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Abstract: Vitamin D deficiency/insufficiency is a public health issue around the world. According to epidemiological studies, low 
vitamin D levels have been associated with an increased risk of some neurodevelopmental disorders, including autism spectrum 
disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). Animal models reveal that vitamin D has a variety of impacts on 
the synapses and circuits in the brain. A lack of vitamin D affects the expression of synaptic proteins, as well as the synthesis and 
metabolism of various neurotransmitters. Depending on where vitamin D receptors (VDRs) are expressed, vitamin D may also regulate 
certain neuronal circuits through the endocannabinoid signaling, mTOR pathway and oxytocin signaling. While inconsistently, some 
data suggest that vitamin D supplementation may be able to reduce the core symptoms of ASD and ADHD. This review emphasizes 
vitamin D’s role in the synaptic and circuit mechanisms of neurodevelopmental disorders including ASD and ADHD. Future 
application of vitamin D in these disorders will depend on both basic research and clinical studies, in order to make the transition 
from the bench to the bedside. 
Keywords: vitamin D, neurodevelopmental disorders, autism spectrum disorder, ASD, attention-deficit hyperactivity disorder, 
ADHD, synapses, circuits

Introduction
One of the liposoluble vitamins, vitamin D, exists in two distinct forms: vitamin D2 and vitamin D3. While vitamin D2 is 
obtained from diet, vitamin D3 is primarily produced from 7-dehydrocholesterol (7-DHC) in the skin by ultraviolet B (UVB) 
radiation.1 Vitamin D2 or vitamin D3 is first hydroxylated to 25-hydroxyvitamin D2 [25(OH)D2] or 25-hydroxyvitamin D3 

[25(OH)D3] by sterol 27-hydroxylase (CYP27A1) in the liver. 25-hydroxyvitamin D, or 25(OH)D, is the collective name for 
the hydroxylated vitamin D. It is converted to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in the kidney by the second 
hydroxylation of 1, α-hydroxylase (CYP27B1).2,3 By binding to vitamin D receptors (VDRs), 1,25(OH)2D3 maintains the 
calcium and phosphorus homeostasis, as well as controls the bone metabolism, which has been discussed in great detail 
elsewhere.3–6 1,25(OH)2D3 is metabolized by 24-hydroxylase (CYP24A1) into 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] 
in the kidney, where it is excreted from the body.3 Figure 1 summarizes the metabolic process and roles of vitamin D in 
maintaining the balance of calcium and phosphorus. Remarkably, recent studies have demonstrated that 1,25(OH)2D3 can 
influence a wide range of biological functions, including cell proliferation and differentiation, immune responses, and brain 
development.7,8 As a result, 1,25(OH)2D3 has been proposed as a neurosteroid hormone.9–12 In addition, epidemiological data 
and animal experiments have revealed a link between the lack of vitamin D and the occurrence of certain neurodevelopmental 
disorders.6,13 However, little is known about the molecular mechanisms that underlie vitamin D’s influence on these diseases. 
The purpose of this review is to provide a comprehensive overview about the synaptic and circuit functions of vitamin D in the 
neurodevelopmental disorders like autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD).

Neuropsychiatric Disease and Treatment 2023:19 1515–1530                                            1515
© 2023 Ye et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Neuropsychiatric Disease and Treatment                                              Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 8 February 2023
Accepted: 7 June 2023
Published: 3 July 2023

N
eu

ro
ps

yc
hi

at
ric

 D
is

ea
se

 a
nd

 T
re

at
m

en
t d

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://orcid.org/0000-0001-9703-1265
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


The Effects of Vitamin D on Synaptic Functions
The presence of vitamin D and its nuclear receptors (VDRs), as well as its metabolism enzymes (CYP27A1, CYP27B1 and 
CYP24A1) in the brain has been systematically reviewed elsewhere.14–16 All of the VDRs, CYP27B1 and CYP24A1 have 
been identified in neurons and glia cells throughout life, raising the notion that vitamin D might be involved in the fundamental 
functions of mammalian brains.15,17 These functions, such as learning, memory, cognition, and behavioral processes, all rely 
on the connection of neurons.18 The information transferred in the neural network is largely performed through synaptic 
transmission, which includes both electrical and chemical synapses.19 According to the literature, vitamin D participates in 
multiple processes that regulate synaptic transmission, particularly the chemical synapses.6,13,20 First, the absence of 
vitamin D increased cholesterol levels in the presynaptic membrane and vesicles, which altered the synaptic membrane’s 
fusion properties and, as a result, the efficiency of transmitter release.21 On the other hand, vitamin D supplementation could 
partially restore the capability of vesicle fusion.22 In addition, microarray sequencing revealed that vitamin D affected the 
transcription of proteins involved in the neurotransmitter release, including proteins in synaptic vesicles such as solute carrier 
family 17 member 6 (SLC17A6),23,24 proteins involved in exocytosis such as synaptojanin1 (synj1), complexin2, synapto-
tagmin1 (syt1), synaptotagmin2 (syt2), synaptotagmin10 (syt10), and synaptic vesicle glycoprotein 2c (SV2C),23,24 as well as 
proteins in the active zones such as double C2 gamma (DOC2G), synapsin2, and synapsin3.23–25 While the majority of the 
mRNA alterations in synaptic proteins revealed by sequencing were not validated, increased expression of syt2, synj1, and 
complexin2 were verified by polymerase chain reaction (PCR) or immunohistochemical (IHC) assays.23,26 Additionally, 
vitamin D could modulate synchronized transmitter release by either directly increasing the activity of L-type voltage- 
dependent calcium channels (LVDCCs)27 or by promoting the expression of calcium sensors such as syt1and syt2 in the 
brain.28 Therefore, vitamin D could potentially exert both immediate and long-term effects on synapses.

