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Purpose: Protein kinase B (PKB/AKT) has shown a high profile in the research of metabolic diseases. This research sought to 
determine whether the AKT1 gene’s single nucleotide polymorphisms (SNPs) and the risk of developing non-alcoholic fatty liver 
disease (NAFLD) were related.
Patients and Methods: Recruited in this case–control study were 2693 subjects, including 815 with NAFLD and 1878 without 
NAFLD. Three SNPs of AKT1 (rs2494732, rs2494752 and rs1130233) were genotyped. To examine the correlation between SNPs and 
NAFLD susceptibility, logistic regression was performed.
Results: After adjusting for sex, age, triglyceride and glucose, AKT1 rs2494732-C (all P < 0.05 in co-dominant model, dominant 
model and additive model) and rs2494752-G (P < 0.05 in co-dominant model) were linked to a lower risk of NAFLD. The combined 
effect of both SNPs on NAFLD risk was statistically significant, showing a dose dependence (Ptrend = 0.010). Sex, body mass index, 
hypertension, hyperglycemia, hypertriglyceridemia, high-density lipoprotein-cholesterol, alanine aminotransferase, and beneficial 
alleles were all significant predictors of NAFLD risk (all P < 0.05). The prediction model achieved good discrimination, with an 
area under the receiver operating characteristic curve of 0.779. The Hosmer–Lemeshow test suggested an inadequate calibration of the 
model (χ2 = 21.073, P = 0.007).
Conclusion: AKT1 rs2494732 and rs2494752 may be related to Chinese NAFLD susceptibility. The prediction model combining both 
SNPs with clinical factors displays a strong ability to discriminate NAFLD patients. Both SNPs may be exploited to design new 
models for early screening of NAFLD high-risk population.
Keywords: NAFLD, susceptibility, AKT1 gene, polymorphism, risk screening

Introduction
The prevalence of nonalcoholic fatty liver disease (NAFLD) keeps rising globally, especially in adolescents and young 
adults.1,2 Characterized by intemperate amassing of triglycerides and cholesterol in hepatocytes, NAFLD is regarded as 
a hepatic sign of metabolic disorder.3 It causes nonalcoholic steatohepatitis, liver fibrosis, cirrhosis, and liver cancer,4 and 
also involves an increased risk of extrahepatic diseases, such as type 2 diabetes mellitus (T2DM),5 cardiovascular 
disease,6 and chronic kidney disease,7 impairing the health-related quality of life of patients.8 Therefore, early screening 
and prevention should be enhanced through tools designed with factors associated with its susceptibility.

The pathogenesis of NAFLD remains unsolved but may involve multiple factors, including insulin resistance, adipose 
tissue dysfunction, mitochondrial dysfunction, endoplasmic reticulum stress, inflammatory activation, intestinal microbiota, 
as well as genetic and epigenetics.9,10 Metabolic associated fatty liver disease (MAFLD), a more appropriate term, has been 
proposed to redefine NAFLD in an international consensus, emphasizing the association with metabolic comorbidities.11
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During the progression of NAFLD, protein kinase B (PKB, also known as AKT) is overactivated to promote the 
maturation of proteins associated with lipid accumulation (a type of metabolic disorder).12 AKT, as a serine and threonine 
kinase, is activated by phosphoinositide 3-kinase (PI3K) through phosphorylation, thereby regulating a range of cellular 
processes, such as metabolism, cell survival, motility, lipid synthesis, protein synthesis and degradation.13 Implications of 
AKT in tumors, diabetes, obesity, neurological disorders, inflammation, and other diseases have been reported.14–16 AKT 
contains three isoforms (AKT1, AKT2, and AKT3), each with distinctive but overlapping functions.17 AKT1 is mainly 
involved in growth control, AKT2 in metabolic regulation, and AKT3 in brain development.18 In recent years, the role of 
AKT1 in metabolism has attracted mounting attention. AKT1 deletion protects mice from insulin resistance and obesity 
induced by diet, indicating a role of AKT1 in energy metabolism.17 In addition, studies have identified associations between 
AKT1 variants and metabolic-related diseases, such as T2DM,19 obesity,20 and metabolic syndrome.21 Considering that 
NAFLD is a metabolic stress-related disease, we speculate that AKT1 may regulate the susceptibility to NAFLD.

