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Background: High-Dimensional Propensity Score procedure (HDPS) is a data-driven approach to assist control for confounding in 
pharmacoepidemiologic research. The transition to the International Classification of Disease (ICD-9/10) in the US health system may 
pose uncertainty in applying the HDPS procedure.
Methods: We assembled a base cohort of patients in MarketScan® Commercial Claims Database who had newly initiated celecoxib or 
traditional NSAIDs to compare gastrointestinal bleeding risk. We then created bootstrapped hypothetical cohorts from the base cohort 
with predefined patient selection patterns from the ICD eras. Three strategies for HDPS deployment were tested: 1) split the cohort by 
ICD era, deploy HDPS twice, and pool the relative risks (pooled RR), 2) consider codes from each ICD era as a separate data 
dimension and deploy HDPS in the entire cohort (data dimensions) and 3) map ICD codes from both eras to Clinical Classifications 
Software (CCS) concepts before deploying HDPS in the entire cohort (CCS mapping). We calculated percent bias and root-mean- 
squared error to compare the strategies.
Results: A similar bias reduction was observed in cohorts where patient selection pattern from each ICD era was comparable between 
the exposure groups. In the presence of considerable disparity in patient selection, we observed a bimodal distribution of propensity 
scores in the data dimensions strategy, indicating instrument-like covariates. Moreover, the CCS mapping strategy resulted in at least 
30% less bias than pooled RR and data dimensions strategies (RMSE: 0.14, 0.19, 0.21, respectively) in this scenario.
Conclusion: Mapping ICD codes to a stable terminology like CCS serves as a helpful strategy to reduce residual bias when deploying 
HDPS in pharmacoepidemiologic studies spanning both ICD eras.
Keywords: propensity score, confounding, real-world evidence, comparative effectiveness research, ICD-10, ICD-9, HDPS algorithm

Background
Pharmacoepidemiologic studies often use electronic healthcare databases to evaluate a potential causal relationship 
between therapeutics and health outcomes.1,2 In these studies, researchers use available data elements to define study 
eligibility criteria, exposure, outcome, and potential confounding factors. While providing large sample sizes, healthcare 
databases are not designed for epidemiological research purposes,2 and appropriate measurement of all necessary study 
variables may not be possible, especially for potential confounders. Therefore, unmeasured or residual confounding can 
be more concerning in pharmacoepidemiologic studies than in traditional observational studies that use primary data 
collection.1,3

Based on the principal idea of proxy adjustment,4–9 Schneeweiss et al 2009 proposed a semi-automated algorithm to 
consider all recorded data for study patients and create an extensive set of variables found empirically to contribute to 
confounding.10 This approach is called High-Dimensional Propensity Score (HDPS) and has been tested and employed in 
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several case examples encompassing different databases, healthcare settings, and clinical questions.11 To date, the 
literature suggests that the HDPS algorithm can reduce confounding when supplementing investigator-defined covariates. 
It can also generate comparable estimates or even less biased estimates in some cases when used without investigator- 
defined covariates.11

The HDPS algorithm hinges on standard medical terminologies encoding clinical data in healthcare databases.12 An 
issue arises when study cohorts are assembled from databases with a significant change in medical terminologies during 
a study period. For instance, the current version of the ICD terminology in the US healthcare system is ICD-10-CM for 
medical conditions and ICD-10-Procedures (PCS).13 This version went into effect in October 2015 and exhibited 
significant changes compared to its predecessor. The ICD-9-CM includes approximately ~14,000 diagnosis concept 
codes and ~3800 medical procedure codes, while the ICD-10-CM/PCS includes ~70,000 medical diagnoses and ~71,000 
medical procedure codes. The concepts have become significantly more granular in the ICD-10-CM/PCS, and the 
alphanumeric structure of the codes was completely overhauled (Supplementary Information; Comparison of ICD- 
9-CM and ICD-10-CM/PCS Terminologies).13 As a result, patients in a single study cohort could have medical 
information coded in two incompatible terminologies, potentially impairing the HDPS algorithm function.