Figure 1 The pathways for the synthesis of vitamin D and its classical functions. VitD2 is obtained from diet, and VitD3 is primarily produced from 7-DHC in the skin by UVB 
radiation. VitD2 and VitD3 are hydroxylated to 25(OH)D by CYP27A1 in the liver. 25(OH)D is converted to 1,25(OH)2D3, an active form, by CYP27B1 in the kidney. 
1,25(OH)2D3 modulates the absorption of calcium and phosphorus, and alters bone formation and resorption by binding to VDRs. 1,25(OH)2D3 promotes the absorption of 
calcium and phosphorus in the intestine, and the reabsorption of calcium in the renal tubules. It can also directly regulate bone metabolism. Through these effects on target 
organs, vitamin D helps to maintain the homeostasis of calcium and phosphorus in the blood circulation. 
Abbreviations: 7-DHC, 7-dehydrocholesterol; UVB, ultraviolet B; VitD2, vitamin D2; VitD3, vitamin D3; 25(OH)D, 25-hydroxyvitamin D; 1,25(OH)2D3, 1,25-dihydroxyvitaminD3; 
CYP27A1, sterol 27-hydroxylase; CYP27B1, 1, α-hydroxylase.
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In addition to the expression of presynaptic release machinery, vitamin D could modulate the expression of 
transporters, receptors, as well as enzymes for the synthesis and metabolism of neurotransmitters like glutamate,22,29,30 

GABA,29,31–33 glycine,32 dopamine,33–37 serotonin,33,37,38 and catecholamines.39

(I) Transporters: Vitamin D deficiency reduced the expression of excitatory amino acid transporters (EAATs) and 
GABA transporters 3 (GAT3), which in turn caused the dysfunction of glutamate and GABA reuptake systems.29 

In addition, supplementing with vitamin D led to an increased expression of dopamine transporter gene-solute 
carrier family 6 member 3 (SLC6A3).36

(II) Receptors: Vitamin D deficiency reduced the mRNA expression of GABA receptors.31 On the other hand, 
vitamin D supplementation increased the expression of dopamine receptor D2 (DRD2).33,35,36

(III) The synthesis and metabolism enzymes of neurotransmitters: Vitamin D deficiency decreased the expression of 
glutamate synthetase 1 and GABA transmitter synthetase, which consisted of glutamate decarboxylase 65 and 67 
(GAD65 and GAD67).30,32,33 Furthermore, vitamin D deficiency reduced the expression of catechol- 
O-methyltransferase (COMT), leading to decreased dopamine metabolism.34 Vitamin D supplementation upre-
gulated the expression of dopamine transmitter synthase-tyrosine hydroxylase (TH).33,36 In addition, the first and 
rate-limiting enzyme in the biosynthesis of serotonin, tryptophan hydroxylase 2 (TPH2), could also be enhanced 
by vitamin D.33,37

Taken together, these findings suggested that vitamin D affected the process of synaptic transmission in various ways, 
likely by combining genomic and nongenomic mechanisms. Notably, vitamin D responsive elements (VDREs) could be 
identified in the promoter regions of certain genes, including syt1, syt2 and TPH2.23,37,40,41 Many vitamin D responsive 
genes, however, lack the VDRE sequence.40,41 Therefore, more VDRE sequences not now documented may exist, or some 
sequences may not directly respond to the VDR signaling.42 In addition, vitamin D could induce growth factors like nerve 
growth factor (NGF), glial cell derived neurotrophic factor (GDNF) and growth associated protein 43 (GAP43), which 
could enhance the growth and development of synapses and neurons.25,31,43 The effects of vitamin D on synaptic functions 
are summarized in Table 1. These findings suggested potential mechanisms by which inadequate vitamin D negatively 
impacted brain functions.