As a genetic marker, single nucleotide polymorphisms (SNPs) have shown their value in etiological studies, due to 
their high stability across phenotypes of diseases.16 Therefore, this present work attempted to investigate the associations 
between functional SNPs of AKT1 gene and NAFLD susceptibility, and evaluate the ability of AKT1 polymorphisms 
combined with clinical variables in predicting NAFLD risk.

Materials and Methods
Study Participants and Conception
This case–control study involved 2693 individuals, including 815 in the NAFLD case group and 1878 in the control 
group, all recruited between April and October 2020 from a community in Nanjing, Jiangsu, China. Ethical approval was 
obtained from the Institutional Ethics Review Committee of Nanjing Medical University, with a project approval number 
of (2019) 740. Prior to the trial, written informed permission was obtained from each participant.

Included were individuals with Han nationality, ages over 18 years, post-fasting blood samples, sufficient compre-
hending and communicating skills to complete the questionnaire. Excluded were those with infection, autoimmune 
diseases, malignant tumors, other liver diseases (such as viral hepatitis, alcoholic liver disease, and drug-induced fatty 
hepatitis), excessive alcohol consumption (≥20 g/day in females and ≥30 g/day in males), willingness to undergo liver 
transplantation within one year, or advanced liver diseases with complications such as variceal bleeding or ascites.
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The cases diagnosed with NAFLD were classified into the case group in accordance with the 2018 modification of the 
Chinese NAFLD guideline,22 while the subjects in the same community without NAFLD were assigned to the control 
group. Detailed diagnostic criteria for NAFLD include (1) no history of abusing alcohol excessively (<20 g/day in 
females and <30 g/day in males); (2) exclusion of conditions such drug-related liver disease, viral hepatitis, complete 
parenteral feeding, hepatomegaly, and autoimmune liver disease (all of which are causes of fatty liver); and (3) 
histological changes on liver biopsy. Given the difficulty in obtaining a histologic diagnosis of the liver, the working 
definition of NAFLD, provided that (1) and (2) were met, was (i) liver imaging findings that meet the diagnostic criteria 
for diffuse fatty liver with no other explanation; and/or (ii) metabolic syndrome-related components presenting with 
unexplained persistent elevations of serum alanine aminotransferase (ALT) and/or aspartate aminotransferase (AST) and 
γ-glutamyl transpeptidase (γ-GT) for more than 6 months.

Age (±3 years) was frequency-matched between the two groups. Sample size was estimated based on preliminary 
study and PASS 11.0 software, with two-sided α = 0.05, power = 80, odds ratio (OR) = 1.5, frequency of gene variation 
in the general population = 20%. The sample sizes in two groups met the requirements (at least 534 in each group).

Data and Specimen Collection
Demographic data were gathered from self-administered questionnaire surveys. Clinical data about medical history, 
anthropometric, biochemical and imaging information were obtained from electronic medical records.

Participants who were fasting had their venous blood drawn (at least 5 mL) and kept in tubes containing ethylene 
diamine tetraacetic acid (EDTA), an anticoagulant. Plasma and blood cells were separated from each blood sample within 
2 hours and frozen at −80°C before genotyping assays.

SNP Selection Criteria
The following methods were used to select SNPs: (1) The genotype information of AKT1 (upstream and downstream 
extended by 2000bp each) in Han Chinese in Beijing (CHB) was downloaded from the 1000 Genomes Project database 
(http://www.1000genomes.org/) and imported into Haploview 4.2 software (Broad Institute, Cambridge, MA, USA). (2) 
Tagging SNPs (tagSNPs) of AKT1 gene were selected according to the correlation coefficient r2 ≥ 0.8, the minor allele 
frequency (MAF) > 0.05 and Hardy–Weinberg P-value cutoff = 0.05 in the software. At this point, 62 tagSNPs were 
generated. (3) The MAFs of tagSNPs in the Chinese population were available from NCBI dbSNP (http://www.ncbi.nlm. 
nih.gov/); the SNPs with MAF ≤ 0.05 were excluded, leaving 18 tagSNPs with high frequency. (4) Finally, the SNPs 
associated with other diseases (especially metabolic syndrome, type 2 diabetes, hypertension, hyperlipidemia, etc.) were 
selected through literature review. Based on the above four processes, three polymorphisms (rs2494732, rs2494752, and 
rs1130233) in the AKT1 gene were selected for further genotyping.