The HDPS developers and expert users have proposed a few strategies to handle this inconsistency.14 One strategy 
would be to consider codes from each ICD era as separate data dimensions regardless of cohort composition and run the 
algorithm as usual. With this approach, using a fixed look-back period before a study index date, a patient could have two 
different measures for the same confounder represented by variables from each ICD era. Another strategy would be to 
conduct a separate study in each ICD era and construct a pooled effect estimate. We proposed a third strategy to 
harmonize ICD-9 and ICD-10 codes across the transition period via a unifying and consistent medical terminology. To do 
so, one could consider Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT®) or even an aggregated 
medical terminology like the Clinical Classifications Software (CCS) developed by the Agency for Healthcare Research 
and Quality (AHRQ).15–17

The present study aimed to assess the HDPS algorithm’s performance in a well-established confounding by indication 
scenario and tested these three adaptation strategies in cohorts with varying patient selection patterns across ICD eras.

Methods
Data Source
We used the MarketScan® Commercial Claims Research Databases (2012–2019) to conduct this study. The database 
includes billing records for a nationwide sample of the privately insured population in the United States. Data on medical 
encounters in outpatient and inpatient settings and pharmacy dispensing events are available in the database. Medical 
diagnoses and procedures are encoded using the ICD (revisions 9 and 10), Current Procedural Terminology (CPT), and 
Healthcare Common Procedure Coding System (HCPCS) terminologies. The MarketScan® databases are certified as de- 
identified data, and the Institutional Review Board at the University of Florida exempted this study from review.

Study Design
We conducted a retrospective cohort study to compare the risk of gastrointestinal bleeding with celecoxib, a selective 
COX-2 inhibitor, with a conventional non-steroidal anti-inflammatory drug (cNSAID). Based on clinical trials, celecoxib 
is expected to have a moderate protective effect against gastrointestinal bleeding compared to cNSAID.18–20 However, 
observational studies without appropriate adjustment for confounding have shown a null effect or even higher gastro-
intestinal bleeding risk among COX-2 inhibitor users because clinicians often channel patients toward COX-2 inhibitors 
when a higher risk for gastrointestinal bleeding is present. This clinical scenario has been used in several studies to 
evaluate the HDPS algorithm, and we considered it an appropriate pragmatic example with established benchmarks to 
contrast our study findings.
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Eligibility Criteria
We identified adult patients aged 18–65 who entered the study cohort on the initiation day of the study drugs (index date) 
with at least two prescription fills to indicate chronic use. Before cohort entry, all patients had at least 365 days of 
continuous insurance benefits (both medical and pharmacy) to determine new study drug use and prepare datasets for the 
HDPS algorithm. We refer to this cohort as the parent cohort hereafter.

Drug Exposure
We ascertained drug exposure using pharmacy claims data and National Drug Codes for celecoxib or cNSAID of interest 
(diclofenac, indomethacin, or piroxicam). These agents were selected because they were not available as over-the-counter 
oral products in the US.

Follow-Up and Outcome
We followed patients from the index date up to six months (intention-to-treat analysis). This analytic approach is 
consistent with previous studies on HDPS performance.5,10,17 The study outcome was the first gastrointestinal bleeding 
event after cohort entry and measured by an ICD9/ICD10 code algorithm proposed by the Sentinel Initiative, which has 
shown reasonable consistency across the ICD transition era.21 This algorithm is expected to have a high positive 
predictive value (>90%) when ascertained as the principal discharge diagnosis in an inpatient setting.22 The code set 
is provided in the Supplementary Information (Definition of Gastrointestinal Bleeding section). We captured gastro-
intestinal bleeding in either inpatient or outpatient settings when coded as a primary diagnosis to achieve adequate power 
to detect the risk of bleeding in the parent cohort.

Data Scenarios and Resampled Cohorts
For efficiency purposes and to create possible data scenarios in pharmacoepidemiologic studies, we constructed the 
following cohorts by random sampling with replacement (ie, bootstrapping) from the parent cohort (Table 1):

Scenario B (Base). We randomly sampled 100,000 patients from the parent cohort without stratifying them according 
to the ICD era to represent the parent cohort composition. We should note that this cohort includes patients indexed early 
in the ICD-10 era with a look-back period starting in the ICD-9 era.
For the following four scenarios, we limited sampling to those with all look-back information available in either ICD-9 or 
ICD-10. An illustration for these scenarios is provided in Figure 1.

