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Background: The purpose of this study was to investigate the mechanism of noxious effects 

of amorphous silica nanoparticles on human endothelial cells.

Methods: Nanoparticle uptake was examined by transmission electron microscopy. 

 Electrochemical nanosensors were used to measure the nitric oxide (NO) and peroxynitrite 

(ONOO−) released by a single cell upon nanoparticle stimulation. The downstream inflammatory 

effects were measured by an enzyme-linked immunosorbent assay, real-time quantitative 

polymerase chain reaction, and flow cytometry, and cytotoxicity was measured by lactate 

dehydrogenase assay.

Results: We found that the silica nanoparticles penetrated the plasma membrane and rapidly 

stimulated release of cytoprotective NO and, to a greater extent, production of cytotoxic ONOO−. 

The low [NO]/[ONOO−] ratio indicated increased nitroxidative/oxidative stress and correlated 

closely with endothelial inflammation and necrosis. This imbalance was associated with nuclear 

factor κB activation, upregulation of key inflammatory factors, and cell death. These effects 

were observed in a nanoparticle size-dependent and concentration-dependent manner.

Conclusion: The [NO]/[ONOO−] imbalance induced by amorphous silica nanoparticles 

 indicates a potentially deleterious effect of silica nanoparticles on vascular endothelium.

Keywords: amorphous silica nanoparticles, nanotoxicology, nitric oxide, peroxynitrite, 

 inflammation, risk factors

Introduction
The use of synthetic amorphous silicon dioxide or silica nanoparticles in medicine 

is becoming increasingly accepted for a variety of therapeutic, diagnostic, and 

imaging applications.1,2 This adds to the already significant industrial exposure to 

silica nanoparticles during production, storage, transportation, and consumer use.3 It 

is increasingly recognized that amorphous silica nanoparticles induce cytotoxicity.4 

However, genotoxicity induced by amorphous silica nanoparticles seems to be cell-line 

dependent.5–7 Overall, little is known about the toxicological effects of nanoparticles 

on the vasculature.

This study elucidates a direct interaction between engineered amorphous 

silica nanoparticles (10 nm, 10SiNP; 50 nm, 50SiNP; 150 nm, 150SiNP; 500 nm, 

500SiNP) and primary human umbilical vein endothelial cells (HUVECs). This cell 

line has been used as a reference for in vitro studies of endothelial cell function, 

since Jaffe et al8 developed a procedure to isolate them from the umbilical cord 
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by collagenase  digestion. Direct release of nitric oxide 

(NO) and peroxynitrite (ONOO−) during nanoparticle-cell 

interactions was measured by nanosensors. NO is essential 

for vascular homeostasis and disease.9 Endothelial cells and 

platelets generate NO which induces vasorelaxation, and with 

prostacyclin synergistically regulates vascular hemostasis by 

inhibiting platelet adhesion and aggregation.10–13 Impairment 

of NO bioavailability is one of the earliest events in vascular 

disease,9,14 and may result from decreased NO  synthesis 

and/or increased superoxide (O
2
•−) generation. Superoxide 

reacts rapidly with NO, producing ONOO−, a strong 

 cytotoxic agent.15 High ONOO− production and depleted NO 

 availability resulting in a low ratio (,1.0) of maximal NO 

to maximal ONOO− concentrations ([NO]/[ONOO−]) can 

be used accurately as an indicator of nitroxidative/oxidative 

stress and endothelial dysfunction.16–18 It has been suggested 

that oxidative stress induces upregulation of gene expression 

by transcription factor activation.19 When activated, these 

factors initiate the transcription of several genes involved in 

inflammation and coagulation.20,21 For instance, endothelial 

adhesion molecules, intercellular adhesion molecule 1 

(ICAM1),22 vascular cell adhesion molecule 1 (VCAM1),23 

and selectin E (SELE),24 provide cell–cell adhesion between 

the endothelium and leukocytes. Matrix metalloproteinase 9 

(MMP9)25,26 digests various components of the extracellular 

matrix, such as type IV collagen, gelatin, and elastin, 

allowing leukocyte accommodation after diapedesis. Cyclo-

oxygenase (COX) 2 mediates generation of COX-derived 

endothelium-derived constrictors and relaxants by converting 

arachidonic acid to prostaglandin H
2
.20 Tissue factor (F3) 

is a key initiator of the coagulation cascade synthesized by 

endothelium in response to various stimuli.27 Interleukin 6 

(IL6) has proatherogenic effects.28,29 Interleukin 8 (IL8) is 

involved in neutrophil chemotaxis and has proatherogenic 

and proinflammatory effects.29 Therefore, we studied the 

effects of amorphous silica nanoparticles on nitroxidative/

oxidative stress, inflammatory mediators, and cytotoxicity 

in primary HUVECs. Our results indicate that the [NO]/

[ONOO−] imbalance induced by silica nanoparticles may 

underpin the mechanism of cytotoxicity of amorphous silica 

nanoparticles in human endothelial cells.

Materials and methods
reagents
All reagents were purchased from Sigma-Aldrich (Arklow, 

Ireland) unless indicated. Amorphous silica nanoparticles 

with different sizes (10SiNP, 50SiNP, 150SiNP, 500SiNP) 

were purchased from Polysciences (Eppelheim, Germany).

Zeta potential measurement
The zeta potentials of all the silica nanoparticles were 

determined by a Zetasizer Nano ZS (Malvern Instruments, 

Worcestershire, UK). Measurements were performed six 

times for each particle size (100 µg/mL in ultrapure water) 

at room temperature.

