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Purpose: Herein, an emerging drug delivery system was constructed based on zeolite imidazole backbone (ZIF-8) to improve
antibacterial defects of nanosilver (AgNPs), such as easily precipitated and highly cytotoxic.

Methods: The homogeneous dispersion of AgNPs on ZIF-8 was confirmed by UV-Vis spectroscopy, FTIR spectroscopy, particle size
analysis, zeta potential analysis, and SEM. The appropriate AgNPs loading ratio on ZIF-8 was screened through the cell and
antibacterial experiments based on biosafety and antibacterial performance. The optimal environment for AgNPs@ZIF-8 to exert
antibacterial performance was probed in the context of bacterial communities under different acid-base conditions. The potential
mechanism of AgNPs@ZIF-8 to inhibit the common clinical strains was investigated by observing the biofilm metabolic activity and
the level of reactive oxygen species (ROS) in bacteria.

Results: The successful piggybacking of AgNPs by ZIF-8 was confirmed using UV-Vis spectroscopy, FTIR spectroscopy, particle size
analysis, zeta potential analysis, and SEM characterization methods. Based on the bacterial growth curve (0-24 hours), the
antibacterial ability of AgNPs@ZIF-8 was found to be superior to AgNPs. When the mass ratio of ZIF-8 and AgNPs was 1:0.25,
the selection of AgNPs@ZIF-8 was based on its superior antimicrobial efficacy and enhanced biocompatibility. Notably, under weakly
acidic bacterial microenvironments (pH=6.4), AgNPs@ZIF-8 demonstrated a more satisfactory antibacterial effect. In addition,
experiments on biofilms showed that concentrations of AgNPs@ZIF-8 exceeding 1xMIC resulted in more than 50% biofilm removal.
The nanomedicine was found to increase ROS levels upon detecting the ROS concentration in bacteria.

Conclusion: Novel nanocomposites consisting of low cytotoxicity drug carrier ZIF-8 loaded with AgNPs exhibited enhanced
antimicrobial effects compared to AgNPs alone. The pH-responsive nano drug delivery system, AgNPs@ZIF-8, exhibited superior
antimicrobial activity in a mildly acidic environment. Moreover, AgNPs@ZIF-8 effectively eradicated pathogenic bacterial biofilms
and elevated the intracellular level of ROS.
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Introduction

The discovery and use of antibiotics have made a transformative contribution to human health, enabling the effective
suppression of pathogenic bacteria.! However, the abuse of antibiotics has led to increased resistance to pathogenic
microorganisms, especially broad-spectrum antibiotics.” Many studies have shown that bacterial resistance leads to
hundreds of thousands of deaths each year, so there is an urgent need to find new drugs to replace antibiotics.®> > In recent

decades, along with the advancement of nanotechnology, monometallic materials have been widely utilized for their
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excellent antimicrobial efficacy and environmental friendliness, which can play a part in reducing the use of antibiotics,
especially broad-spectrum antibiotics.®’ Therefore, developing a new efficient and broad-spectrum inorganic antimicro-
bial agent is an urgent task.

AgNPs are outstanding in medical devices and wastewater treatment because of their broad-spectrum antibacterial
effect, high stability, and vigorous surface activity.* ' Our previous studies have confirmed that the green synthesized
AgNPs have excellent antibacterial properties.'' Meanwhile, AgNPs can enter bacteria and release Ag” in the presence of
protons (H") or be oxidized to AgO in the presence of O,, which can easily bind to negatively charged molecules in
bacteria interfere with the normal physiological processes of microorganisms.'*'® Furthermore, AgNPs possess the
ability to engage with the cellular membrane of bacteria, thereby generating superoxide radicals and other reactive
oxygen radicals. These radicals have the potential to impair the integrity of bacterial membranes, resulting in leakage of
bacterial contents, modification of membrane potential and permeability, and disruption of bacterial ion transport
systems. Ultimately, these detrimental effects culminate in the demise of bacteria.'*'> However, excessive release of
metal ions from AgNPs into bacteria and normal tissues may cause respiratory and mild liver damage when deposited in
the respiratory and digestive systems.'®'® Hence, it is essential to investigate how to utilize nanomaterials efficiently.