Table 1 Composition of Resampled Cohorts in Each Data Scenario

Cohort Name ICD-9 Era ICD-10 Era Cohort Size

Scenario Ba COXIB: 15,765 

cNSAID: 45,928

COXIB: 10,415 

cNSAID: 27,892

100,000

Scenario C1 COXIB: 25,000 

cNSAID: 25,000

COXIB: 25,000 

cNSAID: 25,000

100,000

Scenario C2 COXIB: 40,000 

cNSAID: 40,000

COXIB: 10,000 

cNSAID: 10,000

100,000

Scenario C3 COXIB: 40,000 

cNSAID: 10,000

COXIB: 10,000 

cNSAID: 40,000

100,000

Scenario C4 COXIB: 20,000 

cNSAID: 5,000

COXIB: 5,000 

cNSAID: 20,000

50,000

Note: aNumber of patients in each ICD era for scenario B was not pre-determined and 
reflected the natural distribution in the database, but the total cohort size was fixed. 
Abbreviations: COXIB, celecoxib; cNSAID, diclofenac, indomethacin, or piroxicam.
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Scenario C1. For celecoxib users, we randomly sampled 25,000 patients from the ICD-9 era and 25,000 from the 
ICD-10 era. For the cNSAID users, we sampled 25,000 from the ICD-9 era and 25,000 from the ICD-10 era. This 
scenario represents an equal distribution of information across ICD eras (Balanced Pattern).

Scenario C2. For celecoxib users, we randomly sampled 40,000 patients from the ICD-9 era and 10,000 from the 
ICD-10 era. For the cNSAID users, we sampled 40,000 from the ICD-9 era and 10,000 from the ICD-10 era. This 
scenario represents a skewed distribution of information across ICD eras where most patients are selected from the ICD-9 
era, but the pattern is similar for both cohorts (Uniform skewness).

Scenario C3. For celecoxib users, we randomly sampled 40,000 patients from the ICD-9 era and 10,000 from the 
ICD-10 era. For the cNSAID users, we sampled 10,000 from the ICD-9 era and 40,000 from the ICD-10 era. This 
scenario represents a skewed distribution of information across ICD eras where the skewness is in the opposite direction 
for study cohorts (Nonuniform skewness).

Scenario C4. For celecoxib users, we randomly sampled 20,000 patients from the ICD-9 era and 5,000 from the ICD- 
10 era. For the cNSAID users, we sampled 5,000 from the ICD-9 era and 20,000 from the ICD-10 era. This scenario is 
similar to C3, but the sample size is smaller and fewer patients have the outcome of interest (Nonuniform skewness).

HDPS Algorithm Configurations
We used 3-digit ICD codes, CPT/HCPCS codes, and drug names (therapeutic detail variable in RedBook®) in our data 
dimensions for medical diagnoses, procedures, and pharmacy claims datasets, respectively. We set the algorithm to 
require a minimum frequency of 100 in the prevalence filter, select 200 variables per data dimension, create service 
intensity variables by computing the quartile of the number of codes per patient and the number of unique codes per 
patient within each dimension, and apply a correction for cells with zero in the confounder/outcome 2 × 2 table. We 
chose the ranking method based on the Bross bias formula to rank variable importance across data dimensions and 
selected up to 400 variables into the propensity score model.

For each data scenario (B, C1-C4), we applied three strategies to deploy the HDPS:
S1. Conduct separate studies in each ICD era and pool effect estimates (pooled RR).
S2. Consider codes from each ICD era as a separate data dimension in the HDPS algorithm (data dimensions).

Figure 1 Visualization of data scenarios in resampled cohorts.
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S3. Map ICD codes to single-level CCS concepts before HDPS deployment (CCS mapping).
The CCS terminology has been developed and maintained by Healthcare Cost and Utilization Program (HCUP), 

AHRQ. The single-level CCS for diagnoses aggregates all ICD diagnosis codes into 285 illnesses and conditions.