The Effects of Vitamin D on the Cognitive Function and Behaviors
There is growing evidence that vitamin D influences on cognition and behaviors in a variety of manners.4,44,45 The cortex and 
hippocampus, two crucially important brain areas for cognition, learning and memory, both have VDRs.16,19 According to 
epidemiological studies, low vitamin D levels have been linked to cognitive impairment.20,46–49 For instance, inadequate 
vitamin D levels (25(OH)D<30ng/mL) were associated with poorer cognitive performance in individuals older than 60.46–48 

Furthermore, daily 800IU vitamin D oral administration for a period of 12 months could improve the cognitive function and 
reduce amyloid beta (Aβ)-related biomarkers in patients with Alzheimer’s disease.49 Nevertheless, some randomized clinical 
trials (RCTs) found no correlation between vitamin D supplementation and cognitive improvement.50–52 The inconsistent 
results might be due to diverse research designs, varied intervention doses and different analysis of confounding factors. Large 
multicenter RCTs will be necessary in the future to provide more reliable clinical evidence.

Studies using animal models may also provide crucial biological explanations for how vitamin D influences cognition 
and behaviors. Unfortunately, systemic ablation of VDR or CYP27B1 caused severe rickets and osteomalacia in mice.53–55 

Therefore, the mice’s motor dysfunction made it impossible to draw proper conclusions from standard cognitive and social 
behavioral assessments. Thus, studies using developmental vitamin D (DVD) deficient animal models, adult vitamin D 
(AVD) deficient animal models and vitamin D supplementation animal models will be used in the following part to discuss 
how vitamin D affects cognition and behaviors.

In the DVD deficient model, female rodents (rats or mice) were fed a vitamin D deficient diet for 3–4 weeks before and 
during mating, as well as throughout pregnancy.56–58 At the same time, they were kept without UV light to prevent 
vitamin D synthesis from the skin.59–61 Therefore, the offsprings were deficient in vitamin D since the fertilized egg-stage 
until birth, and in some cases, until the time of weaning.59–61 In AVD deficient animal models, rodents around 4 months old 
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were fed with a vitamin D-deficient diet for 10 weeks.32,62 At the same time, these mice were housed in an environment 
without UV light.32,62 In this way, the animals were deficient in vitamin D due to restricted dietary intake and limited 
vitamin D3 production from the skin. In vitamin D supplementation animal models, mice were fed with the vitamin D3- 
enriched diet for several months, and the calcium and phosphorus levels in sera were carefully monitored to be stable.23,63,64 

Excellent reviews have elaborated these vitamin D-related animal models.6,20,65 Hereby, we focused on the effects of vitamin 
D on cognition and behaviors from studies using these animal models and summarized the key points in Table 2.

The Potential Effects of Vitamin D in the Etiology Behind ASD and ADHD
The optimal range of serum 25(OH)D concentrations is between 30 and 90ng/mL. Vitamin D deficiency is defined as a serum 
25(OH)D level below 10ng/mL, and vitamin D insufficiency as a level between 10 and 30ng/mL.76 Currently, vitamin D 

Table 1 The Effects of Vitamin D on Synaptic Functions

Synaptic 
Functions

Effects on Synaptic 
Components

Experimental Models Experimental Findings References

Synaptic 

transmission

Presynaptic 

release 

machinery

Membrane 

lipids

Animals with vitamin D 

deficiency

Vitamin D deficiency increased cholesterol levels, 

which affected the fusion properties of the lipid 

bilayers and resulted in reduced vesicle release.

[21,22]

Synaptic 

proteins

Animals with vitamin D 

deficiency or 
supplementation

Vitamin D deficiency decreased the expression of 

synaptic proteins such as syt1. Vitamin D 
supplementation promoted the expression of 

synaptic proteins such as synj1, syt1 and SLC17A6, 

and enhanced synaptic plasticity.

[23–25]

Transmitters Glutamate Animals with vitamin D 

deficiency

Vitamin D deficiency reduced the expression of 

glutamate transporters and glutamate synthetase.

[22,29,30]

GABA Animals with vitamin D 

deficiency or 
supplementation

Vitamin D deficiency reduced the expression of 

transporters (GAT3) and enzymes for GABA 
(GAD65, GAD67). Vitamin D supplementation 

promoted the expression of GAD67.

[29,31–33]

Glycine Animals with vitamin D 
deficiency

Glycine level was significantly higher in vitamin D 
deficient animals.

[32]

Dopamine Animals with vitamin D 

deficiency or 
supplementation.

Vitamin D deficiency reduced the expression of 

COMT and Vitamin D supplementation 
upregulated the expression of TH, both of that 

were the key enzymes in dopamine synthesis 

pathway. 
Vitamin D supplementation increased the 

expression of dopamine transporters (SLC6A3) 

and dopamine receptors (DRD2).

[33–37]

Serotonin Supplementation of 

vitamin D to animals and 

cultured serotonergic 
neurons

Vitamin D increased the expression of TPH2, a key 

enzyme in serotonin synthesis, and reduced the 

expression of MAO-A, an enzyme for serotonin 
degradation.