Transmission electron microscopy
The nanoparticle suspensions (10 µg/mL in ultrapure water) 

were examined using a JEM 2100 transmission electron 

microscope (JEOL, Hertfordshire, UK). The diameter of 

100 nanoparticles of each size seen on three transmission 

electron micrographs was measured using Image J, an 

 open-source, Java-based imaging software (http://rsbweb.

nih.gov/ij/). The shape of irregular nanoparticles was adjusted 

to a sphere before measurement.

Cell culture
Primary prescreened HUVECs were purchased from the 

Health Protection Agency Culture Collections (ECACC, 

Salisbury, UK). Cells were cultured in the recommended 

ECACC complete endothelial cell growth medium and 

maintained at 37°C in a 5% CO
2
 humidified incubator. Cells 

were supplied with fresh medium every 2 days and propa-

gated using the recommended ECACC subculture kit, for a 

maximum of 16 population doublings.

Cell exposure to silica nanoparticles
Primary HUVECs were exposed to amorphous silica 

 nanoparticles suspended in basal media (ECACC complete 

media without serum or growth factors) supplemented with 

2% fetal bovine serum and 0.03 mg/mL endothelial cell 

growth supplements. Immediately before use,  commercial 

stock suspensions were sonicated for 2 minutes, and 

 nanoparticle dispersions in culture media were prepared by 

serial dilution from these stock suspensions by vortexing. 

Controls were supplied with an equivalent volume of media 

without nanoparticles.

Transmission electron microscopy  
of primary hUVeCs
The silica nanoparticle-endothelial cell interaction was stud-

ied by transmission electron microscopy. At 80%  confluence, 

HUVECs seeded into 75 cm2 tissue culture flasks were 

incubated with 10 µg/mL 10SiNP for 1 hour. Thereafter, 

cells were collected in basal media and fixed by mix-

ing with an equal volume of 3% glutaraldehyde in 0.05 

M potassium phosphate buffer (pH 6.8) for 1.5 hours at 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/


International Journal of Nanomedicine  2011: 6 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2823

Toxicity of amorphous silica nanoparticles

room temperature. After primary fixation, samples were 

 centrifuged and the pellets were washed six times with 

0.05 M potassium phosphate buffer (pH 6.8). The pellets 

were then post-fixed with 2% osmium tetroxide in 0.05 M 

potassium phosphate buffer (pH 6.8) for 30 minutes. Pellets 

were then dehydrated in series of graded ethanol solutions, 

infiltrated, and embedded in agar 100 epoxy resin, using 

propylene oxide as a transitional fluid. Next, ultrathin sections 

were cut from dried blocks with a diatom diamond knife on 

an LKB  Ultratom III (LKB, Uppsala, Sweden), stained with 

0.5% aqueous uranyl acetate followed by Reynold’s lead 

citrate. Finally, the sections were examined using a JEM 

2100 transmission electron microscope.

Measurement of NO and ONOO− 
concentrations using nanosensors
Concurrent NO and ONOO− measurements were performed 

with electrochemical nanosensors (diameter 300–500 nm). 

The designs were based on previously developed and 

well characterized chemically modif ied carbon f iber 

technology.30,31 Each of the sensors was made by depositing a 

sensing material on the tip of the carbon fiber, ie, a conductive 

f ilm of polymeric nickel (II) tetrakis (3-methoxy-4-

hydroxy-phenyl) porphyrin for the NO sensor and a 

polymeric film of Mn (III)–paracyclophanyl-porphyrin for 

the ONOO−  sensor. Amperometry was used to measure 

changes in NO and ONOO− concentrations from basal 

levels with time  (detection limit of 1 nM and resolution 

time ,10 µsec for each sensor). Linear calibration curves 

were constructed for each sensor from 5 nM to 3 µM 

before and after measurements with aliquots of NO and 

ONOO− standard solutions.  Nanosensors were positioned 

at 5 ± 2 µm from the cell membrane of a  single endothelial 

cell. A calcium ionophore, A23187 (1 µM), was used to 

stimulate the maximal release of NO and ONOO− from a 

single cell in the absence of nanoparticles.

Fluorescence microscopy
Primary HUVECs were plated into six-well plates. The 

next day, following 1 hour of incubation with 10SiNP 

(10 µg/mL), cells were incubated with 5-(and 6)-carboxy-

2′,7′- difluorodihydrofluorescein diacetate (Invitrogen, 

 Paisley, UK) in basal media for 30 minutes in a 37°C, 

5% CO
2
 humidified incubator. A control in the absence of 

 nanoparticles was also prepared. Adhesive cells were then 

washed twice with basal media and examined under an 

 Axiovert 200 M inverted fluorescence microscope (Carl Zeiss, 

 Welwyn Garden City, UK) at λ ex/λ em 485/530 nm.

Measurement of NF-κB binding activity
To evaluate the influence of silica nanoparticles on NF-κB 

binding activity, a specific enzyme-linked immunosorbent 

assay was performed on nuclear extracts from HUVECs 

(into 75 cm2 tissue culture flasks). Cells were exposed to 

10SiNP (10 µg/mL) for 1 hour, and 50SiNP, 150SiNP, and 

500SiNP (50 µg/mL) for 3 hours. Controls in the absence 

of nanoparticles were also prepared.

Purification of nuclear extracts
Following incubation, nuclear proteins were isolated 

using a nuclear extraction kit (Cayman, Dublin, Ireland). 

The isolation was performed following the supplier’s 

recommendations. Briefly, cells were washed once and 

then collected in a phosphate-buffered saline/phosphatase 

inhibitor solution. Cells were centrifuged and the pellets 

were washed twice with the same solution. The pellets were 

incubated for 15 minutes in a hypotonic buffer (containing 

both phosphatase and protease inhibitors) to allow the cells to 

swell. Nonidet®-P40 assay reagent was then added to disturb 

the plasma membrane, and the samples were centrifuged. 