DNA Extraction and Genotyping
By using a magnetic bead technique based on blood genomic extraction kit (Pangu Genome Nanotechnology Co., Ltd.; 
Nanjing, China), genomic DNA was isolated from blood samples, and its concentration was set to 50 ng/mL.

Genotyping was performed in a 384-well plate on a Light Cycler 480 II Real-Time PCR System (Roche, Switzerland) 
using the TaqMan allelic discrimination method. Primer and probe information are detailed in Supplementary Table S1. 
A random selection of 10% of the samples was used in subsequent tests to confirm the quality control of the experimental 
data, and the concordance was 100%. The entire genotyping was performed in a blinded manner (all technicians were 
unaware of the participants’ information) and followed the manufacturer’s instructions. The success rate of genotyping 
was more than 96% for all SNPs.

In silico Analysis
Potential biological function of AKT1 gene polymorphisms in NAFLD susceptibility was explored using several online 
bioinformatic databases. (1) Genetic variation sites on chromosomes were determined through NCBI dbSNP (https://www. 
ncbi.nlm.nih.gov/snp). (2) The RegulomeDB scores of SNPs were obtained using the RegulomeDB database (http://www. 
regulomedb.org/), with a lower score implying a higher profile in transcriptional regulation. (3) The functions of SNPs were 
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predicted in the SNP Function Prediction database (https://snpinfo.niehs.nih.gov/). (4) Whether genetic variation sites were 
associated with histone modifications was checked using the UCSC Genome Browser database (http://genome.ucsc.edu/). 
(5) The RNAfold WebServer (http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi) projected the influence of 
genetic variation of positive SNPs on AKT1 mRNA secondary structure.

Statistical Analysis
Statistical analyses were conducted using SPSS 23.0, R software v3.4.3, and MedCalc 19.1. The Kolmogorov–Smirnov test 
and histogram were used to evaluate data normality. Descriptive analysis was conducted according to data type, including 
constituent ratios, mean ± standard deviation, and median (interquartile range). Baseline information for both groups was 
compared using Chi-square (χ2) test (for categorical variables), Student’s t-test (for normal continuous variables), and 
Mann–Whitney U-test (for non-normal continuous variables). A goodness-of-fit χ2-test was used to determine Hardy– 
Weinberg equilibrium. Logistic regression analysis based on four genetic models (co-dominant model, dominant model, 
recessive model and additive model) was performed to construct odds ratio (OR) and 95% confidence interval (CI) to 
investigate the correlations of SNPs with susceptibility to NAFLD, with age, sex, triglyceride, and glucose adjusted for 
potential confounding effects. The rules for implementing the four genetic models are detailed in Table 1. To account for the 
impact of multiple comparisons, the false discovery rate (FDR) is adjusted. Cochran–Armitage trend was tested to analyze 
the combined effects of statistically significant SNPs. We further performed subgroup analysis to explore the influence of 
confounding factors, and heterogeneity between subgroups was assessed by Q test. To identify NAFLD predictors and 
proceed to construct a predictive model, multivariate stepwise logistic regression and receiver-operating characteristic curve 
(ROC) were used. The discrimination and calibration of the prediction model were assessed by the area under the receiver 
operating characteristic curve (AUROC) and the Hosmer–Lemeshow test, respectively. In all analyses, a P-value < 0.05 in 
the two-tailed test was considered statistically significant.

Results
Basic Characteristics of Study Subjects
Table 2 summarizes the demographic and clinical features of the NAFLD cases and the controls. Between the two 
groups, there was no discernible age difference (P > 0.05). Sex, body mass index (BMI), systolic blood pressure (SBP), 
diastolic blood pressure (DBP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl trans-
peptidase (γ-GT), total cholesterol (TC), triglyceride (TG), high-density lipoprotein-cholesterol (HDL-C), low-density 
lipoprotein-cholesterol (LDL-C), and glucose (GLU) were the variables where there were significant differences (all P < 
0.05). Besides, all SNPs in the control group’s genotype frequencies were in Hardy–Weinberg equilibrium (all P > 0.05) 
(Supplementary Table S1), indicating that the selected samples were representative of the population.

