PLGA 97.1±2.4 In APP/PS1 mouse model: 
increased synapses, reduced 

amyloid plaques and 

neuroinflammation, ameliorated 
spatial learning and memory 

abilities

In primary brain microvascular 
endothelial cells (BBB model): 

alterations of the BBB integrity 

through tight junctions’ disruption

258

Anthocyanins PLGA 60 In SH-SY5Y cells: increased cell 

viability against Aβ42, abrogated 

ROS generation, attenuated AD 
and neuroapoptotic markers

259

AuNPs 34 In Aβ-injected AD mouse 
model: prevented tau 

hyperphosphorylation, reduced 

microglia and astrocyte activation, 
reduced neuroinflammatory and 

neuroapoptotic markers, 

attenuated neurodegeneration  
In Aβ-injected AD mouse model: 

prevented tau 

hyperphosphorylation, reduced 
protein expression levels of 

apoptosis and neurodegeneration 

markers, mitigated synaptic 
dysfunctions and ameliorated 

memory impairments

In BV2 cells: prevented tau 
hyperphosphorylation, reduced 

protein expression levels of 

neuroinflammatory and 
neuroapoptotic markers

260

International Journal of Nanomedicine 2023:18                                                                                   https://doi.org/10.2147/IJN.S405454                                                                                                                                                                                                                       

DovePress                                                                                                                       
2747

Dovepress                                                                                                                                                           Anwar et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


like mutant genes, DNA synthesis, hypoxia, neuroproteins, neuropilin-1, novel therapies including virus-based NPs, 
protein based NPs and nucleic acid based NPs with more effective penetration across the BBB have a great potential to 
unfold a promising era in the treatment of AD, glioblastoma as well as other brain diseases. Furthermore, mRNA 
(particularly non-invasive PTEN mRNA221) targeting Orthotopic Glioblastoma222 for prophylactic and therapeutics 
applications in the form of NPs have potential to change the course of many diseases including AD and Glioma.223

However, the bottom line still states that NPs need much more extensive research before they can be therapeutically 
used in humans, without any doubt of their drawbacks.

Conclusion
This article is crosstalk between nanoparticles with promising insight for the two diseases AD and glioblastoma with 
completely different pathology, where AD results from neuron degeneration while glioblastoma is characterized by rapid 
cell multiplication; however, the factor common in both is that their treatment is very difficult and unspecific. 
Development of nanoparticles loaded with drugs has provided a favorable approach to target and release the drugs at 
amyloid plaques, Aβ, the pathological site in AD patients. Similarly, the drugs in NPs can reach the brain parenchyma by 
EPR effect, an effective breakthrough in the treatment of glioblastoma. The particle size and physical properties of NPs 
are essential parameters that influence the penetration through biological membranes in order to obtain the best 
therapeutic effects of NPs.
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