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Purpose: Regression-to-the-mean (RTM) is a statistical phenomenon that may occur in epidemiologic studies where inclusion in the 
study cohort is contingent upon experiencing a laboratory/clinical measurement beyond a defined threshold. When differential across 
treatment groups, RTM could bias the final study estimate. This poses substantial challenges in observational studies that index 
patients upon experiencing extreme laboratory or clinical values. Our objective was to investigate propensity score-based methods as 
a tool for mitigating this source of bias via simulation.
Methods: We simulated a noninterventional comparative effectiveness study, comparing treatment with romiplostim to standard-of- 
care therapies for immune thrombocytopenia (ITP), a disease characterized by low platelet counts. Platelet counts were generated from 
normal distributions according to the underlying ITP severity, a strong confounder of treatment and outcome. Patients were assigned 
treatment probabilities based upon ITP severity, which created varied levels of differential and non-differential RTM. Treatments were 
compared via the difference in median platelet counts during 23 weeks of follow-up. We calculated four summary metrics of the 
platelet counts measured prior to cohort entry and built six propensity score models to adjust for those variables. We adjusted for these 
summary metrics using inverse probability of treatment weights.
Results: Across all simulated scenarios, propensity score adjustment reduced bias and increased precision of the treatment effect estimator. 
Adjusting for combinations of the summary metrics was most effective at reducing bias. Adjusting for the mean of prior platelet counts or the 
difference between the cohort-qualifying platelet count and the largest prior count eliminated the most bias when assessed individually.
Conclusion: These results suggest that differential RTM could be reasonably addressed by propensity score models with summaries 
of historical laboratory values. This approach can be easily applied to any comparative effectiveness or safety study, though 
investigators should carefully consider the best summary metric for their data.
Keywords: bias correction, propensity scores, real-world evidence, immune thrombocytopenia

Plain Language Summary
This study focuses on a statistical concept that can cause bias in observational studies aimed at understanding the effectiveness or safety of 
a drug: regression-to-the-mean (RTM) that differs across two treatment groups. RTM is based on the idea that all laboratory or clinical 
measures derive from some “true” underlying distribution. It states that if you randomly draw a value that is far from the mean of that 
distribution, the next value you draw is likely to have regressed closer to the distribution’s mean due to random chance alone. This bias is of 
particular concern in studies that use routinely collected healthcare data to mimic clinical trials. Trials routinely include patients at extreme 
clinical values that indicate that the patients are especially sick. This is not a concern in trials because treatments are randomized. However, 
in observational studies that use real-world data, multiple values inform a provider’s treatment recommendation. We proposed a simple 
method to address this problem and investigated its performance by simulating an observational study of treatments for immune 
thrombocytopenia. We included patients in the study upon experiencing a low platelet count and created scenarios where RTM was more 
and less similar by treatment status. We summarized platelet counts measured prior to study entry and statistically adjusted for these values. 
This approach successfully eliminated some bias caused by differential RTM across treatments. We suggest that researchers consider using 
this approach for future non-interventional studies of drug comparative effectiveness or safety.
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Introduction
Regression-to-the-mean (RTM) states that when an extreme measure is observed, the next is likely to be closer to the true 
mean of the value’s distribution, regardless of intervention.1,2 This is salient in drug safety and effectiveness studies that 
include participants upon experiencing an extreme clinical value and evaluate an outcome that is correlated with it. In 
randomized trials, this should not bias a comparative effect estimate because randomization balances RTM between 
treatment arms.3 However, in observational studies, the magnitude of RTM may differ between treatment groups, 
creating bias – henceforth, we refer to this as differential RTM (by exposure). This can occur in a noninterventional 
study, for example, because physicians may prefer to initiate a more-aggressive treatment in patients with consistently 
abnormal lab values than patients with a singular abnormal value. Patients who qualified for study entry based on 
a singular low value are expected to regress to normal levels more often than patients with consistently low values, due to 
RTM. This may cause an aggressive treatment to appear less effective than the less-aggressive treatment, regardless of 
treatment effect.