Presently, Metal Organic Framework(MOF) materials represent a category of crystalline porous nanomaterials
characterized by adjustable pore size, resulting from the self-assembly of organic ligands around metal centers. The
inherent merits of superior biodegradability, favorable dispersibility, and minimal toxicity render MOFs a highly
auspicious nanomaterial.'*?® Zeolitic imidazolate framework-8 (ZIF-8) is a better pH-responsive drug delivery vehicle
with chemical stability in MOFs. In addition, it possesses antibacterial properties because Zn>* can be internalized in
bacteria to fracture bacterial cell membranes.?' ZIF-8 has been effectively applied to mount a variety of nanomaterials to
produce sound biological effects. However, it is worth investigating whether AgNPs can be loaded on ZIF-8, mainly to
generate pH-sensitive properties of AgNPs@ZIF-8 to produce specific antimicrobial effects.

In the current study, a novel drug delivery platform is developed wherein a pH-sensitive metal carrier ZIF-8 is utilized to
piggyback AgNPs, thereby addressing the limitations of AgNPs as nano antimicrobial agents for the inhibition of pathogenic
bacteria. The objective of this research is to offer fresh approaches and concepts for the development of non-antibiotic drugs

and the rational utilization of MOFs in the design of materials possessing enhanced antimicrobial properties.”**

4858 e International Journal of Nanomedicine 2023:18
Dove!


https://www.dovepress.com
https://www.dovepress.com

Dove He et al

Materials and Methods

Reagents

Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Acinetobacter baumannii (A. baumannii) were
purchased from Shanghai Luwei Technology Co., Ltd (China). AgNO; (99.8%) was procured from Sinopharm
Chemical Reagent Co., Ltd (China). 2-MIM, Zn(CH;COO),, Luria-Bertani and Mueller-Hinton Broth were procured
from Shanghai Macklin Bio-technology Co., Ltd (China). Mugwort extract was obtained from Xian Runxue Bio-
technology Co., Ltd (China). PBS was acquired by Jiangsu Keygen Biotech Corp.,Ltd. The HT22 cells were procured
from Shanghai Gaining Biological Co.

Preparation and Characterization of Materials

Preparation of ZIF-8

0.925 g of Zn(CH3COO), and 4.15 g of 2-MIM were solubilized in 100 mL of methanol. The 2-MIM solution was
slowly dropped into the Zn(CH3COO), solution and stirred (1000 rpm, 30 min), followed by sonication (40 kHz, 5 min)
and centrifugation (8000 rpm, 15 min). The resulting precipitate was washed 3 times with methanol and desiccated under
vacuum for 24 h. The final product, ZIF-8, was preserved at normal temperature, dried, and protected from light.**

Synthesis of AgNPs@ZIF-8

20 mg of mugwort extract and 17 mg of AgNO; were dissolved in 10 mL of ZIF-8, stirred for 20 min and then left in
a boiling water bath at 100 °C for 1 h. The solution was filtrated through a 0.22 um microporous membrane. The
AgNPsq »0@ZIF-8 solution was prepared by weighing two samples according to the mass ratio of Ag to ZIF-8 of 0.20:1,
and the procedure was the same as above.

Characterization of Nanomaterials

Particle Size Determination and Zeta Potential Analysis

Appropriate amounts of sample solutions were prepared for particle size measurement and ZETA potential analysis using
a nanoparticle size potentiostat (NICOMP 380NLS).?