Outcome Modeling and Bias Evaluation
Using a log-binomial model, we estimated the gastrointestinal bleeding risk ratio (RR). We considered two confounding 
adjustment conditions for each combination of cohort composition and PS estimation strategy: 1) crude (no adjust-
ment), 2) demographics + empirical variables. We obtained the propensity score from the HDPS algorithm after trimming 
(2.5% asymmetric trimming – default setting in HDPS). We constructed stabilized inverse probability of treatment 
weights (S-IPTW) for patients with propensity scores within the common support region of distributions and incorpo-
rated the weights in the outcome models. To evaluate which strategy resulted in a less biased apparent RR, we assumed 
0.80 to be the gold standard RR based on clinical trial data.10,17

We created 50 bootstrapped datasets for each data scenario and conducted HDPS/outcome modeling on each 
resampled cohort to capture variability in RR estimates due to sampling error. We summarized apparent RRs as 
geometric mean (2.5 and 97.5 percentiles) and calculated %bias and root-mean-squared-error (RMSE) to contrast 
different strategies. We used the first sample in the bootstrapped datasets to investigate each data scenario’s patient 
characteristics and propensity score distributions.

The HDPS software is available as part of Pharmacoepidemiology Toolbox 2.20.18 (https://www.drugepi.org/dope/software). 
We used SAS/STAT 15.2 (Cary, NC) for bootstrapping, HDPS implementation, and outcome modeling. We used the %metaanal 
SAS macro to pool RRs using the DerSimonian-Laird estimator for random effects (https://www.hsph.harvard.edu/donna- 
spiegelman/software/metaanal/). We utilized the Forester package (https://github.com/rdboyes/forester) and RStudio 
2021.09.2–382 (Boston, MA) to create forest plots.

Results
Our parent cohort included 90,037 celecoxib initiators and 253,845 cNSAID initiators who met all eligibility criteria. The 
celecoxib group included more females (58% versus 48%), older patients (median age: 54 versus 51), and more chronic 
conditions (Table 2). Patients’ index era was comparable in exposure groups (ICD-9: 60% versus 62%). The crude 
incidence of gastrointestinal bleeding was 1.15% in the cNSAID group and 1.41% in the celecoxib group. As expected, 
we observed similar characteristics to the parent cohort in scenario B. The demographic and clinical characteristics in 
scenarios C1-C4 were like scenario B and differed in index calendar years by design (Table 2).

In scenario B, the apparent RR was 1.22 (1.12–1.42) in the crude analysis, and all three strategies to adjust for 
confounding via HDPS moved the apparent RR equally toward the gold RR. In scenarios C1 and C2, representing 
a balanced or uniform skewness pattern, we observed a similar trend for the apparent RR in the crude and adjusted 
analyses. In scenarios C3 and C4, which represented a nonuniform skewness pattern, all three strategies moved the 
apparent RR toward the gold RR; however, the magnitude of bias reduction was more significant in the CCS mapping 
strategy (Figure 2).

Both bias metrics confirmed the observation in the apparent RRs. The crude RR had a 188% bias in scenario B. All 
three strategies reduced bias by approximately half to 93% in the pooled RR strategy, 99% in the data dimensions 
strategy, and 100% in the CCS mapping strategy. Similar efficacy in bias reduction was observed in scenarios C1 and 
C2. However, in scenario C3, the CCS mapping strategy resulted in 43% and 30% less residual bias in the apparent RR 
than the pooled RR and data dimensions strategies, respectively. Our findings in scenario C4 were similar to C3. 
Evaluation of RMSEs showed similar findings across all data scenarios. Figures 3 and 4 summarize the bias metrics in 
all assessments.