Current methods that address differential RTM have important limitations for noninterventional studies focused on 
comparative drug safety and effectiveness. One proposed method requires multiple qualifying laboratory values before 
a patient enters a study.2,4 However, this changes the study question (eg, the effect after 2 instead of 1 qualifying value). 
Another method quantifies bias due to RTM2–5 but requires distributional assumptions about the outcome measure that 
are unreasonable in real-world data with sparsely measured laboratory-based endpoints. Some authors have suggested 
using a regression discontinuity design,4 but this changes the study question and requires sufficient patients with 
laboratory values around a cut point. Finally, other methods exist but are not applicable to studies focused on individual 
health outcomes.6 We are not aware of a method that 1) cleanly fits within classic pharmacoepidemiology study designs 
(eg, active comparator new user study)7 without 2) changing the study question.

Propensity scores (PSs) are widely used to adjust for confounding. Bias from differential RTM results from 
a different mechanism than confounding, but similarly impacts treatment selection. As such, PS-based adjustment 
methods should mitigate bias due to differential RTM in noninterventional studies by balancing RTM across 
treatment arms, mirroring randomization in trials. However, to our knowledge, no prior work has explored this. 
Previously, we observed possible evidence of differential RTM in a non-interventional, comparative effectiveness 
study of two treatments for immune thrombocytopenia (ITP), a chronic disease characterized by low platelet 
counts.8 In that study, we emulated a planned clinical trial using a treatment-decision design where treatment 
with romiplostim or standard of care (SOC) was determined upon experiencing one low platelet count (≤30×109/L; 
cohort entry date).9,10 In this work, we simulated that study and assessed PS-based methods to mitigate bias due to 
differential RTM.

Materials and Methods
Data Generation
Patient data were generated in two stages. First, weekly platelet counts were generated based upon patients’ ITP severity 
stratum (ie, more- vs less-severe), with each characterized by a different platelet count distribution. Second, treatment (vs 
SOC) was assigned to patients based upon their ITP severity to introduce differential and non-differential RTM 
(Figure 1).

We randomly assigned patients to have “more-severe” or “less-severe” ITP with a probability of 0.5. Two-hundred 
platelet counts were generated for each patient from normal distributions, with an ITP severity-specific mean and 
standard deviation (SD). More-severe ITP had a lower mean and SD than less-severe ITP. We considered two 
parameterizations, which mirrored our real-world study:8

1) Platelet count distributions were disparate by ITP severity (More-severe: Mean = 40×109/L, SD = 15×109/L; Less- 
severe: Mean = 100×109/L, SD = 50×109/L), and
2) Platelet count distributions were similar by ITP severity (More-severe: Mean = 35×109/L, SD = 10×109/L; Less- 
severe: Mean = 55×109/L, SD = 20×109/L).
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RTM in platelet counts was induced by including individuals in the cohort at their first platelet count ≤30×109/L that 
occurred after ≥8 platelet count measurements (ie, cohort entry event). The platelet count measured 1 week after 
treatment or SOC initiation was the index. We recorded the 23 subsequent platelet counts (Supplemental Figure 1).

Treatment was randomly assigned by a patient’s ITP severity to make RTM strongly, weakly, or not differential by 
treatment. For strongly differential RTM, individuals with more-severe ITP had a 0.8 probability of treatment. This 
probability was 0.2 for patients with less-severe ITP. The same pattern for weakly differential RTM was 0.6 and 0.4. 
Non-differential RTM had 0.5 for both.

We defined 6 core scenarios by strength of differential RTM and degree of separation between platelet distributions 
(Supplemental Figure 2; Supplemental Tables 1 and 2). To explore finite sample properties, we additionally considered 
two sample sizes – 200 and 10,000 – and a null and non-null treatment effect (created by adding 0×109/L or 50×109/L, 
respectively, to all treated, post-index platelet counts). Thus, we examined 24 scenarios and simulated 2000 cohorts for 
each. Justification for each specification is provided in Supplemental Methods 1.