Pellets (nuclei) were incubated with a nuclear extraction 

buffer (containing both phosphatase and protease inhibitors) 

to disturb the nuclear membrane, and then centrifuged. 

Nuclear fractions, contained in the supernatants, were stored 

at −80°C. Protein concentration, in the nuclear extracts, was 

spectrometrically determined (λ 595 nm) by Bradford’s 

method.

Measurement of NF-κB (p65) DNA binding activity
The binding activity of the p65 subunit of the transcription 

factor, NF-κB, was assessed using a NF-κB (p65) transcrip-

tion factor assay kit (Cayman). This enzyme-linked immu-

nosorbent assay was performed following the supplier’s 

recommendations. Briefly, nuclear fractions, containing 

30 µg of proteins were mixed with a binding buffer and then 

loaded into a duplicate set of wells in a 96-well plate. The 

wells hold a specific double-stranded DNA containing the 

NF-κB response element immobilized onto the bottom. Follow-

ing overnight incubation, samples were washed five times 

and then incubated for 1 hour at room temperature with an 

anti-p65 antibody. Samples were further washed five times 

and then incubated for 1 hour at room temperature with a 

goat antirabbit horseradish peroxidase-conjugated antibody. 

Samples were again washed five times. A developing solution 

was added, and the plate was incubated for 15–45 minutes at 

room temperature with gentle agitation and protected from 

light. Following the addition of the stop solution, absorbance 
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was read at λ 450 nm. The NF-κB DNA binding activity 

induced by each nanoparticle was expressed relative to the 

control sample. Further experiments were performed with 

silica nanoparticles only to rule out the possibility of particle 

interference in the assessment.

real-time quantitative polymerase  
chain reaction
The effect of silica nanoparticles on the gene expression of key 

inflammatory factors was assessed by real-time  quantitative 

polymerase chain reaction. Primary HUVECs (in six-well 

plates) were exposed to various concentrations of silica 

nanoparticles for 3, 7, and 15 hours. Controls in the absence 

of nanoparticles were also prepared. Following incubation, 

the cells were washed twice with phosphate-buffered saline. 

DNA-free RNA was isolated using an Ambion RNAqueous®-

4PCR kit (Applied Biosystems, Warrington, UK) according 

to the supplier’s recommendations. Thereafter, isolated RNA 

in each sample was quantified using a NanoDrop® ND-1000 

spectrophotometer (Fisher Scientific, Dublin, Ireland). An 

equal quantity of total DNA-free RNA from each sample 

was reverse-transcribed using a high capacity cDNA reverse 

transcription kit (Applied Biosystems). Reverse transcription 

was performed using a Realplex2 Mastercycler (Eppendorf, 

Cambridge, UK). Finally, an equal quantity of total cDNA 

of each sample was used to performed real-time quantitative 

polymerase chain reaction in duplicate, with predesigned 

Applied Biosystems TaqMan® gene expression assays for 

ICAM1, VCAM1, SELE, MMP9, COX2, F3, IL6, and IL8, 

and Applied Biosystems TaqMan Universal PCR Master Mix; 

18S ribosomal ribonucleic acid (18S rRNA) was used as an 

internal control. Real-time quantitative polymerase chain 

reaction was performed using a Realplex2 Mastercycler. The 

expression of each gene, within each sample, was normalized 

against 18S rRNA expression and expressed relative to the 

control sample using the formula 2−(∆∆Ct), in which ∆∆Ct = (Ct 

mRNA − Ct 18S rRNA) sample − (Ct mRNA − Ct 18S rRNA) 

control.32 Further experiments were performed with the silica 

nanoparticles only to rule out the possibility of nanoparticle 

interference with this technique.

Lactacystin and real-time quantitative 
polymerase chain reaction
Involvement of NF-κB in gene upregulation induced by 

silica nanoparticles was studied by real-time quantitative 

polymerase chain reaction. HUVECs (in six-well plates) 

were incubated with lactacystin (1 µM) which suppresses 

NF-κB binding activity for 1 hour followed by exposure to 

10 µg/mL 10SiNP for 15 hours. Controls in the absence of 

nanoparticles and nanoparticle-treated samples in the absence 

of lactacystin were also prepared. After incubation, DNA-

free RNA was isolated and real-time quantitative polymerase 

chain reaction was performed as above.

Cytometric bead array
A cytometric bead array human inflammatory cytokine kit 

(Becton Dickinson, Oxford, UK) was used to quantify IL6 

and IL8 protein levels in the supernatants. Experiments 

were performed using a FACSArray™ bioanalyzer (Becton 

Dickinson). Cells (in six-well plates) were incubated with 

various concentrations of silica nanoparticles (10, 50, 

150, and 500 nm) for 15 hours. Controls in the absence of 

nanoparticles were also prepared. Assays were performed 

following the supplier’s recommendations. Briefly, captured 

beads (50 µL) coated with specific antibodies for the 

cytokines, supernatant samples (50 µL), and phycoerythrin 

detection reagent (50 µL) were mixed together and incubated 

at room temperature for 3 hours in the dark. Following 

washing, sample data were acquired by Becton Dickinson 

analysis software, and analyzed by FCAP Array™ software. 

The cytokine concentration was obtained using a calibration 

curve of human inflammation standards. Cytokine release 

induced by each nanoparticle was expressed relative to the 

control sample. Further experiments were performed with 

the silica nanoparticles only to rule out the possibility of 

nanoparticle interference with the technique.

Assessment of toxicity
To evaluate the cytotoxicity of the silica nanoparticles, 

HUVECs were seeded into 96-well round-bottom plates, 

and the lactate dehydrogenase (LDH) assay was performed. 