Associations Between AKT1 SNPs and NAFLD Susceptibility
The genotype information for the three SNPs in both groups is displayed in Table 1. After adjusting for sex, age, TG, and 
GLU, logistic regression analyses revealed that AKT1 variants rs2494732-C (TC genotype vs TT genotype: adjusted OR 
= 0.784, 95% CI = 0.648–0.947, P = 0.012; dominant model: adjusted OR = 0.775, 95% CI = 0.647–0.928, P = 0.006; 
additive model: adjusted OR = 0.823, 95% CI = 0.714–0.949, P = 0.007) and rs2494752-G (AG genotype vs AA 
genotype: adjusted OR = 0.826, 95% CI = 0.684–0.999, P = 0.048) were significantly correlated with low NAFLD risk in 
different models. After false discovery rate correction for multiple comparisons (Supplementary Table S2), their 
associations were still significant with all PFDR≤0.25.23 AKT1 1130233 and NAFLD susceptibility did not, however, 
appear to be significantly correlated with any of the models (all P > 0.05).

As shown in Table 3, beneficial alleles (rs2494732-C and rs2494752-G) were counted to evaluate the combined effects 
of both SNPs on NAFLD susceptibility. A lower incidence of NAFLD was observed in the subjects with more beneficial 
alleles. Those with beneficial alleles (“1–2” or “3–4”) showed a significantly lower risk of NAFLD, compared to those 
carrying none of these beneficial alleles (adjusted OR = 0.820, 95% CI = 0.677–0.993, P = 0.042; adjusted OR = 0.683, 
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95% CI = 0.488–0.957, P = 0.027, respectively). It appears that the combination allele affects NAFLD susceptibility in 
a dose-dependent way (Ptrend = 0.010) as more beneficial alleles were linked to a reduced incidence of NAFLD.

The combined effect of rs2494732-C and rs2494752-G was further evaluated in subgroups stratified according to sex, 
age, BMI, BP, GLU, TG, HDL-C, ALT, AST, and γ-GT using additive models (Supplementary Table S3). The stratification 
was based on the health industry standard of the People’s Republic of China (WS/T 404.1–2012), clinical guidelines and the 
population characteristics in this study.22,24–26 We found that the combined protective effect of two SNPs was more 
pronounced in the subgroups of males, age <40 years, BMI <24 kg/m2, SBP <140 and DBP <90 mmHg, GLU ≥5.6 mmol/ 
L, TG <1.7 mmol/L, HDL-C >1.04 mmol/L, ALT ≥40 U/L, AST <40 U/L, and γ-GT <50 U/L (all adjusted P < 0.05). 
Except for age (P = 0.022), the effects in the remaining subgroups showed no significant heterogeneity (all P > 0.05).

Table 1 Genotype Distributions of Three AKT1 SNPs and Their Associations with NAFLD Risk

SNP Controls n (%) NAFLD Cases n (%) OR (95% CI)a Pa

rs2494732

TT 892 (49.5) 436 (56.0) 1.00 (ref)

TC 754 (41.9) 283 (36.4) 0.784 (0.648–0.947) 0.012

CC 155 (8.6) 59 (7.6) 0.734 (0.520–1.037) 0.080

Dominant model 0.775 (0.647–0.928) 0.006

Recessive model 0.815 (0.582–1.140) 0.232

Additive model 0.823 (0.714–0.949) 0.007

rs2494752

AA 884 (48.9) 407 (51.8) 1.00 (ref)

AG 766 (42.4) 305 (38.9) 0.826 (0.684–0.999) 0.048

GG 158 (8.7) 73 (9.3) 1.030 (0.750–1.416) 0.855

Dominant model 0.861 (0.720–1.029) 0.100

Recessive model 1.122 (0.826–1.525) 0.462

Additive model 0.936 (0.815–1.074) 0.347

rs1130233

CC 478 (26.6) 221 (28.3) 1.00 (ref)