Analysis
We included summary measures of the 8 platelet counts measured prior to cohort entry in the PS analytic model 
(Supplemental Figure 1). We considered four individual measures – 1) mean, 2) SD, 3) difference between the most 
recent prior count and the cohort entry event (“most recent platelet difference”), and 4) difference between the largest 
prior count and the cohort entry event (“largest prior platelet difference”) – and two combinations – (1) The mean and SD 
and (2) All four measures.

Logistic regression was used to estimate PSs for treatment (Supplemental Methods 2). We estimated six models (four 
individual measures and two combinations) with the summary metrics as continuous, linear variables. Further, we 
calculated 1 PS model using the true, underlying ITP severity strata as the explanatory variable: the “gold standard” 
estimator. This assessed the ability of PS-based methods to adjust for bias due to differential RTM when the mechanism 

Figure 1 Schematic depicting the two-stage data generation process for the ith participant of the n total participants. In the first stage, each participant is randomly assigned 
to have more- or less-severe immune thrombocytopenia (ITP) with a probability of 0.5. A normal distribution is assigned to each severity profile a priori for generating 
patient platelet counts. In the second stage, the patient is then assigned to treatment or standard of care using one of three provided probabilities based upon their ITP 
severity strata to make the regression-to-the-mean (RTM) strongly, weakly, or non-differential by treatment.
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making RTM differential was perfectly measured. Finally, these methods were compared to unadjusted analyses (ie, PS 
equals 1 for all individuals) to quantify the change in absolute bias after adjustment.

The causal parameter of interest was the difference in the median follow-up platelet counts between the two treatment 
groups (Supplemental Methods 3). The median platelet count for each group was calculated using the 23 post-index 
platelet counts. We used inverse probability of treatment weighting to adjust for PSs.11–13 We summarized method 
performance across the 2000 simulations by calculating the bias (with 95% confidence intervals), empirical standard 
error, and mean-squared error (Supplemental Methods 4).14

Results
About half of patients were allocated to each ITP severity group. The proportion treated matched the probabilities for 
strongly, weakly, or not differential RTM (Supplemental Table 2). Platelet counts measured prior to cohort entry were, on 
average, higher than those measured after (Supplemental Tables 3–6), reflecting that most platelet counts prior to cohort 
entry were >30×109/L by design. Residual bias was highest when RTM was strongly differential and platelet count 
distributions were disparate by ITP severity (eg, Scenario B2). Similarly, the smallest residual bias occurred when RTM 
was weakly differential and the ITP severity-specific platelet count distributions were similar (eg, Scenario B3). Residual 
bias was not meaningful in scenarios with non-differential RTM.

In all scenarios, PS adjustment led to lower empirical standard errors. Adjusting for “gold standard” PSs eliminated 
residual bias across scenarios. Adjusting for both the mean and standard deviation or simultaneous adjustment for all four 
metrics consistently eliminated the most bias of the summary measures (range: 80–84% decrease in absolute bias, 
compared to unadjusted analyses, across all scenarios with differential RTM in Table 1 [see Supplemental Tables 7–9 for 
others]). Adjusting for each metric individually eliminated the least. Their rank ordering, by residual bias, was consistent 
across all scenarios with differential RTM. From least to most, these were: (1) Mean of the prior counts (range: 77–79% 
decrease in absolute bias across all scenarios with differential RTM in Table 1), (2) Largest prior platelet difference (66– 
77%), (3) SD of the prior counts (45–60%), and (4) Most recent platelet difference (25–33%). These results held 
regardless of true treatment effect.

As an example, we consider Scenario B2 (strongly differential RTM, disparate platelet count distributions) with a null 
treatment effect (Figure 2, see Supplemental Figures 3–7 for other scenarios). In the unadjusted analysis, residual bias 
was −30.83×109/L (95% CI: −34.23, −27.43) platelets. There was substantially less residual bias once we adjusted for 
both the mean and SD or all summary metrics: −5.26×109/L (−5.42, −5.10) and −5.02×109/L (−5.19, −4.85), respectively. 
Finally, adjusting for the “gold standard” PSs resulted in non-significant residual bias: −0.04×109/L (−0.11, 0.03).