[33,37,38]

Catecholamine Animals with vitamin D 

deficiency

Vitamin D deficiency increased the NE 

concentration in cortex.

[39]

Synapse 

development

Neurotrophic 

factors

NGF, GDNF, 

GAP43

Primary cultured 

hippocampal or cortical 
neurons

Vitamin D treatment increased the expression of 

neurotrophic factors

[25,31,43]

Abbreviations: syt1, synaptotagmin1; synj1, synaptojanin1; SLC17A6, solute carrier family 17 member 6; GABA, gamma-aminobutyric acid; GAT3, GABA transporters 3; 
GAD65, glutamate decarboxylase 65; GAD67, glutamate decarboxylase 67; COMT, catechol-O-methyltransferase; TH, tyrosine hydroxylase; SLC6A3, solute carrier family 6 
member 3; DRD2, dopamine receptor D2; TPH2, tryptophan hydroxylase 2; MAO-A, monoamine oxidase A; NE, norepinephrine; NGF, nerve growth factor; GDNF, glial 
cell derived neurotrophic factor; GAP43, growth associated protein 43.
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deficiency or insufficiency is a major global health issue.77–88 Obese people, people of color, and those individuals who live in 
high altitudes are more likely to have vitamin D insufficiency or deficiency.78–80,84,89 Additionally, children and pregnant 
women are particularly vulnerable to have vitamin D deficiency or insufficiency.77,90 A multi-center cross-sectional study 
conducted in England indicated that up to 14% children under the age of seven were vitamin D deficient.91 Notably, a number 
of studies have suggested a strong correlation between low vitamin D levels during pregnancy and a higher likelihood of being 
diagnosed with neurodevelopmental disorders.85–87 Here, we will provide an overview of recent findings on the functions of 
vitamin D in the physiological mechanisms in neurodevelopmental disorders, taking ASD and ADHD as two examples.

The Role of Vitamin D in ASD
ASD is a neurodevelopmental disorder characterized by social impairment, restricted interests and repetitive behaviors.92 ASD 
affects about 1% of people worldwide.93,94 According to a recent meta-analysis, children and adolescents with ASD had 
considerably lower vitamin D concentrations than the controls.95 Additionally, children with insufficient vitamin D levels 
(<30ng/mL) displayed more severe core symptoms.96,97 Besides, some studies suggested that vitamin D supplementation could 
alleviate the core symptoms of ASD.96,98 In a clinical trial conducted in 2016, vitamin D supplementation, a dosage of 150000IU/ 
per month i.d. plus a dosage of 400IU/per day orally, was given to ASD children (mean age of 5.1 years old) for three months, and 
their symptoms were significantly alleviated.98 However, Kerley et al reported that ASD children (N = 40, mean age of 7.1 years 
old) treated with 2000 IU of vitamin D per day for 20 weeks did not show any significant improvement when compared to the 
placebo group in a double-blind RCT.99 The discrepancy of the therapeutic effects reported by these studies might be due to 
difference not only in sample sizes but also the ages of treatment, since the therapeutic effect of vitamin D could be related to the 
plasticity of the nervous system.95,100 Therefore, vitamin D might be more effective for younger patients. Another reason for the 

Table 2 The Effects of Vitamin D on Cognition and Behaviors

DVD Deficient Animal Models AVD Deficient Animal Models Animals Supplemented with Vitamin D

Behaviors Behaviors Behaviors

● Reduced grooming of pups.58 ● Increased sensitivity to environ-

mental changes and excessive 
activity.31

● Improved cognitive functions and learning ability in aging 

rats.23,24,63,66

● Altered frequency of ultrasonic 

vocalization.57,58

● Cognitive impairment and spatial 

learning deficit.62,67

● Increased sociability in NS-PTEN knockout mice.68

● Excessive activity.69–71

● Increased frequency of self- 
grooming.72

● Increased impulsive behaviors.73,74

● Reduced social behaviors.58

Molecular mechanisms Neuronal mechanisms Neuronal mechanisms

● Decreased NGF and GDNF.55 ● Decreased glutamate and 
glutamine.31

● Increased late hippocampal neurogenesis.63,66

● Increased GABA and glycine.31 ● Decreased levels of pS6 and pAKT (downstream targets of 

mTOR), which led to the reduction of abnormal dendritic spines 
in NS-PTEN knockout mice.68

Morphology

● Thinner cortical layers and larger 

lateral ventricles.55,58

● Reduced size of hippocampi and 

smaller lateral ventricles.75

Abbreviations: DVD, developmental vitamin D deficient animal models; AVD, adult vitamin D deficient animal models; NGF, nerve growth factor; GDNF, glial cell derived 
neurotrophic factor; pAKT, phospho-AKT; Ps6, phospho-S6; mTOR, mammalian target of rapamycin; NS-PTEN knockout mice, neural subset-specific phosphatase and 
tensin homolog knockout mice.
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diversity of outcomes could be that ASD is a heterogeneous population, and vitamin D might only have an impact on one fraction 
of the patients. The precise ASD subgroup sensitive to vitamin D remains to be identified. The majority of clinical studies in the 
literature are based on observations and are unable to address the causality link between the lack of vitamin D and ASD. The 
exact role that vitamin D plays in the pathogenesis of ASD is still unclear.101 Here, we summarized the potential synaptic and 
circuit mechanisms through which inadequate vitamin D contributed to the etiology of ASD.