UV-Vis Spectroscopy
An adequate amount of the sample solution was taken in the cuvette, the blank was corrected with distilled water, and

a UV spectrophotometer in 300~800 nm measured its UV absorption spectrum.”®

FTIR Spectroscopy

The sample solution was made into a powder by rotary evaporation at 60°C and dried in a vacuum oven at 50°C for two
hours. The resulting sample powder was added to an infrared spectrometer to observe the characteristic peaks.*”-**
Scanning Electron Microscope

AgNPs and AgNPs@ZIF-8 were added to the sample tray, and the sample chamber was pumped to vacuum (5 x 10>
Pa). The voltage was then set to 20 kV for scanning and the brightness and contrast were adjusted. After auto-focusing
the sample, adjust the magnification and sharpness to find the homogeneous nanomaterials.*’

Biocompatibility of Nanomaterials

Cytotoxicity Detection

HT22 cells were distributed in 96-well plates at approximately 4x10* cells/mL at a density of 100 pL per well and placed
in a cell culture incubator (37°C with a CO, level of 5%). HT22 cells were incubated with AgNPs@ZIF-8 at different
AgNPs piggyback amounts (20%, 25%, 30%, 35%, 40%) and different concentrations (0 ug/mL, 1 ug/mL, 2.5 pg/mL,
10 pg/mL, 20 pg/mL, 40 pg/mL, 80 ug/mL, 100 ug/mL) given after cell apposition. At the end of the bacterial
incubation, the medium containing AgNPs@ZIF-8 was aspirated and washed 3 times with PBS.100 pL of incomplete
medium containing 10 pL. of CCK-8 assay solution was added and incubated for 1-2 h in an incubator protected from
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light. The data were measured at an OD value of 450 nm. The absorbance of the experimental group is expressed as Aa.

The absorbance of the control group and the blank group were expressed as Ac and Ab, respectively.30’31

Ratio of cell survival = (Aa — Ab)/(Ac — Ab)*100 %

In vitro Antimicrobial Activity of the Nanomaterials AgNPs@ZIF-8

Culture of Bacteria

The slant strains were scribed on LB agar plates using the plate scribing isolation method to obtain single colonies, frozen in
storage tubes, stored at —20°C and kept away from light. When using the bacterial solution, the concentration of bacterial
solution needs to be diluted to 108 CFU/mL (The bacteria were measured between 0.4 and 0.5 at the enzyme marker ODyg).

Bacterial Growth Curves Test
Different drugs (ZIF-8, AgNPs, AgNPs@ZIF-8) were added to 96-well plates at their different final concentrations (1 pg/
mL, 2 pg/mL). 200 uL of MHB and 200 pL of diluted bacterial solution were added to the plates. A blank control and six
sets of parallel controls were set up.

The moment of addition of the bacterial solution was noted as 0 h, and its OD value was measured every
subsequent hour at 600 nm on an enzyme meter.

Minimum Inhibitory Concentration (MIC) Test

Several sterile centrifuge tubes were prepared to obtain concentrations of 256 pg/mL, 128 pg/mL, 64 pg/mL, 32 ug/mL,
16 pg/mL, 8 pg/mL, 4 pg/mL, 2 pg/mL of a drug (diluted by MHB) according to the multiplicative dilution method, and
a centrifuge tube containing only 1 mL of MHB was prepared. 50 puL bacterial solution at a concentration of 1x10° CFU/
mL was put in the centrifuge tubes. The results were observed after incubation in a constant temperature incubator at
37°C for 24 h. The procedures for different drug levels (AgNPsg,s@ZIF-8, AgNPsy30@ZIF-8, AgNPsg;s5@ZIF-8,
AgNPs( 40@ZIF-8) were performed as above. The concentration of the group of drugs that went from turbid to visibly
clear was the MIC of the drug.*?

Minimum Bactericidal Concentration (MBC) Test

The bacterial solution treated by the MIC experiment (MIC, 2 x MIC, 4 x MIC, 8 x MIC) was evenly spread into the
solid medium, incubated at 37°C for 24 hours, and the results were recorded. The MBC is defined as the minimum drug
concentration at which the colony counts on the plate is less than 5.*?