Scenarios with 10,000 patients yielded more-similar performance results between the null and non-null effects than 
scenarios with 200 patients, reflecting possible small sample bias in the median platelet count estimator.

Discussion
We simulated a non-interventional comparative effectiveness study of two treatments for ITP. When the selection 
mechanism inducing differential RTM (ie, ITP severity strata) was identified, PS adjustment eliminated residual bias. 
The summary metrics (eg, mean, SD) removed increasingly less residual bias; adjusting for more than one summary 
metric removed the most. These results indicate that PS-based methods are effective at mitigating bias due to differential 
RTM in non-interventional comparative studies.

To our knowledge, this is the first study to explore the use of PSs to address bias due to differential RTM in 
noninterventional studies of drug effectiveness and safety. As discussed, current methods have substantial limitations.2–6 

They necessitate either changing a study’s question, making strong distributional assumptions about outcome values, or 
implementing a different study design. PSs, on the other hand, allow investigators to preserve their original study 
question, complement commonly used approaches (eg, IPTW) for confounding control, and can be applied to multiple 
study designs. Relatedly, future work should consider if these PS models could be extended to include important 
covariates and thus simultaneously control for confounding.

This simulation can inform future implementation of these PS-based methods. Most critically, we demonstrated that 
PS-based methods recover the most bias from differential RTM when the mechanism making RTM differential is 
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Table 1 Simulation Performance Measures for the Difference in Median Platelet Count Over the Two Treatment Groups Across All the Scenarios with n = 200 and a True Null 
Treatment Effect. Measures Were Calculated Over 2000 Simulated Cohorts for Each Scenario

Scenario Adjustment Metric for Underlying Immune 
ITP Severity

Bias (Platelet Count ×109/L) (95% 
Confidence Interval)

Percent Change in 
Absolute Bias (%)

Empirical 
Standard 

Error

Mean 
Square 
Error

B1: Weakly differential RTM, Disparate 
platelet count distributions

(1) No Adjustment −7.67 (−10.76, −4.58) REF 70.52 5028.90
(2) Platelet count mean prior to cohort entry −1.61 (−1.71, −1.51) −79% 2.29 7.85

(3) Platelet count standard deviation prior to 
cohort entry

−3.05 (−3.17, −2.93) −60% 2.75 16.88

(4) Difference between most recent prior platelet 

count and cohort entry event

−5.78 (−5.94, −5.62) −25% 3.66 46.73

(5) Difference between largest prior platelet 

count and cohort entry event

−1.76 (−1.86, −1.66) −77% 2.26 8.19

(6) Platelet count mean and standard deviation 
prior to cohort entry

−1.27 (−1.36, −1.18) −83% 2.16 6.27

(7) All summary measures calculated prior to 

cohort entry

−1.19 (−1.28, −1.10) −84% 2.01 5.47

(8) Gold standard −0.06 (−0.12, 0.00) −99% 1.40 1.97

B2: Strongly differential RTM, Disparate 
platelet count distributions

(1) No Adjustment −30.83 (−34.23, −27.43) REF 77.56 6962.84
(2) Platelet count mean prior to cohort entry −6.48 (−6.66, −6.30) −79% 4.09 58.67

(3) Platelet count standard deviation prior to 
cohort entry

−12.77 (−13.05, −12.49) −59% 6.31 202.79

(4) Difference between most recent prior platelet 

count and cohort entry event

−23.15 (−23.46, −22.84) −25% 7.01 585.19

(5) Difference between largest prior platelet 

count and cohort entry event

−7.01 (−7.21, −6.81) −77% 4.53 69.59

(6) Platelet count mean and standard deviation 
prior to cohort entry

−5.26 (−5.42, −5.10) −83% 3.74 41.59

(7) All summary measures calculated prior to 

cohort entry

−5.02 (−5.19, −4.85) −84% 3.86 40.10

(8) Gold standard −0.04 (−0.11, 0.03) −100% 1.63 2.67

(Continued)
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Table 1 (Continued). 