The activity of extracellular LDH release upon cell lysis was 

 measured using a CytoTox96® nonradioactive cytotoxicity 

assay (Promega, Southampton, UK). Cells were exposed to 

various concentrations of 10SiNP, 50SiNP, 150SiNP, and 

500SiNP (LDHexp) in triplicate. The percentage of cell 

 viability was determined 3, 7, 15, and 30 hours post-treatment. 

Triplicate control wells in the absence of nanoparticles were 

also  prepared (LDHcon). We also performed a positive 

LDH control supplied with the LDH assay to verify that 

the assay was functioning properly. Assays were performed 

following the supplier’s recommendations. Briefly, after 

exposure of the cells to the nanoparticles, 50 µL of the 

cell culture supernatants and 50 µL of substrate mix were 

mixed together in a 96-well plate. Samples were incubated 

for 30 minutes in the dark. LDH activity was measured 
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spectrophotometrically at λ 492 nm following addition of 

a stop solution (50 µL). A set of triplicate wells containing 

untreated controls was lyzed to extract the maximum LDH 

activity (LDHmax). A set of triplicate wells containing 

medium with neither nanoparticles nor cells was prepared 

(culture medium background). A set of triplicate wells was 

prepared to correct for volume changes caused by addition 

of lysis solution (volume correction control). The average 

of the absorbance values of the culture medium background 

was subtracted from the average of LDHcon and LDHexp. 

The average absorbance values for volume correction control 

was subtracted from LDHmax. Afterwards, the percentage 

of cell viability induced by each nanoparticle was expressed 

relative to the control sample according to the formula:

 %
exp )

max )
viability

(LDH LDHcon

(LDH LDHcon
= −

−
−

×





100 100

statistical analysis
All data are presented as the mean ± standard error of the 

mean of n . 3. Statistical analysis of the mean difference 

between multiple groups was determined by one-way analy-

sis of variance followed by Tukey–Kramer multiple compari-

son tests, and between two groups by two-tailed Student’s 

t-tests. The alpha level for all tests was 0.05. A P value ,0.05 

was considered to be statistically significant. All statistical 

analyses were performed using GraphPad Prism (v 5.00 for 

Windows; GraphPad Software, San Diego, CA) and Origin 

(v 6.1 for Windows; OriginLab, Northampton, MA).

Results
Characterization of silica nanoparticles
Accurate and careful physicochemical characterization 

of nanoparticles before assessing their in vitro toxicity 

is of crucial importance.33 As specified by the supplier, 

the commercially available negative surface-charged 

silica nanoparticles used in our studies (10SiNP, 50SiNP, 

150 SiNP, and 500 SiNP) were uniform amorphous solid 

(nonporous) pure silicon dioxide made via a precipitation 

process. Our transmission electron microscopy studies 

showed that the larger particles (150SiNP and 500SiNP) had 

a spherical shape, while the shape of the smaller particles 

(10SiNP and 50SiNP) was more irregular (Figure 1A–D). 

Because significant deviations from nominal specifications 

are usual in commercially supplied samples,34 we used 

ImageJ software to measure particle diameter on transmission 

electron micrographs of nanoparticles to confirm the 

size specified by the vendor (Table 1). We also used a 

light scattering technique (Zetasizer) to measure the zeta 

potentials of the silica nanoparticles (Table 1). All the 

nanoparticles tested in our study had zeta potentials more 

negative than −30 mV.

Internalization of amorphous silica 
nanoparticles into hUVeCs
We performed transmission electron microscopy to study 

silica nanoparticle-endothelial cell interactions and uptake. 

After 1 hour of coincubation, we found that the amorphous 

silica nanoparticles (10 µg/mL, 10 nm) were taken up 

by primary HUVECs (Figure 1E–G). Indeed, the nano-

particles interacted quickly with the plasma membrane 

(Figure 1E and F), internalized, and distributed into the 

cytoplasm of the cells (Figure 1F and G). Moreover, the 

nanoparticles were found mainly encapsulated in vesicles. 

However, nonencapsulated nanoparticles were also observed. 

 Furthermore, nanoparticles were observed forming agglom-

erates  (Figure 1E–G).

A B

C D

E F G

enm

epm 

SiNP

 vs 

Figure 1 Uptake of amorphous siNP by primary human umbilical vein endothelial 
cells. electron micrographs of 10siNP (A), 50siNP (B), 150siNP (C), and 
500siNP (D), in ultrapure water. As shown by transmission electron microscopy, 
after exposure of endothelial cells to 10 µg/mL of 10siNP for 1 hour, nanoparticles 
quickly interacted with the plasma membrane, internalized, and distributed within 
the cytoplasm (E–G). They were found mainly encapsulated in vesicles, but also 
free in the cytosol (F and G). scale bars represent 50 nm (A, B, C, and D), 100 nm 
(E and G), and 500 nm (F).
Abbreviations: siNP, silica nanoparticles; ePM, endothelial plasma membrane; 
eNM, endothelial nuclear membrane; Vs, vesicle.
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Imbalanced [NO]/[ONOO−] ratio in 
hUVeCs causes nitroxidative/oxidative 
stress and endothelial dysfunction
It has been suggested that nanoparticle-cell interactions may 