In vivo Antimicrobial Activity of the Nanomaterials AgNPs@ZIF-8

Survival Curve of the Galleria mellonella

60 larvae of the greater wax borer were taken and divided into 4 groups. They were saline group, drug treatment group,
bacterial solution treatment group, and mixed bacterial solution and drug treatment group. Different solutions (20 pL)
were injected into the right lower second foot of the larvae with a micro syringe. The number of deaths in each group was
recorded every 24 h, and the mortality rate was counted.>*

Mechanistic Research of Nanomaterials

Bacterial Growth Curve Under pH Conditions

AgNPs@ZIF-8 was added to a 96-well plate at a final concentration of 1 pg/mL. 200 pL. of MHB and 200 pL of diluted
bacterial solution were added to the 96-well plate. The pH was also adjusted by HCI and NaOH (6.4, 7.4, 8.4), and
a blank control and six sets of parallel controls were set up.The moment of adding the bacterial solution was recorded as
0 h, and then its OD value was measured at 600 nm every hour at the wavelength of the enzyme marker.

Biofilm Clearance Test

A bacterial suspension of 0.5 McGill turbidity (concentration of approximately 1x10* CFU/mL) was prepared and diluted
100-fold with MHB. 100 pL of bacterial solution was added to a 96-well plate and incubated at 37°C for | hour, allowing
biofilm to form in the plate; the bacterial solution was aspirated and washed 3 times with PBS. AgNPs@ZIF-8 were diluted
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with sterile water from 4 x MIC multiplication to 1/8 x MIC, 100 puL of each concentration of drug was added to a polystyrene
96-well plate and incubated at 37°C for 1 day. The sterile water group served as a blank control. The solution was aspirated,
washed 3 times with PBS and fixed with 100 pL. methanol for 15 minutes. Subsequently, the plates were stained with
crystalline violet for 10 minutes. The biofilm was dissolved with 100 puL of 95% ethanol and the OD was measured at 620 nm.
The minimum drug concentration less than half the OD of the blank control was the BEC50 of AgNPs@ZIF-8 acting on
bacteria.>

Reactive Oxygen Species Test

Prepare two 2 mL samples of MHB (experimental and control groups) by adding 0.5 mL of AgNPs@ZIF-8 at
a concentration of 1/4 MIC to the experimental group. Subsequently, add 1 mL of the bacterial solution to both groups.
The prepared system was incubated at 30°C for 6 h, protected from light. After incubation, the supernatant was removed
by centrifugation at 3000 rpm and washed three times with PBS. The obtained bacterial cells were mixed with MHB, and
DCFH-DA (final concentration of 40 pg/mL) was added. The cells were incubated for half an hour against light and

washed three times with PBS. Intracellular ROS levels were observed by fluorescence microscopy.>®>®

Data Analysis
Data were expressed as mean =+ standard deviation (Mean + SD); two-tailed unpaired Student’s z-test was used for
comparison between two groups; LSD method or SNK-q test was used for variance chi-square. In the diagram shown in
33

this study, “ns” represents no significant difference,
p <0.001, and “****” represents p <0.0001.

represents p <0.05, “**” represents p <0.01, “***” represents

Results

Synthesis and Characterization of Materials
AgNPs, ZIF-8 and AgNPs@ZIF-8 Characterization
The synthesis of nanocomplex AgNPs@ZIF-8 was shown in Figure 1A.

The SEM analysis results showed that a regular dodecahedral shape of ZIF-8 was successfully synthesized, and the
nanosilver particles were dispersed on the surface of the ZIF-8 (Figure 1B and C).

As shown in Figure 1D, FTIR spectra of the synthesized ZIF-8 and AgNPs@ZIF-8 were performed to observe the
functional groups of the compounds. The functional groups were separated according to their peaks. In the IR absorption
of ZIF-8, the peaks at 3132 cm ', 2931cm ' were due to the C-H stretching vibration of imidazole. The peaks at
1420cm " and 1580 cm™' were belonged to the C=N and C-N bonds of imidazole ring. In the IR absorption peaks of
AgNPs@ZIF-8, The enhanced absorption peak at 3376 cm ' implied that AgNPs might be piggybacked on ZIF-8. The
peak at 767 cm™ " indicated the interaction of Ag" with the imidazole ring.