Across five scenarios and three strategies, the density plots for propensity score in exposure groups showed reason-
able overlap in most instances (Supplementary Information; Density and Histogram Plots for Propensity Scores After 
Trimming in Various Data scenarios section) except for the nonuniform skewness scenario and data dimensions strategy 
(Figure 5), where we observed a distinct bimodal distribution in the treatment probability. When comparing the pooled 
RR strategy across data scenarios B and C1-C3, which all had similar sample sizes, we observed that the bootstrapped 
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Table 2 Characteristics of Patients in the Parent and Resampled Study Cohorts

Cohort P Cohort B Cohort C1 Cohort C2 Cohort C3 Cohort C4

cNSAID COXIB cNSAID COXIB cNSAID COXIB cNSAID COXIB cNSAID COXIB cNSAID COXIB

Number of patients 253,845 90,037 73,820 26,180 50,000 50,000 50,000 50,000 50,000 50,000 25,000 25,000

Sex (female) 48.3 58.4 48.2 58.7 48.1 58.3 47.8 58.6 48.5 58.6 48.4 58.5

Age group

<=30 7.6 3.6 7.4 3.6 7.8 3.7 7.7 3.5 7.8 3.5 7.8 3.5

31–40 13.9 8.5 13.8 8.8 13.6 8.4 13.9 8.2 13.5 8.2 13.4 8.3

41–50 28.3 23.1 28.2 23.1 28.2 22.9 28.6 23.5 27.7 23.5 27.8 23.2

41–50 38.7 46.6 38.8 46.1 38.4 46.2 38.4 46.7 38.4 46.7 38.4 47.0

61–65 11.5 18.2 11.7 18.4 11.9 18.7 11.3 18.0 12.6 18.0 12.6 18.0

Age (Median; IQR) 51 (15) 54 (12) 51 (15) 54 (12) 51 (15) 54 (12) 50 (15) 54 (12) 51 (15) 54 (12) 51 (15) 54 (12)

Beneficiary status

Employee 67.7 64.1 67.4 63.8 68.0 64.3 67.7 63.6 68.2 63.6 68.2 63.8

Spouse 28.2 33.8 28.4 34.2 27.7 33.4 28.2 34.3 27.3 34.3 27.4 34.2

Others 4.2 2.1 4.1 2.1 4.3 2.3 4.1 2.1 4.4 2.1 4.4 2.0

Residence region

Northeast 14.4 17.4 14.3 17.6 14.2 17.3 14.7 17.7 13.8 17.7 13.8 17.8

North Central 19.4 19.5 19.4 19.5 19.5 19.7 19.7 20.2 19.2 20.2 19.2 20.4

South 49.6 48.6 49.2 48.8 50.5 48.9 48.0 47.3 53.1 47.3 53.2 47.1

West 15.1 13.9 15.5 13.5 14.6 13.5 15.8 14.1 13.3 14.1 13.3 13.9

Unknown 1.5 0.6 1.5 0.6 1.2 0.5 1.9 0.7 0.6 0.7 0.6 0.7

Health plan type

Comprehensive 3.1 3.4 3.1 3.4 3.2 3.3 3.1 3.6 3.2 3.6 3.3 3.7

Health maintenance org. 10.0 8.6 10.1 8.6 9.7 9.0 10.2 8.7 9.5 8.7 9.0 8.8

Preferred provider org. 59.4 62.3 59.4 62.3 58.1 60.8 60.5 63.3 55.4 63.3 55.8 63.0
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Point-of-service 6.7 7.4 6.7 7.3 6.3 6.9 6.9 7.4 5.7 7.4 5.6 7.5

Consumer-driven 11.0 9.4 11.0 9.5 11.9 10.3 10.2 8.8 13.6 8.8 13.8 8.7

Other plan types 9.8 8.8 9.8 8.9 10.7 9.7 9.1 8.2 12.6 8.2 12.5 8.3

Comorbidities

Myocardial infarction 0.6 0.9 0.6 1.0 0.6 1.0 0.6 0.8 0.6 0.8 0.6 0.9

Congestive heart failure 1.2 1.7 1.2 1.9 1.3 1.9 1.3 1.9 1.3 1.9 1.2 1.9

Cerebrovascular disease 2.0 2.9 2.0 2.8 2.0 2.8 2.0 2.9 1.8 2.9 1.9 3.0

Peripheral vascular disease 1.7 2.8 1.7 2.9 1.9 3.0 1.8 2.9 1.9 2.9 1.9 2.8

Chronic pulmonary disease 9.7 12.5 9.7 12.4 10.0 12.8 9.5 12.3 10.4 12.3 10.4 12.4