lead to oxidative stress and oxidant injury.35–37 Depleted NO 

and high ONOO− production by cells resulting in a low ratio 

(,1.0) of maximal NO to maximal ONOO− concentrations 

have been used as an accurate indicator of oxidative stress 

leading to dysfunctional endothelium.16,18 Therefore, 

we  studied in situ real-time dynamic interaction of the 

amorphous silica nanoparticles with primary HUVECs by 

measuring NO and ONOO− concentrations directly using 

nanosensors placed 5 ± 2 µm from the plasma membrane 

of a single cell. We demonstrated with time resolution 

better than 10 microseconds that these nanoparticles rapidly 

stimulated NO release, followed by ONOO− production after 

collision with cells (Figure 2A). The rate of NO production 

was in reverse proportion to nanoparticle size and directly 

proportional to particle concentration (Figure 2B). The 

silica nanoparticle-stimulated generation of cytoprotective 

and vasodilatory NO was followed by massive production of 

strongly oxidant and cytotoxic ONOO−, a major component 

of oxidative stress. When the nanoparticle concentrations 

were increased, a rapid exponential rate of ONOO− release 

from endothelial cells was observed for 10SiNP, and a 

sigmoid rate for 50SiNP (Figure 2C). The increase in rate 

of production of ONOO− with increasing concentrations 

was much the lower for larger nanoparticles (150SiNP 

and 500SiNP, Figure 2C). Exposure of endothelial cells 

to amorphous silica nanoparticles shifted the balance of 

maximal [NO]/[ONOO−] unfavorably. Indeed, the smallest 

nanoparticles (10 nm) at 10 µg/mL significantly reduced the 

ratio of [NO]/[ONOO−] for 5–6 times as compared with the 

larger particles (Figure 2D). Moreover, the [NO]/[ONOO−] 

ratio was decreased in a size-dependent manner by an 

equal concentration (100 µg/mL) of 50SiNP, 150SiNP, 

and 500SiNP (Figure 2E). We obtained a  maximal 

[NO]/[ONOO−] ratio (higher than 2) upon stimulation 

of HUVECs with a calcium ionophore (A23187) in the 

absence of nanoparticles. The low [NO]/[ONOO−] balance 

(,1.0) derived from exposure of primary HUVECs to 

silica  nanoparticles is indicative of high nitroxidative/

oxidative stress and endothelial dysfunction. This effect 

was of highest signif icance for nanoparticles smaller 

than 50 nm.

In addition to our direct measurements with nanosensors, 

we also used fluorescence microscopy to verify indirectly the 

ability of amorphous silica nanoparticles to induce oxida-

tive stress in treated endothelial cells (Figure 3). Moreover, 

the corresponding phase-contrast micrographs suggest cell 

death as a result of necrosis induced by silica nanoparticles, 

because HUVECs detached from the cell culture dish after 

particle exposure (Figure 3).

endothelial NF-κB activation and 
upregulation of inflammatory factors
Because oxidative stress may lead to activation of 

transcription factors,19 we studied the effect of the amor-

phous silica nanoparticles on NF-κB DNA binding activity. 

We show that 10SiNP (10 µg/mL) induced increased 

endothelial NF-κB activity after only 1 hour of exposure 

to cells, when compared with controls in the absence 

of nanoparticles. Furthermore, 50SiNP and 150SiNP 

(50 µg/mL) also increased transcription factor activity in 

3 hours. In contrast, 500SiNP (50 µg/mL) did not affect 

this activity in 3 hours (Figure 4). The endothelial NF-κB 

Table 1 silica nanoparticle characterization. Nanoparticle properties (stock suspension concentration, size, surface charge, particles 
per milliliter, particles per gram, composition, synthesis, and porosity)

10SiNP 50SiNP 150SiNP 500SiNP

Concentration (mg/mL)* 50.0 57.0 100.0 100.0
size (nm)* 10.0 50.0 150.0 500.0
size (nm)† 10.50 ± 0.19 52.67 ± 0.66 148.20 ± 2.19 495.90 ± 5.87
surface charge* Negative Negative Negative Negative
Zeta potential (mV)# −43.44 ± 1.75 −38.33 ± 0.20 −38.43 ± 0.30 −39.29 ± 0.12
Particles per mL* 4.90 × 1016 3.92 × 1014 2.99 × 1013 7.42 × 1011

Particles per gram* 9.55 × 1017 7.64 × 1015 2.83 × 1014 7.20 × 1012

Composition* Pure siO2 Pure siO2 Pure siO2 Pure siO2

synthesis* Precipitated Precipitated Precipitated Precipitated
synthesis* Colloidal Colloidal – –
Porosity* Nonporous Nonporous Nonporous Nonporous

Notes: *supplied by the manufacturer, as well as re-evaluated by †transmission electron microscopy (size) and by #Zetasizer (zeta potential) in ultrapure water.
Abbreviation: siNP, silica nanoparticles.
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Figure 2 Amorphous siNP induce NO and ONOO− production and unfavorably shift the [NO]/[ONOO−] balance in primary human umbilical vein endothelial cells. 
(A) representative recordings of NO and ONOO− concentrations measured in situ by specific nanosensors placed 5 ± 2 µm for the surface of a single cell after addition of 
25 µg/mL 10siNP (arrows) to the cell culture media. Maximal concentration of NO (B) and ONOO− (C) released from cells following stimulation by 10siNP (), 50siNP 
(), 150siNP (•), and 500siNP (°). All values are presented as the mean ± standard error of the mean of n = 4. One-way analysis of variance and Tukey–Kramer multiple 
comparison tests were used to analyze all sets of data. [NO]/[ONOO−] ratio of the maximal NO and ONOO− concentrations measured upon stimulation of cells by siNP 
at 10 µg/mL (D) and at 100 µg/mL (E).
Notes: All values are presented as the mean ± standard error of the mean of n = 4. One-way analysis of variance, Tukey–Kramer multiple comparison test: *P , 0.05, 
***P , 0.001 compared with 10 µg/mL 10siNP (D) and compared with 100 µg/mL 50siNP (E). 
Abbreviation: siNP, silica nanoparticles.

activation induced by silica nanoparticles correlated well 

with nanoparticle-induced oxidative stress (Figure 2).