CT 888 (49.5) 378 (48.5) 0.916 (0.740–1.133) 0.417

TT 429 (23.9) 181 (23.2) 0.933 (0.725–1.200) 0.589

Dominant model 0.921 (0.754–1.125) 0.421

Recessive model 0.987 (0.798–1.220) 0.904

Additive model 0.964 (0.849–1.093) 0.565

Notes: aLogistic regression model, adjusted for sex, age, triglycerides and glucose. Bold type indicates statistically significant 
results. Four genetic models: co-dominant model (heterozygote vs wild homozygote, mutant homozygote vs wild homozygote), 
dominant model (heterozygote + mutant homozygote vs wild homozygote), recessive model (mutant homozygote vs wild 
homozygote + heterozygote), and additive model (mutant homozygote vs heterozygote vs wild homozygote). Take rs2494732 
as an example: codominant model (TC vs TT; CC vs TT), dominant model (TC + CC vs TT), recessive model (CC vs TC + TT), 
and additive model (CC vs TC vs TT). 
Abbreviations: SNPs, single nucleotide polymorphisms; NAFLD, nonalcoholic fatty liver disease; OR, odds ratio; 95% CI, 95% 
confidence interval.
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Functional Prediction of Positive SNPs
The Regulome DB score for both AKT1-rs2494732 and rs2494752 was 4. The SNP function prediction database 
predicted rs2494752 as a transcription factor binding site. UCSC database predictions showed that both rs2494732 
and rs2494752 were enriched close to the H3K4Me1 marker (Figure 1). The impact of rs2494732-C and rs2494752-G on 
AKT1 mRNA secondary structure was predicted by RNAfold WebServer (Figure 2). The arrows indicated the position of 
the variation. The T and C alleles of rs2494732 were calculated to have minimum free energy (MFE) values of −38.6 and 
−39.1 kcal/mol, respectively. The MFE value for rs2494752 was calculated to be −24.1 kcal/mol for both the A and 
G alleles. The results of the linkage disequilibrium (LD) test with Haploview software showed no strong LD among the 
three candidate SNPs (Supplementary Figure S1), implying that the haplotype analysis was not necessary.

Table 2 Distributions of Demographic and Clinical Characteristics in NAFLD Case and 
Control Groups

Variables Controls (N=1878) NAFLD Cases (N=815) χ2/t/Z P

Sex, n (%) 175.956 <0.001a

Male 1217 (64.8) 731 (89.7)

Female 661 (35.2) 84 (10.3)

Age, year 42.74±8.06 43.40±9.19 −1.772 0.077b

BMI, kg/m2 22.92±2.77 25.47±2.44 −23.432 <0.001b

SBP, mmHg 124.37±15.52 130.32±14.33 −9.458 <0.001b

DBP, mmHg 77.93±10.71 83.10±10.06 −11.757 <0.001b

ALT, U/L 18.00 (13.00, 26.00) 28.50 (20.00, 40.00) −17.771 <0.001c

AST, U/L 20.00 (17.00, 24.00) 22.00 (19.00, 27.38) −10.243 <0.001c

γ-GT, U/L 22.00 (16.00, 32.00) 32.00 (24.00, 48.75) −16.954 <0.001c

TC, mmol/L 4.67 (4.19, 5.27) 4.91 (4.37, 5.44) −5.834 <0.001c

TG, mmol/L 1.10 (0.78, 1.56) 1.63 (1.24, 2.36) −18.142 <0.001c

HDL-C, mmol/L 1.39 (1.19, 1.65) 1.17 (1.02, 1.33) −18.395 <0.001c

LDL-C, mmol/L 2.70 (2.28, 3.18) 3.04 (2.61, 3.49) −11.510 <0.001c

GLU, mmol/L 5.44±0.84 5.71±0.99 −6.652 <0.001b

Notes: aχ2 test; bStudent’s t-test; cMann–Whitney U-test. Bold type indicates statistically significant results. 
Abbreviations: NAFLD, nonalcoholic fatty liver disease; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; ALT, alanine aminotransferase; AST, aspartate aminotransferase; γ-GT, γ-glutamyl transpeptidase; TC, total cholesterol; 
TG, triglycerides; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; GLU, glucose.