Vitamin D Regulates the Synaptic Functions
One hypothesis about ASD pathophysiology is the disruption of synaptic functions.102,103 According to autopsy findings, ASD 
patients’ brains had an abnormally high density of dendritic spines and irregularly shaped spines.104–106 Mutations in ASD- 
risk genes like shank3, neuroligin3, neurexin1 and sapap3 have been associated with aberrant dendritic spine formation in 
animal models.107,108 As was previously mentioned in this review, vitamin D modulated a variety of synaptic proteins, such as 
SLC17A6, synj1 and syt1.23–25,30 Among them, SLC17A6 is a ASD-risk gene.109 Studies showed that vitamin D regulated the 
expression of growth factors NGF and GDNF in vitro, which were essential for the formation and development of 
synapses.8,9,43,110 In addition, high vitamin D dosages could promote the expression of synaptic proteins such as synj1 and 
syt1.23 Remarkably, vitamin D was shown to rescue the ASD-like behaviors in animal models.111,112 For example, mice that 
had phosphatase and tensin homolog (PTEN) selectively deleted from the granule cells of hippocampus displayed an 
osteoporosis phenotype as well as impairments similar to autism.113,114 These mice became more sociable after receiving 
a vitamin D-enriched treatment (vitamin D3 20000IU/kg per day, orally) for 5 weeks.68 Moreover, vitamin D administration 
was found to decrease the levels of phospho-AKT (pAKT) and phospho-S6 (pS6), both of which were the downstream 
molecules of mammalian target of rapamycin (mTOR).68 The mTOR signaling is an important pathway for synaptic growth 
and pruning.106,115,116 These results raise the question of whether vitamin D deficiency-related synaptic dysfunctions can 
contribute to the development of ASD. More studies are required to answer this question in the future.

Vitamin D Could Modulate the Excitation and Inhibition Balance
Another theory for the etiology of ASD from a neuroscience perspective is an excitation to inhibition (E/I) imbalance.117 

ASD animal models demonstrated abnormalities in glutamatergic and GABAergic activities, which lead to an E/I 
imbalance in the brain.111,118–120 Recent work illustrated how vitamin D could potentially modulate the ratio of excitation 
to inhibition by regulating the synthesis of neurotransmitters.22,29,45 Vitamin D-deficient animals had lower levels of 
dopamine and glutamate, while having higher amounts of glycine and GABA.29,32,34 Mechanistically, a lack of 
vitamin D prevented glutamate and GABA transporters from being expressed, which would have led to a possible E/I 
imbalance in the brain.29 Further experimental research is necessary to determine whether inadequate vitamin D directly 
contributes to the pathogenesis of ASD through affecting the E/I balance.

The Roles of Vitamin D in the Neural Circuits Involved in the Core Symptoms of ASD
Diagnosing mental disorders such as ASD is mainly based on symptoms.92 However, these classifications, which are based on 
clinical manifestations, may not fully capture the fundamental mechanisms underlying mental diseases. Thus, the “Research 
Domain Criteria (RDoC)” was introduced as a new classification system for the research on mental disorders.121 The RDoC 
conceptualized mental illness as brain disorders that could be addressed by altered function of neural circuits.121,122 The focus 
of this concept was on researching the functional abnormalities of the brain circuits underlying the symptoms rather than the 
disease itself.121,122 The main characteristics of ASD are social deficit, restricted interests and repetitive behaviors.92 In the 
past decade, the research on the relevant neural circuits has made significant progress.123 In the section below, we will discuss 
the potential roles of vitamin D in ASD, focusing on the underlying neural circuits.

(I) Recent studies have suggested that abnormalities in the social-reward circuitry may contribute to the social deficit in 
ASD patients.124,125 And this system is mostly involved in basolateral amygdala (BLA), nucleus accumbens (NAC), 
dorsal anterior cingulate cortex (ACC), hypothalamus and midbrain.126–129 VDRs were found in the aforementioned 
brain regions.16,130,131 According to neuroimaging studies, ASD patients exhibited a feature of reduced activity in the 
BLA-NAC reward circuit.132 Interestingly, it was found that increasing 2-arachidonoylglycerol (2-AG), an 

https://doi.org/10.2147/NDT.S407731                                                                                                                                                                                                                                  

DovePress                                                                                                                                    

Neuropsychiatric Disease and Treatment 2023:19 1520

Ye et al                                                                                                                                                                Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


endocannabinoid signal, might reduce presynaptic glutamate release in the BLA-NAC pathway, thereby alleviating 
the social avoidance in Shank3−/− model mice.133 Vitamin D deprivation lowered cannabinoid receptor expression in 
the spinal cord as well as 2-AG in the intestines of mice.134 These findings raise the possibility that vitamin 
D deficiency may modulate the level of 2-AG in the BLA-NAC circuitry, contributing to the onset of ASD. 
However, more experiments are needed for the direct evidence supporting this hypothesis.