In Figure 1E, the only peak of ZIF-8 was about 285 nm, the peak of AgNPs was about 433 nm, and the two peaks of
AgNPs@ZIF-8 were about 285 nm and 432 nm, respectively. 285 nm were attributed to the Zn present in ZIF-8, and the
redshift in the process of nanocomplex assembly was due to the change in the spatial structure and the polarity of the
nanocomplex during this process. 433 nm was attributed to AgNPs. Figure 1F showed that the particle sizes of AgNPs,
ZIF-8, and AgNPs@ZIF-8 were approximately 89.8 nm, 335.3 nm, and 236.1 nm, respectively. In Figure 1G, the zeta
potentials of AgNPs, ZIF-8, and AgNPs @ZIF-8 were 1.39 mv, 0.79 mv, and 2.69 mv, respectively.

Combined with the above experiments, it is confirmed that ZIF-8 successfully hitched on AgNPs, forming a novel
AgNPs@ZIF-8 nanocomplex.

Research on the Antibacterial Ability of Nanomaterials
Bacterial Growth Curves Test

The antibacterial ability of nanomaterials is inversely proportional to the bacterial growth activity (024 h). Therefore, this
approach was applied to measure the antibacterial ability of AgNPs, ZIF-8, and AgNPs@ZIF-8. Figure 2 demonstrated that ZIF-
8 exhibited no significant antibacterial ability at low concentrations (1 pg/mL and 2 pg/ml) compared to the control. Meanwhile,
bacteria treated with AgNPs were inhibited to some extent. However, as expected, the inhibition of bacterial growth activity by
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Figure | The characterization of AgNPs, ZIF-8 and AgNPs@ZIF-8.

Notes: (A) The synthesis of nanocomplex AgNPs@ZIF-8. (B and C) Scanning electron microscopy analysis of ZIF-8 and AgNPs@ZIF-8 respectively, Scale bar = 200 nm.
(D) FT-IR spectroscopy of ZIF-8 and AgNPs@ZIF-8. (E) UV-vis spectroscopy of AgNPs, ZIF-8 and AgNPs@ZIF-8, wavelength range is 250-800 nm (F) Particle size analysis
of AgNPs, ZIF-8 and AgNPs@ZIF-8 and (G) Zeta potential analysis of AgNPs, ZIF-8 and AgNPs@ZIF-8, data were expressed as Mean + SD.

AgNPs@ZIF-8 was significantly more pronounced than the two drugs mentioned above. These results indicated that the

inhibition of Gram-negative and Gram-positive bacteria by AgNPs@ZIF-8 was significantly better than the same concentration
of ZIF-8 and AgNPs.

Selection of Nanomaterials with the Best Loading Ratio

Minimum Inhibitory Concentration Test

As presented in Figure 3, the MIC of AgNPsg,o@ZIF-8 for the three bacteria studied was 32 pg/mL, the MIC of
AgNPsg ,s@ZIF-8, AgNPs 30@ZIF-8, and AgNPs, 35@ZIF-8 for the three bacteria studied was 16 pg /mL. In compar-
ison, the MIC of AgNPsg 4o@ZIF-8 was 8 pg/mL for the three investigated bacteria.
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Figure 2 The results of the bacterial growth curves of the control group and the | ug/mL AgNPs@ZIF-8 and 2 ug/mL AgNPs@ZIF-8.
Notes: (A and D) AgNPs@ZIF-8 against Escherichia coli, (B and E) AgNPs@ZIF-8 against Staphylococcus aureus, (C and F) AgNPs@ZIF-8 against Acinetobacter baumannii.

Minimum Bactericidal Concentration Test

MBC experiments were employed to further investigate the antibacterial performance of AgNPs@ZIF-8 synthesized
from AgNPs and ZIF-8 at different mass ratios. As illustrated in Figure 4, the MBCs of AgNPs(,o@ZIF-8 were 128 pg/
mL, 64 pg/mL, and 128 nug/mL for E. coli, S. aureus and A. baumannii, respectively. AgNPsg,s@ZIF-8, AgNPsq 30
@ZIF-8, AgNPs 35@ZIF-8 was discovered to be more effective against E. coli, S. aureus, and A. baumannii were 64 pg/
mL, 32 pg/mL and 64 pg/mL, respectively, and AgNPsy 4@ZIF-8 were 16 pg/mL, 16 pg/mL and 32 pg/mL for E. coli,
S. aureus, and A. baumannii, respectively.