Table 3 Combined Effect of AKT1 rs2494732-C and rs2494752-G on NAFLD Risk

Variables Controls n (%) NAFLD Cases n (%) NAFLD Prevalence (%) OR (95% CI) P

0 569 (30.3) 280 (34.4) 33.0 1.00 (Ref)

1–2 1122 (59.7) 471 (57.8) 29.6 0.820 (0.677–0.993) 0.042a

3–4 187 (10.0) 64 (7.9) 25.5 0.683 (0.488–0.957) 0.027a

Trend 0.824 (0.711–0.955) 0.010b

Notes: aP-value of the logistic regression model, adjusted for sex, age, triglycerides and glucose. bP-value of the Cochran–Armitage trend test. Bold 
type indicates statistically significant results. 
Abbreviations: NAFLD, nonalcoholic fatty liver disease; OR, odds ratio; 95% CI, 95% confidence interval.
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Independent Predictors of NAFLD
A stepwise regression model was conducted incorporating sex, age, BMI, hypertension, hyperglycemia, hypertriglyceridemia, 
HDL-C, ALT, AST, γ-GT, and combined beneficial alleles (rs2494732-C and rs2494752-G). These variables showed no evident 
multi-collinearity (Supplementary Table S4). As outlined in Table 4, sex (OR = 0.413, 95% CI = 0.314–0.542, P < 0.001), BMI 

Figure 1 Functional prediction of positive single nucleotide polymorphisms in AKT1. The red dotted line indicates the position of AKT1 rs2494732 and rs2494752 (available 
at http://genome.ucsc.edu/).

Figure 2 Effects of rs2494732 and rs2494752 variants on AKT1 mRNA secondary structure. The red arrows represent the position of the variation (50 bases upstream and 
50 bases downstream from the variation). (A) The minimum free energy (MFE) value for the rs2494732-T was −38.6 kcal/mol. (B) The MFE value for rs2494732-C was −39.1 
kcal/mol. (C) The MFE value for rs2494752-A was −24.1 kcal/mol. (D) The MFE value for rs2494752-G was −24.1 kcal/mol.
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(OR = 3.207, 95% CI = 2.630–3.911, P < 0.001), hypertension (OR = 1.477, 95% CI = 1.198–1.821, P < 0.001), hyperglycemia 
(OR = 1.242, 95% CI = 1.021–1.510, P=0.030), hypertriglyceridemia (OR = 1.932, 95% CI = 1.567–2.383, P < 0.001), low HDL- 
C (OR = 1.428, 95% CI = 1.119–1.822, P = 0.004), ALT (OR = 1.762, 95% CI = 1.374–2.260, P < 0.001), and beneficial alleles 
(OR = 0.846, 95% CI = 0.723–0.991, P = 0.038) were independent predictors of NAFLD.

By combining these 8 variables, a NAFLD risk prediction model was constructed. As shown in Figure 3, the AUROC 
of the prediction model was 0.779 (95% CI = 0.763–0.795). At a cutoff value of −1.098, the sensitivity and specificity of 
this model were 79.7% (76.7–82.5%) and 63.7% (61.4–65.9%), respectively. The calculated positive and negative 
predictive values were 48.8% and 87.9%, respectively. The NAFLD risks estimated by the model and those observed 
in the real setting differed statistically significantly, according to the Hosmer–Lemeshow test (χ2 = 21.073, P = 0.007).