(II) In addition, an important feature of ASD is the impairment in social functioning, particularly a lack of 
empathy.135 The ACC-BLA circuit is one of the brain networks implicated in emotional empathy.136,137 In 
contrast to healthy controls, children with ASD showed decreased connectivity between the amygdala and 
ACC, according to the functional magnetic resonance imaging (fMRI).138 This reduced connectivity was 
correlated with the degree of social deficits.139 The BLA and ACC brain regions were found to express 
VDRs, suggesting a biological basis of vitamin D to act in ACC-BLA circuit.16,131 Additionally, vitamin 
D deficiency was linked to a thinner cingulate cortex.140,141 These indirect evidences imply that vitamin 
D deficiency may impair the morphology of the cingulate gyrus, which in turn may affect the function of this 
brain region.

(III) The instability of the cortico-striatal circuit has been proposed as the primary cause of repetitive behaviors 
manifested by ASD patients.142–144 Children with idiopathic ASD showed cortico-striatal hyperconnectivity in 
fMRI, and this functional connectivity feature was related to the overactivation of mTOR signaling pathway.145 

Vitamin D supplementation could reduce pAKT and pS6 levels in the mTOR signaling in mice.68 These results 
indicate that vitamin D may alter the clinical manifestations of ASD by modulating relevant neural circuits. 
However, there are still a lot of unanswered questions regarding how inadequate vitamin D contributes to the 
onset and development of ASD. For example, there is still a lack of experimental evidence to support vitamin D’ 
direct action on the ACC-BLA circuit. Application of latest technique progress in neuroscience, such as the use 
of optogenetics and pharmacogenetics might help in exploring these questions.138

Vitamin D and Oxytocin/Vasopressin Signaling
The paraventricular (PVN) and supraventricular nuclei of the hypothalamus produce the hormones oxytocin and vasopressin, 
which have been linked to social behaviors.146,147 According to a 12-week RCT, oxytocin treatment improved the social 
performance in patients with ASD (mean age 10.3 years, n = 35).148 Another study reported that children with ASD (aged 
9.6–12.9 years, n = 30) who received a 4-week intranasal vasopressin treatment showed a decrease in anxiety symptoms and 
repetitive behaviors.149 But according to a different placebo-controlled clinical trial, ASD children (aged 3–17 years, 
n = 277) who received intranasal oxytocin once a day for 24 weeks did not show any significant improvement in social or 
cognitive assessments when compared to the control group.150 The discrepancy in the therapeutic effects reported by these 
studies might be due to variations in medication delivery methods, treatment ages, and training program compliance.

Despite the fact that the clinical outcomes were controversial, oxytocin has been demonstrated to reduce the abnormal 
social behaviors in the animal models of ASD.151–153 In Shank3−/− model mice, oxytocin supplementation could activate 
endogenous oxytocin neurons in PVN, and thus alleviate their social deficit.151 It is interesting to note that in the 
hypothalamus, VDRs partially co-localize with vasopressin and oxytocin receptors.16 In addition, the presence of VDREs 
in the genes encoding oxytocin precursor proteins, oxytocin receptors and vasopressin receptors suggests that vitamin 
D can regulate their transcripts.154 Furthermore, VDRs are expressed in pro-opiomelanocortin (POMC) neurons in the 
arcuate nucleus (ARC) of the hypothalamus, and POMC could be directly stimulated by vitamin D.155 Interestingly, 
POMC neurons project to the oxytocin-secreting PVN neurons.156 These results imply that vitamin D may play a role in 
the social process by stimulating POMC neurons, which in turn activates oxytocin secretion.

All of the aforementioned evidence together provided the experimental foundation for hypothetic link between 
vitamin D deficiency/insufficiency and ASD susceptibility. It has been proposed that vitamin D exerted multi- 
dimensional effects on the synapses and circuits. However, the exact synaptic and circuit mechanisms through which 
vitamin D contributes to the development of ASD remain to be further investigated. In addition, whether vitamin D can 
be administered as a supplement to treat ASD needs to be determined.
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The Role of Vitamin D in ADHD
ADHD is a neurodevelopmental disorder characterized by hyperactivity, inattention and impulsivity 
performance.92,157,158 It affects 8~12% of children worldwide.159 Although ADHD is highly inheritable, many biological 
and environmental factors, such as food additives, lead pollution, prenatal and postnatal toxicant exposures, and low birth 
weight, have been identified as risk factors.160–162