Dementia 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Para/hemiplegia 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.5

Diabetes - no complications 12.6 14.5 12.5 14.4 12.9 14.6 12.6 14.6 13.1 14.6 13.2 14.7

Diabetes – complicated 2.2 2.9 2.2 3.0 2.4 3.2 2.2 2.8 2.7 2.8 2.7 2.9

Renal disease 1.1 1.4 1.1 1.6 1.2 1.5 1.1 1.4 1.3 1.4 1.3 1.4

Mild liver disease 2.8 4.1 2.9 4.2 2.9 4.4 2.7 4.0 3.2 4.0 3.1 4.0

Severe liver disease 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Peptic ulcer disease 0.4 1.1 0.4 1.3 0.4 1.1 0.4 1.1 0.4 1.1 0.4 1.0

Rheumatic diseases 2.2 5.6 2.0 5.9 2.2 5.8 2.1 5.6 2.2 5.6 2.2 5.6

AIDS/HIV 0.2 0.2 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2

Cancer 3.3 5.5 3.2 5.5 3.2 5.6 3.3 5.6 3.2 5.6 3.2 5.7

Metastatic carcinoma 0.3 0.9 0.3 0.9 0.3 1.0 0.3 0.9 0.3 0.9 0.3 0.9

Calendar year

2012 22.5 21.3 22.6 21.7 18.1 18.0 28.9 28.9 7.3 28.9 7.4 28.6

2013 16.5 15.0 16.6 15.0 13.2 12.5 21.1 19.8 5.4 19.8 5.3 20.2

(Continued)
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Table 2 (Continued). 

Cohort P Cohort B Cohort C1 Cohort C2 Cohort C3 Cohort C4

cNSAID COXIB cNSAID COXIB cNSAID COXIB cNSAID COXIB cNSAID COXIB cNSAID COXIB

2014 14.1 13.6 13.7 13.7 11.1 11.4 17.9 18.3 4.3 18.3 4.3 18.1

2015 12.1 12.7 12.1 12.6 7.6 8.1 12.1 13.0 3.0 13.0 3.0 13.1

2016 10.9 10.7 11.0 10.7 3.1 3.5 1.2 1.5 4.5 1.5 4.9 1.5

2017 9.8 10.2 9.7 10.2 19.2 17.8 7.6 7.1 30.9 7.1 30.6 7.1

2018 9.3 10.3 9.5 10.0 18.4 17.8 7.4 7.1 29.2 7.1 29.6 6.9

2019 4.8 6.2 4.8 6.1 9.4 11.0 3.8 4.4 15.0 4.4 15.0 4.5

Notes: We report characteristics of resampled cohorts based on the first sample in the bootstrapping procedure for each data scenario. All numbers are percentages except for age. 
Abbreviations: COXIB, celecoxib; cNSAID, diclofenac, indomethacin, or piroxicam; IQR, inter-quartile range.
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confidence interval ratio (ie, upper bound divided by the lower bound) was larger in scenario C3 compared with B, C1, 
and C2, respectively (1.46 versus 1.26, 1.29, 1.32), implying more instability in effect estimation.

Discussion
Our study showed that all three adaptation strategies (pooled RR, data dimensions, or CCS mapping) performed comparably if 
the cohorts’ data had either a balanced pattern or uniform skewness (ie, selecting a similar proportion of patients from each 
ICD era). In the presence of nonuniform skewness (ie, selecting a different proportion of patients from each ICD era), we 
observed that the CCS mapping strategy resulted in at least 30% less residual bias than the other strategies. Of note, the data 
dimensions strategy resulted in having instrument-like covariates in the propensity score model.