In vivo Antimicrobial Activity of the Nanomaterials AgNPs@ZIF-8

Larvae of the Galleria mellonella Experiment

As shown in the Figure 5, at the 7 day, no larvae died in the saline treatment group, 2 in the drug treatment group, 13 in
the bacterial solution treatment group, and 9 in the mixed bacterial solution and drug treatment group. After log-rank
analysis, the results showed that there was no significant difference between the saline treated group and the drug treated
group, and the mortality of infected larvae after drug treatment was significantly reduced.

Biocompatibility of Nanomaterials
Cytotoxicity Detection Test
The biocompatibility of AgNPs@ZIF-8 synthesized from different mass ratios of AgNPs and ZIF-8 was verified via Cell
Counting Kit-8 (CCK-8) experiments. As shown in Figure 6, the cellular activities of AgNPsg,o@ZIF-8, AgNPsq 15
@ZIF-8, AgNPs(30@ZIF-8, AgNPs( 35@ZIF-8, and AgNPs 40@ZIF-8 were found to be about 82%, 72%, 62%, 57%
and 51% at 5 pg/mL concentrations, respectively; 10 pg/mL concentrations were approximately 73%, 61%, 43%, 39%,
and 28%.

Based on the biocompatibility and antibacterial ability of the nanomaterials, AgNPsg,s@ZIF-8 showed a better
overall ability by MIC, MBC, and CCK-8 experiments.
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Escherichia coli Staphylococcus aureus Acinetobacter baumannii

AgNPs 0:@ZIF-8  AgNPs 0s@ZIF-8 AgNPs o0@ZIF-8

AgNPs 0.40@ZIF-8 AgNPs 0.3s@ZIF-8

Figure 3 The MIC (pug/mL) test results of the control group and different concentrations of AgNPs@ZIF-8* groups on (A) Escherichia coli, (B) Staphylococcus aureus and (C)
Acinetobacter baumannii.

Notes: AgNPs@ZIF-8* indicates AgNPsq 0@ZIF-8, AgNPsos@ZIF-8, AgNPsq 30@ZIF-8, AgNPs35@ZIF-8 and AgNPsg 40@ZIF-8. The concentration of the group of
drugs that went from turbid to visibly clear was the MIC of the drug.

Investigation of the Optimal Environment for Nanomaterials to Exert Antibacterial
Effects

Bacterial Growth Curve Under pH Conditions

The pH of the MHB was altered to mimic the weakly acidic environment caused by a significant infection of pathogenic
microorganisms. As shown in Figure 7, there was no significant difference in the ability of AgNPs@ZIF-§ to inhibit
pathogenic microorganisms in alkaline (pH=8.4) and neutral (pH=7.4) environments. In comparison, the inhibitory effect
of AgNPs@ZIF-8 on bacterial growth activity was more pronounced in an acidic (pH=6.4) environment.

Study on the Mechanism of Antibacterial Effect of Materials

Reactive Oxygen Species Test

As shown in Figure 8A, bacterial cells labeled with probe H2DCFH-DA produced brighter fluorescence with higher
levels of cellular reactive oxygen species after treatment with 8 pg/mL of AgNPs »,s@ZIF-8 relative to the control group.
The fluorescence intensity was approximately 0.8 A.U in the control group and 1.6 A.U in the drug-treated group. The
quantitative analysis of the fluorescence intensity of the treated and normal groups was shown in Figure 8B.
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Escherichia coli Staphylococcus aureus Acinetobacter baumannii
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Figure 4 The MBC (ug/mL) test results of the control group and the different concentrations of AgNPs@ZIF-8* group on (A) Escherichia coli, (B) Staphylococcus aureus, (C)
Acinetobacter baumannii.