In recent years, numerous clinical studies suggest that vitamin D may be an environmental risk factor for ADHD.163–166 

According to a meta-analysis, children with ADHD had serum 25(OH)D concentrations lower than healthy controls.166 

When compared to children with sufficient vitamin D, children with vitamin D insufficiency had a 2.57-fold higher risk of 
developing ADHD than children.166 Prospective studies have revealed a negative correlation between the severity of 
ADHD symptoms and maternal 25(OH)D levels.164 The incidence of ADHD-like symptoms in children decreased by 11% 
for every 10ng/mL increase in maternal 25(OH)D levels.163 Interestingly, there is growing evidence suggesting that 
vitamin D supplementation could help reduce the symptoms of ADHD.167 In addition, treating ADHD patients with 
a methylphenidate and vitamin D combination was more effective than using methylphenidate alone.168–170 Another study, 
however, reported ADHD children (aged 5–12 years, n = 54) who received 1440 IU of vitamin D daily for eight weeks did 
not show any improvement from baseline.171 This outcome diversity between these studies might be due to different sample 
sizes and large individual variations. Therefore, current evidence is not sufficient to conclude that vitamin D supplementa-
tion could reduce ADHD-related aberrant behaviors. Understanding the neuronal mechanisms will help address the 
question, and the following mechanisms have been proposed according to the literature:

Alterations of Dopaminergic and Serotoninergic Pathways in Vitamin D Deficient or 
Supplemented Animals
ADHD susceptibility may be increased by altered gene expression in dopaminergic pathways, including those encoding the 
dopamine transporter (SLC6A3), DRD2, dopamine D4 receptor (DRD4), dopamine D5 receptor (DRD5) and COMT.35,172 

Genes related to dopamine metabolic pathways, such as DRD2, COMT, TH, and SLC6A3, significantly decreased in vitamin 
D-deficient mice.34,36,154 In addition, ADHD has also been linked to the dysregulation of serotoninergic system, including the 
serotonin transporter (SERT), 5-hydroxytryptamine (5-HT), and monoamine oxidase A (MAO-A).173,174 Interestingly, 
vitamin D was shown to regulate the genes involved in the serotoninergic pathways, including 5-HT, SERT and MAO-A.38,175

Table 3 The Effects of Vitamin D in ASD and ADHD

Diseases ASD ADHD

Clinical evidence 1. Vitamin D deficiency or insufficiency was prevalent among 

children with ASD.95–97

1. Vitamin D deficiency or insufficiency was 

prevalent among children with ADHD.166–169

2. Maternal or neonatal vitamin D deficiency or insufficiency had 

been associated to an increased incidence of ASD.86,87

2. Vitamin D insufficiency during pregnancy was 

associated with a higher risk of childhood ADHD.166

3. Vitamin D supplementation reduced the hyperactivity and 

irritability in children with ASD.96,98 See also.99

3. Vitamin D supplementation could alleviate 

inattentive behaviors in children with ADHD.171–173 

See also.174

Potential mechanisms 

(From animal 
experiments)

1. Vitamin D regulated the expression of ASD-risk gene 

SLC17A6.23,109 

2. Vitamin D deficiency might cause an E/I imbalance in the 

brain.29,32,34 

3. Vitamin D deficiency might modulate neural circuits related to 
the core symptoms of ASD, such as BLA-NAC, ACC-BLA, and 

cortico-striatal circuits.134,136,137 

4. The promoter of oxytocin receptor and vasopressin receptors 
have VDRE.157

1. Vitamin D deficiency caused the anomalous 

expression of neurotransmitters in dopaminergic 
pathways.34,36,157 

2. Vitamin D deficiency increased impulsive 

behaviors, likely due to the dysfunction of response 
inhibition.181,182

Abbreviations: ASD, autism spectrum disorder; ADHD, attention-deficit hyperactivity disorder; E/I, excitation and inhibition; BLC-NAC circuits, the basolateral amygdala 
to the nucleus accumbens circuits; ACC-BLA circuitry, the adjacent dorsal anterior cingulate cortex to the basolateral amygdala; VDRE, vitamin D responsive elements.
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The Link Between Inadequate Vitamin D and the Dysfunctions in ADHD-Related 
Neural Circuits

(I) Impairment in cognition: Response inhibition, which relies on circuits from frontal cortex to striatum and from 
frontal cortex to subthalamic circuits, was significantly impaired in ADHD to various degrees.176–178 Animals 