Table 4 Multivariate Stepwise Logistic Regression Analysis for Independent Factors Influencing NAFLD Risk

Variables b SE Wald χ2 OR (95% CI) P

Sex (malea vs female) −0.885 0.140 40.243 0.413 (0.314–0.542) <0.001

BMI (<24a vs ≥24 kg/m2) 1.165 0.101 132.490 3.207 (2.630–3.911) <0.001

Hypertension (noa vs yes) 0.390 0.107 13.337 1.477 (1.198–1.821) <0.001

Hyperglycemia (noa vs yes) 0.216 0.100 4.709 1.242 (1.021–1.510) 0.030

Hypertriglyceridemia (noa vs yes) 0.659 0.107 37.913 1.932 (1.567–2.383) <0.001

Low HDL-C (noa vs yes) 0.356 0.124 8.221 1.428 (1.119–1.822) 0.004

ALT (<40a vs ≥40 U/L) 0.567 0.127 19.943 1.762 (1.374–2.260) <0.001

Beneficial alleles (0 vs 1–2 vs 3–4) −0.167 0.081 4.308 0.846 (0.723–0.991) 0.038

Constant −1.714 0.116 216.626

Notes: Hypertension:26 systolic blood pressure ≥140 mmHg or/and diastolic blood pressure ≥90 mmHg; Hyperglycemia:22 glucose ≥5.6 mmol/ 
L; Hypertriglyceridemia:25 triglycerides ≥1.7 mmol/L; Low HDL-C:25 HDL-C ≤1.04 mmol/L. aReference in analyses of categorical variables. 
Abbreviations: NAFLD, nonalcoholic fatty liver disease; OR, odds ratio; 95% CI, 95% confidence interval; BMI, body mass index; HDL-C, 
high-density lipoprotein-cholesterol; ALT, alanine aminotransferase.

Figure 3 The receiver-operating characteristic curve for the risk prediction model of nonalcoholic fatty liver disease. 
Abbreviations: AUC, area under the curve; 95% CI, 95% confidence interval.
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Discussion
This research investigated the links between AKT1 SNPs and the risk of NAFLD in a Chinese Han cohort. Our findings 
demonstrated that AKT1 rs2494732-C and rs2494752-G were beneficial alleles related to low NAFLD risk, but no 
association of rs1130233 with NAFLD risk was found. Furthermore, the combination of beneficial alleles and clinical 
factors showed an ideal predictive ability for the risk of NAFLD.

The AKT gene is located in the chromosome 14q32.33 region. As a downstream effector of the PI3K pathway, it can 
be activated to regulate the function of multiple substrates in various physiological processes, such as metabolism, cell 
survival, motility, transcription and cell cycle.27 Genetic variants of AKT are associated with the development of cancer, 
neurological disorders, obesity, diabetes and other metabolic diseases.15 Among the three isoforms of AKT, AKT1 is the 
most widely expressed and associated with growth and adipogenesis.28,29 McKenzie et al20 found that AKT1 variants 
might influence obesity-associated metabolic phenotypes in elderly Caucasians. The results of genotyping experiments 
by Eshaghi et al21 also suggested an association between AKT1 polymorphisms and the components of metabolic 
syndrome. All these findings verify the implication of AKT1 gene in metabolism disorders.

NAFLD is a metabolic condition that is intimately linked to metabolic syndrome,11 T2DM,5 and obesity,30 and its 
association with AKT1 variants has not been explored. This study is the first to show a connection between AKT1 
polymorphisms and the likelihood of developing NAFLD. Additionally, we discovered that people with both rs2494732- 
C and rs2494752-G had a dose-dependently decreased risk of developing NAFLD. These findings offer fresh arguments 
for decriminalizing NAFLD.

rs2494732 belongs to an intron polymorphic locus of AKT1 gene, and studies have focused on its association with 
schizophrenia,31 psychosis in cannabis users,32 and cancers, such as head and neck squamous cell carcinoma33 and non- 
small cell lung cancer.34 For the first time, we discovered in the current investigation, those who carried the rs2494732-C 
allele had a decreased chance of developing NAFLD. Liemburg et al explored the association of AKT1 with BMI in 
cannabis users, finding that the rs2494732 polymorphism was associated with BMI, glycosylated hemoglobin (HBA1c) 
level and total metabolic risk.35 BMI, a known risk predictor for NAFLD, has been incorporated into several NAFLD 
risk assessment models, such as the ZJU index,36 fatty liver index (FLI),37 and hepatic steatosis index (HIS).38 In 
addition, HBA1c, an index of insulin resistance and type 2 diabetes, is usually increased during the development of 
NAFLD.39 More importantly, we noticed that the rs2494732-C variant might affect the expression level of AKT1 by 
changing its RNA secondary structure (Figure 2). All these evidences provide clues to explain an association between 
rs2494732 and NAFLD was found in this study.