Scenario Adjustment Metric for Underlying Immune 
ITP Severity

Bias (Platelet Count ×109/L) (95% 
Confidence Interval)

Percent Change in 
Absolute Bias (%)

Empirical 
Standard 

Error

Mean 
Square 
Error

B3: Weakly differential RTM, Similar 
platelet count distributions

(1) No Adjustment −3.54 (−4.76, −2.32) REF 27.89 789.79
(2) Platelet count mean prior to cohort entry −0.80 (−0.84, −0.76) −77% 0.98 1.59

(3) Platelet count standard deviation prior to 

cohort entry

−1.96 (−2.02, −1.90) −45% 1.27 5.44

(4) Difference between most recent prior platelet 

count and cohort entry event

−2.58 (−2.64, −2.52) −27% 1.34 8.45

(5) Difference between largest prior platelet 
count and cohort entry event

−1.15 (−1.20, −1.10) −68% 1.14 2.62

(6) Platelet count mean and standard deviation 

prior to cohort entry

−0.68 (−0.72, −0.64) −81% 1.01 1.48

(7) All summary measures calculated prior to 

cohort entry

−0.68 (−0.72, −0.64) −81% 0.95 1.35

(8) Gold standard 0.02 (−0.01, 0.05) −99% 0.63 0.40

B4: Strongly differential RTM, Similar 

platelet count distributions

(1) No Adjustment −13.05 (−14.36, −11.74) REF 30.00 1069.88
(2) Platelet count mean prior to cohort entry −3.05 (−3.13, −2.97) −77% 1.90 12.91

(3) Platelet count standard deviation prior to 

cohort entry

−6.84 (−6.93, −6.75) −48% 2.15 51.35

(4) Difference between most recent prior platelet 

count and cohort entry event

−8.68 (−8.76, −8.60) −33% 1.87 78.90

(5) Difference between largest prior platelet 
count and cohort entry event

−4.39 (−4.49, −4.29) −66% 2.19 24.06

(6) Platelet count mean and standard deviation 

prior to cohort entry

−2.76 (−2.84, −2.68) −79% 1.83 10.95

(7) All summary measures calculated prior to 

cohort entry

−2.59 (−2.67, −2.51) −80% 1.93 10.42

(8) Gold standard −0.02 (−0.06, 0.02) −100% 0.87 0.76
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B5: Non-differential RTM, Disparate 

platelet count distributions

(1) No Adjustment −1.84 (−4.94, 1.26) REF 70.62 4987.83
(2) Platelet count mean prior to cohort entry 0.03 (−0.06, 0.12) −98% 2.12 4.48

(3) Platelet count standard deviation prior to 

cohort entry

−0.06 (−0.17, 0.05) −97% 2.54 6.47

(4) Difference between most recent prior platelet 

count and cohort entry event

0.01 (−0.13, 0.15) −99% 3.25 10.57

(5) Difference between largest prior platelet 
count and cohort entry event

−0.02 (−0.11, 0.07) −99% 2.09 4.38

(6) Platelet count mean and standard deviation 

prior to cohort entry

0.03 (−0.06, 0.12) −98% 2.06 4.26

(7) All summary measures calculated prior to 

cohort entry

−0.01 (−0.09, 0.07) −99% 1.90 3.59

(8) Gold standard 0.01 (−0.05, 0.07) −99% 1.33 1.78

B6: Non-differential RTM, Similar platelet 

count distributions

(1) No Adjustment 0.42 (−0.80, 1.64) REF 27.80 772.68

(2) Platelet count mean prior to cohort entry 0.01 (−0.03, 0.05) −98% 0.97 0.94
(3) Platelet count standard deviation prior to 