When activated, NF-κB initiates the transcription of 

several genes involved in inflammation and coagulation.20,21 

Here, we demonstrate that the amorphous silica nanoparticles 

induced upregulation of ICAM1, VCAM1, SELE, MMP9, 

COX2, F3, IL6, and IL8 gene expression in a size-, time-, and 

concentration-dependent manner, when compared with controls 

in the absence of nanoparticles. Three-hour  exposure of primary 

HUVECs to a low concentration (10 µg/mL) of 10SiNP did 

not induce upregulation of gene expression  (Figure 5A). In 

contrast, a 7-hour exposure of primary HUVECs to an equal 

concentration of 10SiNP led to  significant upregulation of 

ICAM1, VCAM1, SELE, COX2, F3, and IL8 gene expression 
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(Figure 5B). Compared with 7 hours, after a 15-hour 

exposure of the cells to an equal concentration (10 µg/mL) of 

10SiNP, a greater upregulation of ICAM1, VCAM1, SELE, 

MMP9, COX2, and F3 gene expression (Figure 5C–H), 

but also IL6 and IL8 (Figure 6A and B) was observed. We 

compared this nanoparticle-induced gene upregulation at 

various concentrations after a 15-hour exposure with the 

effects of larger nanoparticles (Figures 5 and 6). We found 

that upregulation of gene expression was higher when 

the endothelial cells were exposed to increasingly higher 

concentrations of these nanoparticles, but lower when the 

size of these particles increased. Our real-time quantitative 

polymerase chain reaction studies (Figures 5 and 6) correlated 

directly with the unfavorable shift of the [NO]/[ONOO−] 

ratio derived from exposure of the endothelial cells to silica 

nanoparticles (Figure 2).

We also demonstrated that the use of the cell-permeable 

and irreversible proteasome inhibitor, lactacystin, that 

 suppresses NF-κB activity leading to downregulation of 

its target genes,38 significantly preventing upregulation of 

ICAM1, VCAM1, SELE, F3, and IL8 gene expression 

 (Figure 7) induced by exposure of endothelial cells to 

 amorphous silica nanoparticles. However, this effect was not 

observed for the MMP9, COX2, and IL6 genes (Figure 7).

Our data also show that exposure of primary HUVECs to 

amorphous silica nanoparticles resulted in increased release 

of IL6 and IL8 proteins into the cell culture supernatant in a 

size-dependent and concentration-dependent manner when 

compared with controls in the absence of  nanoparticles 

 (Figure 6C and D). Indeed, at 10 µg/mL, 10SiNP induced 

release of both cytokines. In contrast, an equal  concentration 

of larger nanoparticles failed to increase such a release. How-

ever, increasing concentrations of 50SiNP, 150SiNP, and 

500SiNP resulted in significant release of both IL6 and IL8.

Amorphous silica nanoparticles decrease 
viability of primary hUVeCs
Exposure of endothelial cells to amorphous silica nanopar-

ticles led to increased cell death (Figure 8). The smallest 

nanoparticles (10 nm) induced the highest cytotoxicity in a 

time-dependent and concentration-dependent manner. Larger 

nanoparticles (50, 150, and 500 nm) showed very limited or 

no cytotoxicity, even after a 30-hour exposure.

Discussion
The novel findings of our study are that amorphous silica 

nanoparticles when internalized into the cytoplasm of primary 

HUVECs rapidly stimulated NO release. This was followed 

by a greater generation of ONOO−, leading to an unfavorably 

low [NO]/[ONOO−] ratio that correlated well with SiNP-

induced inflammatory responses in endothelial cells. Indeed, 

we observed that silica nanoparticles stimulated NF-κB 

DNA binding activity and upregulation of ICAM1, VCAM1, 

SELE, MMP9, COX2, F3, IL6, and IL8 gene expression. 

NF-κB activation also led to increased ICAM1, VCAM1, 

SELE, F3, and IL8 gene expression. The inflammatory 

A B

C D

Figure 3 Amorphous siNP induce oxidative/nitroxidative stress in primary human 
umbilical vein endothelial cells. As denoted by green fluorescence, exposure of cells 
to 10 µg/mL 10siNP for 1 hour induced free radical production (D) when compared 
with the control in the absence of nanoparticles (B). The corresponding phase-
contract micrographs of control (A) and treated (B) cells suggest cell death by 
necrosis induced by siNP.
Note: scale bars represent 100 µm.
Abbreviation: siNP, silica nanoparticles.
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Figure 4 Amorphous siNP induce NF-κB DNA binding activity in primary human 
umbilical vein endothelial cells. exposure of cells to 10 µg/mL 10siNP for 1 hour 
induced a significant increase of the NF-κB activity when compared with the 
control. Also, exposure of 50 µg/mL 50siNP and 150siNP, but not 500siNP, for 
3 hours induced increased transcription factor activity. The NF-κB DNA binding 
activity induced by each nanoparticle treatment is expressed relative to the control 
sample.
Notes: All values are presented as the mean ± standard error of the mean of 
n = 4. By two-tailed student’s t-test, ^^^P , 0.001 compared with the control. By 
one-way analysis of variance, Tukey–Kramer multiple comparison test: **P , 0.01 
and ***P , 0.001 compared with the control. Filled bars correspond to cells which 
were not exposed to nanoparticles (control) and open bars to cells exposed to 
nanoparticles.
Abbreviation: siNP, silica nanoparticles.
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reactions were associated with increased cell death. All of 

these inflammatory and cytotoxic effects were augmented 

with increased nanoparticle concentration, but were inversely 

proportional to the size of the silica nanoparticles. In fact, 

the smallest silica nanoparticles (10 nm) induced the most 

severe toxic effects on endothelial cells.