Notes: AgNPs@ZIF-8* indicates AgNPsq ,0@ZIF-8, AgNPsq s @ZIF-8, AgNPsy 30@ZIF-8, AgNPs 35@ZIF-8 and AgNPs 40@ZIF-8. The MBC is defined as the minimum
drug concentration at which the colony count on the plate is less than 5.
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Figure 5 In vivo effects of AgNPs@ZIF-8 on E. coli activity.
Notes: Survival curve of Galleria mellonella larvae. *p < 0.05; ns, p > 0.05 according to log rank analysis. Dead larvae have black body color, surviving larvae have no body
color change.

Pathogenic Biofilm Eradication Concentration Test

As shown in Figure 8C, the biofilm metabolic activity of E. coli was reduced to less than 50% after treatment with
AgNPs@ZIF-8 at 1/2xMIC compared to the control. The BEC50 of AgNPs@ZIF-8 against E. coli was 1/2xMIC. The
BECS50 of AgNPs@ZIF-8 against S. aureus and A. baumannii were both 1x MIC.
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Figure 6 Effects of AgNPs@ZIF-8 on the viability of HT-22 cells.
Note: Cell viability was determined by MTT assay after treating cells with a series of concentrations of AgNPs@ZIF-8* (0, I, 2.5, 5, 10, 20, 40, 80, 100) for 24 h.
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Figure 7 Survival curves of strains.
Notes: (A) Escherichia coli, (B) Staphylococcus aureus and (C) Acinetobacter baumannii under different pH (6.4, 7.4, 8.4) conditions.

Discussions

The complications caused by pathogenic microorganisms have been a challenge for clinical treatment.*® The misuse of
antibiotics has increased the tolerance of pathogenic microorganisms,*® which is a severe threat to human health and
environmental safety. Previous studies by Pawe-Pomastowski et al had noted the importance of nanomaterials for
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Figure 8 The mechanism of antibacterial activity of AgNPs@ZIF-8.

Notes: (A) Relative ROS level of fluorescence microscope images of Escherichia coli. Green fluorescence represents the level of ROS, (B) fluorescence intensity of the
control group and 8 pug/mL AgNPs@ZIF-8-treated bacteria detected under fluorescence microscope and (C) the results of the pathogenic biofilm activity of the control
group and different concentrations AgNPs@ZIF-8 group against three strains. Data were analyzed by t-test. *p <0.01, ***p <0.001, ****p <0.0001 vs control group.

controlling pathogenic microorganisms, which could effectively inhibit pathogenic microorganisms and were less likely
to develop tolerance.*'** Therefore, utilizing nanomaterials efficiently has become the focus of current research.

Our previous studies confirmed that AgNPs were excellent inorganic antimicrobial agents with broad-spectrum antibacterial
properties.'! Moreover, AgNPs exhibit a reduced propensity for developing resistance against pathogenic microorganisms.
Nevertheless, they encounter challenges such as significant cytotoxicity and a tendency to aggregate. In this study, we aimed to
explore the potential of AgNPs@ZIF-8, a nanomaterial formed by attaching AgNPs onto MOF, to enhance the broad-spectrum
antibacterial properties of AgNPs. The bacterial growth curves showed that a quantitative (small) amount of AgNPs loaded onto
the ZIF-8 performed a better antibacterial effect than the same amount of AgNPs alone. According to the review by Hani Nasser
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Abdelhamid, the encapsulated antimicrobial agent ZIF-8 exhibited superior biological activity compared to the free antimicrobial
agent.”! Therefore, we infer that the above experimental results are attributed to the piggyback function of ZIF-8.