cohort entry

−0.02 (−0.07, 0.03) −95% 1.19 1.43

(4) Difference between most recent prior platelet 
count and cohort entry event

−0.02 (−0.08, 0.04) −95% 1.33 1.78

(5) Difference between largest prior platelet 

count and cohort entry event

0.02 (−0.02, 0.06) −95% 1.02 1.03

(6) Platelet count mean and standard deviation 

prior to cohort entry

0.03 (−0.01, 0.07) −93% 0.95 0.90

(7) All summary measures calculated prior to 
cohort entry

0.00 (−0.04, 0.04) −100% 1.00 1.01

(8) Gold standard 0.00 (−0.04, 0.04) −100% 0.81 0.66

Notes: The strength of differential regression-to-the-mean (RTM) refers to the probabilities used to select a patient’s treatment based upon their predefined immune thrombocytopenia (ITP) severity strata. Strongly differential RTM 
corresponds to 0.8/0.2 treatment selection probabilities, weakly differential RTM to 0.6/0.4, and non-differential to 0.5/0.5. Platelet counts are derived for each patient from normal distributions with a predefined mean (µ) and standard 
deviation (σ). Platelet count distributions that differ disparately are defined by µ=100, σ=50 for the less-severe versus µ=40, σ=15 for the more-severe ITP strata. Platelet count distributions that are relatively similar are defined by µ=55, 
σ=20 for the less-severe versus µ=35, σ=10 for the more-severe ITP strata.
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perfectly measured. This is not surprising; however, the rank ordering of adjustment metrics found in this study are likely 
not universal but instead depend upon the underlying data generating mechanism. Researchers should critically assess 
what metric would be most appropriate in their data. We also found that PS-based adjustment resulted in increased effect 
estimate precision. Indeed, this aligns with prior findings that PS adjustment for predictors of the outcome improves 
precision.15 Finally, we have shown that these proposed methods were less effective in small populations, and, although 
expected, this bias is an issue regardless of whether there is a treatment effect.

Limitations of this study should be noted. Most clearly, our simulated cohort is a simplified version of real-world data. 
For example, ITP severity drove treatment decisions in the simulation, which is unknown in real data, and was 
a dichotomous variable. We chose this because provider treatment decisions are driven by unobservable prognostic 
factors, and we could not reflect the full spectrum of ITP severity. Further, analytic concerns are more complicated 
outside of our simulation.8 For example, every individual in our simulation had the same number of laboratory values 
recorded prior to cohort entry. These simplifications made this simulation tractable for illustration.

Bias due to differential RTM is an important concern in noninterventional studies of treatments on biomarker outcomes 
when inclusion in the study is dependent on subjects having extreme values of those same biomarkers. Failure to account for 
differential RTM will produce biased results, potentially making a more-aggressive therapy appear less effective than it is.2,3 

This could turn patients and stakeholders away from important medical treatments. We have shown that PS adjustment with 
appropriately specified models can be an effective approach to reduce bias due to differential RTM.

Figure 2 Violin plot depicting the adjusted and unadjusted difference in median platelet count between treatment groups for scenario B2, where RTM is strongly differential 
(0.8/0.2 probability of treatment/standard-of-care in the severe ITP group), and the platelet distributions differ disparately by underlying immune thrombocytopenia (ITP) 
severity (ie, µ=100 and σ=50 for less-severe ITP versus µ=40 and σ=15 for more-severe ITP). The true change in median platelet count is null, and the initial sample size is 
n=200. The star indicates the median of the differences between the two treatment groups’ median follow-up platelet counts. 
Abbreviation: SD, Standard Deviation.
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Conclusion
We found the use of PS-based methods to be effective at mitigating bias due to differential RTM in noninterventional studies. 
This approach fits easily within standard comparative drug effectiveness and safety studies and should be integrated into future 
research. PS-based methods work best when investigators can adequately capture the mechanism causing RTM to be 
differential by treatment.

Abbreviation
ITP, immune thrombocytopenia; L, liter; RTM, regression-to-the-mean; SD, standard deviation; SOC, standard of care.
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