Figure 2 Summary of relative risk estimates using three different adaptation strategy for HDPS in each data scenario.
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We used a well-established clinical scenario (ie, NSAIDs and gastrointestinal bleeding) as an empirical example and 
assumed a gold standard RR. We assessed the adaptability of HDPS to data inputs with inconsistent medical terminology, 
a common issue in recent US-based pharmacoepidemiology studies. We noticed a bimodal distribution of the propensity 

Figure 3 Residual bias in log relative risk using three different adaptation strategies for HDPS in each data scenario.
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scores when applying the data dimensions strategy in the nonuniform skewness data scenario. This observation implies 
that covariates strongly associated with the exposure were in the models. Intuitively, ICD-9 or ICD-10 codes acted 
merely as instrument-like variables, and HDPS selected them into the propensity score model likely because of 

Figure 4 Root-mean-squared-error (RMSE) in log relative risk using three different adaptation strategies for HDPS in each data scenario.

Clinical Epidemiology 2023:15                                                                                                      https://doi.org/10.2147/CLEP.S405165                                                                                                                                                                                                                       

DovePress                                                                                                                         
655

Dovepress                                                                                                                                                         Sarayani et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


differential prevalence in the study cohorts, a component of the Bross bias formula.23 Previous simulation and empirical 
studies have shown that having instrument variables in the propensity score model may increase bias and variance in 
effect estimates.24,25 Therefore, we recommend avoiding this strategy if nonuniform skewness is present in a given study.

Figure 5 Propensity score density and histogram plots in data scenario C3 (nonuniform skewness data scenario).
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Furthermore, in the nonuniform skewness scenario, the pooled RR strategy reduced bias less effectively (ie, more 
residual bias and imprecision) than the CCS mapping strategy. We observed a reasonable overlap in the propensity score 
density plots for each ICD era study which would typically imply adequate confounding adjustment for measured 
covariates. One possible explanation could be the impact of information aggregation into CCS concepts compared to 
3-digit ICD codes that sometimes do not have clinical relevance. However, a previous study has shown that employing 
terminologies that aggregate drug names and diagnosis codes can minimally improve confounding control via HDPS.17 

We also did not observe such improvement in C1 or C2 scenarios; thus, this explanation seems implausible.
On the other hand, we should note that the composition of C1 or C2 scenarios differed from C3 and C4 as the 

exposure groups did not have equal shares in the study cohort when we analyzed the data separately per ICD era (1:4 
shares). A previous study on HDPS performance that had a significant difference in exposure group sizes (1:10 shares) 
also reported poor performance of this approach when relying on only empirical covariates, and the authors could not 
justify this observation.26 We think that exposure groups with drastically different sizes may interfere with HDPS’s 
prevalence filter that selects a subset of codes in each data dimension to create empirical covariates. HDPS calculates the 
prevalence for each code, within a given data dimension, as the proportion of patients with the code in the entire cohort. 
Then, the algorithm creates a ranking metric by retaining prevalence values less than 0.5 and subtracting values larger 
than 0.5 from 1.0. After sorting codes by this metric, a pre-defined number (200 in our study) of codes with the highest 
rank in each dimension will enter the next stage to create empirical covariates.10,12 Intuitively, when the cohort is not 
a 1:1 split between exposure groups, the prevalence of a code in the entire cohort will be closer to the observed 
prevalence in the larger exposure group. Thus, the prevalence filter will be biased toward the characteristics of the larger 
exposure group and potentially leave out codes with high prevalence in the smaller group and low prevalence in the 
larger group. This issue with the prevalence filter could affect all data dimensions. We anticipate that the overall HDPS 
confounding adjustment approach may become less effective in such data scenarios and possibly include instrument-like 
covariates, leading to less precision and more residual bias.

In our study, the CCS mapping strategy allowed us to run the HDPS procedure in the entire study cohort for scenarios 
C3 and C4, where the exposure group sizes were equal. Therefore, the prevalence filter has likely selected an unbiased 
subset of codes from each data dimension to create the empirical covariates. To illustrate the role of the prevalence filter, 
we have provided a preliminary analysis in the Supplementary Information (Role of Prevalence Filter in High- 
Dimensional Propensity Score Procedure section) that investigated three data scenarios (cNSAID vs COXIB; 1:1, 9:1, 
1:9 shares in a cohort with only ICD-9 data). We incrementally increased the predefined number in the prevalence filter 
from 50 to 400. The estimated RR remained stable in the 1:1 scenario but varied significantly in the 9:1 and 1:9 
scenarios. A comprehensive study is essential to evaluate the role of HDPS’s prevalence filter in various data and clinical 
scenarios and possibly optimize the algorithm logic.