Figure 2 The functions of vitamin D in the nervous system and its contribution to the development of ASD and ADHD. Vitamin D participates in a variety of brain functions, 
including synaptic functions, cognition and behaviors. Vitamin D deficiency affected the synthesis and metabolism of many neurotransmitters, including glutamate, GABA, and 
dopamine. On the other hand, vitamin D supplementation could promote synaptic growth by increasing neurotrophic factors such as NGF, GDNF and GAP43. Additionally, vitamin 
D increased the expression of synaptic proteins such as synj1, syt2, SLC17A6 and complexin2. Vitamin D supplementation reduced the growth of abnormal dendritic spines through 
decreasing the levels of pS6 and pAKT, which were mTOR’s downstream targets of. Animals with vitamin D deficiency displayed altered brain morphology, decreased social 
interactions, and impaired learning abilities. In addition, taking vitamin D supplements not only improved social learning ability but also increased sociability. In clinical studies, 
inadequate vitamin D had been associated to an increased risk of neurodevelopmental disorders like ASD and ADHD. Vitamin D might play a role in the development of ASD 
through regulating neural circuits (BLA-NAC; ACC-BLA; cortico-striatal), E/I balance, and the oxytocin pathway. In ADHD, vitamin D might have an impact on the response 
inhibition and executive functions, probably through regulating dopaminergic pathway, serotoninergic pathway, and the circuit from frontal cortex to striatum. 
Abbreviations: NGF, nerve growth factor; GDNF, glial cell derived neurotrophic factor; GAP43, growth associated protein 43; synj1, synaptojanin1; syt2, synaptotagmin2; 
SLC17A6, solute carrier family17 member6; pS6, phospho-S6; pAKT, phospho-AKT; ASD, autism spectrum disorder; ADHD, attention-deficit hyperactivity disorder; E/I, 
excitation and inhibition; BLA-NAC, the projections from basolateral amygdala to nucleus accumbens; ACC-BLA, the projections from anterior cingulate cortex to 
basolateral amygdala; 2-AG, 2-arachidonoylglycerol; VDR, vitamin D receptor; VDRE, vitamin D responsive element; OXTR, oxytocin receptor; DRD2, dopamine D2 
receptor; COMT, catechol-O-methyltransferase; TH, tyrosine hydroxylase; SLC6A3, solute carrier family 6 member 3; 5-HT, 5-hydroxytryptamine; SERT, serotonin 
transporter; MAO-A, monoamine oxidase A.
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without enough vitamin D exhibited a phenotype of increased impulsive behavior as a result of impaired response 
inhibition.73,179 These indirect evidences suggested that the lack of vitamin D might have an impact on the 
cortical-striatal and cortical-subthalamic circuits, leading to impulsive behaviors. This hypothesis needs to be 
verified through a maneuver on the specific circuit.

(II) Impairment in executive function: Many studies suggested that the primary cause of executive dysfunction in 
ADHD is the impairment in frontal cortex.180–182 Furthermore, the frontal cortices of ADHD patients showed 
volume reduction as well as disruption in the networks.183,184 The DVD model rodents, on the other hand, had 
cortex that was thinner,56 implying a possible link between vitamin D deficiency/insufficiency and the executive 
dysfunction of ADHD. Experiments using techniques that can trace the brain circuitry underpinning executive 
function will be valuable to fully address the mechanisms.

Table 3 provides an overview of vitamin D’s effects on the ASD and ADHD. These findings offered potential 
rationales for how vitamin D affects the neurodevelopmental disorders. However, it is still unclear whether vitamin D 
deficiency/insufficiency directly contributes to the etiology of ADHD. Future studies will be required to further clarify 
the causal linkages, including animal experiments, prospective cohort studies and intervention trials.

Conclusions and Future Directions
As a neurosteroid hormone, vitamin D exerts multi-dimensional influence on the nervous system. It regulates synaptic 
transmission and synapse growth, as well as influences cognition and behaviors (Figure 2). Numerous epidemiological, 
molecular, and animal studies have revealed a link between vitamin D deficiency/insufficiency and an increased risk of 
ASD and ADHD. On the other hand, some studies demonstrated that vitamin D supplementation could reduce the 
symptoms in children with ASD and ADHD. Animal studies indicated that vitamin D might influence social process- 
related neural circuits like BLA-NAC and ACC-BLA pathways. Moreover, vitamin D might reduce the repetitive and 
aberrant social behaviors in ASD via regulating the mTOR pathway and oxytocin pathway. In addition, the prefrontal 
cortex circuits, as well as the dopaminergic and serotonergic pathways, which are frequently linked to the etiology of 
ADHD, may be impacted by inadequate vitamin D. More direct evidence on how vitamin D might affect the onset and 
progress of these disorders mechanistically is still missing. Nevertheless, vitamin D has the potential to be a treatment for 
neurodevelopmental disorders such as ASD and ADHD. It has the benefits including high safety, little side effects, and 
low cost. However, the precise therapeutic dose and effects, treatment duration and age of intervention for vitamin 
D remain to be determined. More clinical evidence is required before vitamin D can be extensively applied as a treatment 
strategy for ASD and ADHD. Most importantly, understanding how vitamin D contributes to the neurodevelopmental 
disorders will provide a solid foundation for the transition from the bench to the bedside.
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