Similarly, we also identified rs2494752-G of AKT1 as a protective genotype against NAFLD. In the previous studies, 
rs2494752 was found to be involved in various cancers, including liver cancer,40 esophageal squamous cell carcinoma,41 

gastric cancer,42 breast cancer,43 and non-small cell lung cancer.44 No studies have been conducted to analyze the role of 
rs2494752 polymorphism in NAFLD, but our data from the UCSC database indicated that the locus was located in the 
promoter region of AKT1 gene and close to the peak of H3k4me1 level. It also served as a transcription factor binding 
site, as shown by the database predicting SNP functions. These findings imply that rs2494752 variant may influence cis- 
regulatory modules in transcription and translation to regulate the protein level and biological effects of AKT, thus 
reducing the risk of NAFLD. Further genetic and epigenetic studies are needed to determine the role of this polymorph-
ism in metabolism. No association of rs1130233 polymorphism with NAFLD susceptibility was found in this study, 
although Eshaghi et al21 revealed that rs1130233 was connected to key metabolic syndrome markers as hs-CRP and BMI. 
Genotyping of Iranians showed that AKT1 rs1130233 was not linked to an increased risk of cardiovascular disease or the 
metabolic syndrome,45 which is similar to our findings. Therefore, whether rs1130233 is associated with susceptibility to 
NAFLD remains to be explored.

Stratified analysis revealed that in the majority of subgroups, the combined effects of rs2494732 and rs2494752 were 
statistically significant, meanwhile exhibiting no heterogeneity between subgroups (except for that in the age subgroup), 
suggesting that these variables did not alter this effect. Although age may confound the results, we have adjusted it as 
a covariate in our analysis. Further multivariate stepwise logistic regression results showed that female and beneficial 
alleles were independent protective factors for NAFLD. A meta-analysis of the burden of NAFLD in China from 2008 to 
2018 suggested that the prevalence of NAFLD was higher in males.46 This may be related to the greater levels of serum 
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TG, glucose, and body fat, as well as higher prevalence of hypertension and liver enzyme abnormalities in males.47 Our 
results also showed that BMI, hypertension, hyperglycemia, hypertriglyceridemia, low HDL-C, and high ALT were 
independent risk factors for NAFLD. Variables other than ALT are risk factors proposed by the diagnostic criteria for 
metabolic syndrome.48 ALT elevates mildly in NAFLD, making it an indicator of the biochemistry in the liver.49 What’s 
more, the importance of these variables in screening NAFLD has also been written into the NAFLD guideline.22 The 
AUROC of the prediction model implied a good discriminative power. Disappointingly, the results of Hosmer– 
Lemeshow test showed poor calibration of the predictive model. More studies are needed to establish NAFLD- 
predicting models with strong abilities of discrimination and calibration. Our predictive models combining genetic and 
clinical factors may be used in early screening for high-risk NAFLD populations. However, their costs and benefits 
should be analyzed in future studies.

Some limitations deserve our attention. First, this study was a single-center study and the sample size might not be 
large enough. We performed frequency matching based on age. Considering the sample size, we did not match sex in two 
groups. Consequently, we adjusted for sex as a covariate, and performed multivariate and stratified analyses to control the 
effect of confounding factors. Second, only three SNPs of AKT1 were selected. There is a need to investigate the 
combined effect of multiple genes on NAFLD susceptibility. In addition, bioinformatic analysis has limitations in 
predicting the biological functions of SNPs. Further functional studies are needed. Finally, we did not include behavioral 
factors (such as diet and exercise) in our predictive models. In future, the combined effects of multiple genetic and 
behavioral factors on NAFLD susceptibility need to be explored in a prospective context and in large multicenter samples 
of different ethnicities.

Conclusion
In conclusion, this study revealed for the first time that AKT1 (rs2494732 and rs2494752) variants are associated with 
NAFLD susceptibility in the Chinese Han population. These beneficial SNPs and clinical variables work well together to 
predict NAFLD susceptibility. Our findings offer hints for further functional research as well as markers for screening 
high-risk NAFLD populations.
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