It is crucial to determine the appropriate ratio of AgNPs to ZIF-8 to achieve good antimicrobial properties and low
cytotoxicity of AgNPs@ZIF-8 for practical applications. We constructed AgNPs@ZIF-8 with ZIF-8 and AgNPs based on
previous research literature, in which the mass ratios of ZIF-8 and AgNPs were 1:0.20; 1:0.25; 1:0.30; 1:0.35; 1:0.40,
respectively. The MIC of E. coli, A. baumannii and S. aureus in the AgNPs, »s@ZIF-8 group was 16 pg/mL. The MBC
of the above three bacteria in AgNPs(,s@ZIF-8 was 64 ng/mL, 64 pg/mL and 32 pg/mL, respectively. Metal ions are
more likely to cause neurotoxicity,* so it was necessary to focus on the effect of this nanomaterial on the survival of HT-
22 neuronal cells.Through CCK-8 assay, we found that AgNPs »,s@ZIF-8, the cellular activity at MIC concentration was
about 60%. Considering the above experiments and practical clinical applications, AgNPsq ,5@ZIF-8 was chosen as the
study subject because of its lower cytotoxicity and better antibacterial effect.**

In addition, common clinical pathogens such as E. coli and S. aureus are parthenogenic anaerobes that produce acid
and gas during anaerobic respiration, resulting in a decrease in pH in the colony environment.*> Therefore, the ability to
inhibit bacterial activity in an acidic environment is worth considering when evaluating the antimicrobial effect of
nanomaterials. In this paper, the acidic environment due to heavy bacterial contamination was simulated by adjusting the
pH of the culture medium MHB. By studying the growth curves of bacteria over 24 h, it was observed that all three
bacteria exhibited: the antibacterial ability of AgNPs@ZIF-8 in weakly alkaline conditions (pH=8.4) was similar to the
antibacterial ability in neutral conditions (pH=7.4); while in weakly acidic conditions (pH=6.4), the bacteria were more
significantly inhibited by AgNPs@ZIF-8. We inferred that the weakly acidic conditions are more favorable for the
AgNPs@ZIF-8 to exert its antibacterial ability. There are two main reasons to explain this phenomenon. Firstly, among
the components of ZIF-8: zinc is the second most biologically abundant transition metal, and the imidazole group is an
essential component of the amino acid histidine. The coordination between zinc and imidazole ions dissociates when
weak acids are present, which makes the drug release pH-responsive.*® In addition, we propose the conjecture that ZIF-8
releases Zn", which increases the permeability of the bacterial cell membrane in a weak acid environment. In this case,
Ag', which plays an efficient antibacterial role, can more easily enter the bacteria and disturb their internal microenvir-
onment to achieve better antibacterial performance. The AgNPs were piggybacked on the ZIF-8 to synthesize a new
antibacterial AgNPs@ZIF-8, and its antibacterial effect was verified.

Herein, the potential mechanism of the antibacterial effect of AgNPs@ZIF-8 was investigated, and it was found that the
material increased the level of ROS in the bacterial community and effectively removed the biofilm of the bacterial
community, which might be the mechanism of the good antibacterial effect of the nanocomposite. It also gave full play to
the carrier role of ZIF-8 in a weakly acidic environment, which could reduce the amount of AgNPs. It provides a theoretical
basis and new ideas for the prevention and control of infections of a variety of pathogenic bacteria and guides the rational

design of high antibacterial performance drugs and avoidance of potential dangers of antibacterial agents.*”>°

Conclusion

In this study, a novel nanocomposite of AgNPs@ZIF-8 was synthesized, leveraging the beneficial properties of the low
cytotoxic drug carrier ZIF-8 and antibacterial AgNPs. It was observed that AgNPs@ZIF-8 displayed superior antimi-
crobial activity compared to AgNPs alone, with the optimal mass ratio of ZIF-8 and AgNPs determined to be 1:0.25.
Additionally, the pH-responsive nature of AgNPs@ZIF-8 was demonstrated, exhibiting enhanced antimicrobial efficacy
in a weakly acidic environment. Moreover, our findings demonstrate that AgNPs@ZIF-8 exhibits significant efficacy in
eradicating pathogenic bacterial biofilms and inducing elevated levels of ROS within the bacterial cells, thereby
impeding their proliferation and viability. Consequently, our results indicate that AgNPs@ZIF-8 holds great potential

as a nanomaterial for antimicrobial purposes.
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