We showed that silica nanoparticles rapidly interacted with 

the plasma membrane and internalized into primary HUVECs. 

Nanoparticle uptake by cells may typically occur through 

nonspecific diffusion and/or endocytosis.39 It is increasingly 

recognized that particles of very different materials (eg, mes-

oporous silica40) can enter into the cell easily by endocytosis 

and accumulate in lysosomes. Our electron micrographs seem 

to indicate that endocytosis was involved in silica nanoparticle 

uptake by endothelial cells, since they were found mainly encap-

sulated in vesicles. However, nonencapsulated nanoparticles 

were also observed. This may indicate that the nanoparticles 

were internalized into these cells by mechanisms other than 

endocytosis or, most likely, the content of vesicles/lysosomes 

was released into the cytosol following membrane rupture.

Our transmission electron microscopic studies also 

show formation of silica nanoparticle agglomerates. 

A study by Nishikawa et al41 showed the involvement of 

endothelial caveolae (striated round structures with dimen-

sions of 50–100 nm in both opening diameter and depth) 

in internalization of polysiloxane nanoparticles (diameter 

10–100 nm). The polysiloxane nanoparticles were trapped 

in caveolae in the plasma membrane, internalized into the 

cytosol, and localized in the perinuclear region. Moreover, 

they also suggested the involvement of other  pinocytosis 

pathways, including clathrin-coated pits (basket-like 

structures, 100–200 nm in diameter) and macropinocytosis, 

in the uptake of polysiloxane nanoparticles by endothelial 

cells. Amorphous silica nanoparticles may also internalize 

into HUVECs by caveolin-mediated endocytosis. However, 

some of the nanoparticle agglomerates we observed encapsu-

lated into vesicles in the cytoplasm and interacting with the 

endothelial plasma membrane had dimensions much larger 

than the typical dimensions of caveolae. Nanoparticles have 

a high surface area-to-volume ratio, which increases in the 

opposite direction to size. This property allows adsorption of 

organic molecules and macromolecules, such as proteins. The 

adsorption of proteins at nanoparticle surfaces spontaneously 

occurs as soon as particles are placed in a protein solution. 

It has been shown that the “protein corona” thus formed may 

have fundamental significance for bionano interactions.34 

Zeta potentials provide quantitative information on the 

stability of the particle. Higher zeta potential values (either 

positive or negative) indicate greater repulsion between 

particles, and therefore that the particles are more likely to 

remain dispersed. Therefore, the “protein corona”, along 

with fluid characteristics, hydrophobicity, and zeta potentials, 

Figure 5 Amorphous SiNP induce upregulation of endothelial gene expression of inflammatory mediators. Exposure of cells for 7 hours (B) but not 3 hours (A) to 10 µg/mL 
10siNP upregulated gene expression as recorded by real-time quantitative polymerase chain reaction. The effect of these nanoparticles on gene expression at 15 hours was 
compared with that of larger nanoparticles (C–H). silica nanoparticles upregulated gene expression in a size-, concentration-, and time-dependent manner. The expression 
of each gene, within each sample, was normalized against 18s rrNA expression and expressed relative to the control sample using the formula 2−(∆∆Ct).
Notes: All values are the means ± standard error of the mean of n = 4. By two-tailed student’s t-test, ^P , 0.05, ^^P , 0.01, and ^^^P , 0.001 compared with the control 
(A and B). By one-way analysis of variance, Tukey–Kramer multiple comparison test, *P , 0.05, **P , 0.01, and ***P , 0.001 compared with the control (C–H). Filled bars 
correspond to cells not exposed to nanoparticles (control) and open bars to cells exposed to nanoparticles.
Abbreviations: siNP, silica nanoparticles; ICAM1, intercellular adhesion molecule 1; VCAM1, vascular cell adhesion molecule 1; seLe, selectin e; MMP9, matrix 
metalloproteinase 9; IL6, interleukin-6; IL8, interleukin-8; COX, cyclo-oxygenase; F3, tissue factor.

F3

C
on

tr
ol 1 5 10 18 1 10 25 50 1 10 50 10
0 1 10 50 10
0

0
1
2
3
4
5

8

10

12

14 *
*
*

***

**

*
*
*

***

*

H

F
3 

m
R

N
A

 (
fo

ld
 in

cr
ea

se
)

Nanoparticle concentration (µg/mL)

10SiNP 150SiNP50SiNP 500SiNP

COX2

C
on

tr
ol 1 5 10 18 1 10 25 50 1 10 50 10
0 1 10 50 10
0

0
5

10
15
20
25
35

40

45

50
150
160
170
180
190
200

*

***

*** *
*
*

***

***

G
C

O
X

2 
m

R
N

A
 (

fo
ld

 in
cr

ea
se

)

Nanoparticle concentration (µg/mL)

10SiNP 150SiNP50SiNP 500SiNP

*

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine  2011: 6 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2831