One may argue that researchers should consider methods like disease risk score27 or calendar-time-specific propensity 
score28,29 in skewed data scenarios. The utility of the disease risk score approach is often unclear in pharmacoepide-
miologic studies because of the rare incidence of study outcomes. Moreover, the diagnostics for the disease risk score 
approach are more complex than covariate balance checks in the propensity score approach.27 Therefore, fewer studies 
could potentially benefit from this method. Nevertheless, a high-dimensional disease risk score (available in the 
Pharmacoepidemiology Toolbox) would intuitively face trouble in nonuniform skewness scenarios and could be an 
area of future research. The calendar-time-specific propensity score approach will be helpful if researchers believe 
calendar time would be a proxy for clinically relevant confounding factors associated with the outcome of interest or 
when the confounding structure changes over time. However, bias reduction in this approach seems modest compared to 
a conventional propensity score.28 The pooled RR strategy was compliant with the calendar-time-specific propensity 
score approach since it divided the study period into two eras; however, we observed that the CCS mapping strategy 
resulted in a more robust bias reduction. Future research could compare multiple calendar-time blocks in each ICD era 
and potentially combine this approach with the CCS mapping strategy.

The CCS terminology we used in our proposed strategy has been developed and maintained by Healthcare Cost and 
Utilization Program (HCUP), AHRQ. We used the single-level CCS in the present study, which was more straightfor-
ward to apply in our specific use case than the multi-level CCS. However, as previously reported in the literature, multi- 
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level CCS may also be harmonized and applied for confounding adjustment.17 We should note that the HCUP had 
preserved the original terminology structure after transitioning from ICD-9 to ICD-10. In 2019, HCUP introduced 
Clinical Classifications Software Refined (CCSR), which summarizes ICD-10-CM codes into 530 clinically meaningful 
concepts.30 Introduction of numerous novel concept codes and inconsistencies in mapping ICD-9 to ICD-10 led the 
agency to revise the CCS structure. Despite these possible caveats in CCS, we observed a more robust bias reduction in 
the CCS mapping strategy. Future studies are needed to assess whether other unifying vocabularies, eg, SNOMED-CT, 
could result in similar bias reduction, given that the CCS/CCSR goal is to create condensed and clinically meaningful 
concepts.

Limitations and Future Directions
Our study used a pre-defined gold standard RR of 0.8 based on the literature, and the magnitude of bias reduction was 
relative to this anchor point. Therefore, bias improvements may vary in contrast to the true RR. Our choice of 1:4 
proportion in data scenarios C2-C4 was arbitrary but purposive to create a significant difference in the amount of 
information available from each ICD era in the study cohorts. Such skewness in the data might not be typical for database 
studies, and defining maximum tolerable disproportionality could be a topic for future investigations. The number of 
bootstrapped samples per data scenario and adaptation strategy was relatively small to accommodate computational 
capacity, but it provides a reasonable estimate of variance in sampling error. We tested the adaptation strategies in one 
clinical scenario and one data source. Thus, our findings must be replicated to reach robust and generalizable 
recommendations. Our focus in the present study was on the impact of inconsistency in ICD terminology; therefore, 
we did not include pre-defined variables based on expert knowledge. It is worth evaluating the HDPS performance in 
various data scenarios when a complete set of expert-defined covariates is available. Future studies may use the plasmode 
simulation approach31 to expand our study by assigning desired effect size and outcome prevalence while varying HDPS 
configurations and the sample size between exposure groups and ICD eras.

Conclusions
Our study showed that researchers need to be cautious when using the HDPS algorithm in their pharmacoepidemiologic 
studies crossing both ICD-9 and ICD-10 eras. Researchers may benefit from curating the ICD data with a unifying 
terminology like CCS if there is a disproportionate patient selection from each ICD era. HDPS developers may consider 
adding a new feature to the software to facilitate ICD data harmonization as a preliminary step in the algorithm.
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