Toxicity of amorphous silica nanoparticles

can affect the formation of nanoparticle agglomerates in the 

biological environment.34,42

We suggest that the collision of silica nanoparticles with 

the endothelial plasma membrane and subsequent opening 

of calcium channels lead to uncoupling of endothelial nitric 

oxide synthase and generation of excessive amounts of 

peroxynitrite. There is convincing evidence that activation 

of stretch-activated calcium channels is linked to stimulation 

of endothelial nitric oxide synthase and rapid generation of 

NO and ONOO−.43 The kinetics of the penetration of the 

cell membrane by silica nanoparticles most likely involves 

a flux of calcium ions into the cytoplasm.44 Therefore, silica 

nanoparticles are likely to stimulate calcium-dependent NO 

release in endothelial cells. The process of increased and 

prolonged NO production leads to depletion of enzymatic 

substrates and cofactors and, eventually, to uncoupling of 

endothelial nitric oxide synthase.45 Uncoupled endothelial 

nitric oxide synthase can generate superoxide,16 which can 

rapidly react with NO to produce ONOO− and change the 

balance of [NO]/[ONOO−] unfavorably. The ratio of the 

maximal NO to the maximal ONOO− concentrations was 

used in this study as an indicator of oxidative/nitroxidative 
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Figure 6 Amorphous siNP induce upregulation of cytokine gene expression and cytokine release in primary human umbilical vein endothelial cells. A 15-hour exposure of 
primary human umbilical vein endothelial cells to nanoparticle-induced upregulation of IL6 (A) and IL8 (B) gene expression, as well as an increased cytokine (C IL6 and D 
IL8) release into the cell culture supernatant in a concentration-dependent and size-dependent manner. The expression of each gene, within each sample, was normalized 
against 18s rrNA expression and expressed relative to the control sample using the formula 2−(∆∆Ct). (A and B). The cytokine release induced by each nanoparticle treatment 
is expressed relative to the control sample (C and D).
Notes: All values are presented as the mean ± standard error of the mean of n = 4. By one-way analysis of variance, Tukey–Kramer multiple comparison test, *P , 0.05, 
**P , 0.01, and ***P , 0.001 compared with the control (A–D). Filled bars correspond to cells which were not exposed to nanoparticles (control) and open bars to cells 
exposed to nanoparticles. 
Abbreviations: siNP, silica nanoparticles; IL6, interleukin-6; IL8, interleukin-8.
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stress leading to endothelial dysfunction. At high levels of 

cytoprotective NO and/or low levels of cytotoxic ONOO−, 

this ratio is high (.2.0) indicating coupled endothelial nitric 

oxide synthase and normal endothelial function. A low ratio 

(,1.0) is associated with dysfunctional endothelium. An 

extremely low ratio (,0.5) is indicative of severe uncoupled 

endothelial nitric oxide synthase and dysfunctional endothe-

lium accompanied by high nitroxidative/oxidative stress.16,18 

Our data show that exposure of endothelial cells to silica 

nanoparticles resulted in a very low [NO]/[ONOO−] ratio, 

especially for 10SiNP (0.11 ± 0.02, at 10 µg/mL), indicative 

of severe uncoupling of endothelial nitric oxide synthase, 

oxidative/nitroxidative stress, cell dysfunction, and  necrosis. 

This high oxidative/nitroxidative stress reflected by high 

ONOO− production and a low [NO]/[ONOO−] balance 

directly triggers a chain of reactions leading to endothelial 

inflammatory responses.19 This is evidenced by the ability 

of the amorphous silica nanoparticles to induce transcription 

factor activation (eg, NF-κB) and eventually increased gene 

expression (eg, ICAM1, VCAM1, SELE, MMP9, COX2, F3, 

IL6, and IL8) and cytokine release (eg, IL6 and IL8).

We found that the amorphous silica nanoparticles induced 

increased endothelial NF-κB activity which was inversely 

proportional to the size of the nanoparticles. These data are 

also consistent with the ability of other nanoparticles to influ-

ence transcription factor activity; for instance, carbon black 

(14 nm) increases the activity of NF-κB and AP-1 in the A595 

lung epithelial cell line in 1 hour.46 Also, crystalline silica has 

been shown to induce production of inflammatory mediators 

by activation of NF-κB in a RAW 264.7 mouse macrophage 

cell line.47 When activated, NF-κB initiates the transcription 

of several genes involved in inflammation and coagulation.20,21 

Our data show that amorphous silica nanoparticle-induced 

upregulation of ICAM1, VCAM1, SELE, MMP9, COX2, F3, 

IL6, and IL8 gene expression in a fashion which was directly 

proportional to incubation time and nanoparticle concentra-

tion, but inversely proportional to nanoparticle size. However, 

use of lactacystin significantly prevented the expression of 

ICAM1, VCAM1, SELE, F3, and IL8. These observations 

indicate that other transcription factors (eg, AP-1) may also 

be involved in the endothelial inflammation induced by amor-

phous silica nanoparticles. Our data also show that exposure 

of primary HUVECs to amorphous silica nanoparticles led 

to increased cytokine release. Interestingly, upregulation of 

cytokine IL8 gene expression induced by silica nanoparticles, 

measured by real-time qualitative polymerase chain reaction, 

was always much higher than that of protein release measured 

by cytometric bead array. These differences may be explained 

by the fact that IL8 can be stored in Weibel-Palade bodies in 

the cytoplasm of endothelial cells.48 In contrast, gene upregu-

lation of IL6 and protein release (fold-to-fold comparison) 

correlated well. Our data are in agreement with previous 

studies. For instance, it has been shown that engineered metal 

oxide particles upregulate ICAM1 and IL8 gene expression in 

human aortic endothelial cells.49 Further, silica nanoparticles 

induce the expression of IL8 in human dermal microvascular 

endothelial cells.50 Furthermore, oxidative stress-mediated 

NF-κB activation by silica nanoparticles has been suggested 

to increase expression of ICAM1, VCAM1, and SELE, as 

well as release of F3 and IL8 proteins in endothelial cells.37 

The inflammatory responses induced by silica nanoparticles in 

endothelial cells reported here are similar to those induced in 

the endothelium in vivo by interleukin 1β and tumor necrosis 

factor-α in the absence of infection.20 These responses corre-

lated directly with an unfavorable shift of the [NO]/[ONOO−] 

ratio, leading to oxidative/nitroxidative stress arising from 

exposure of endothelial cells to silica nanoparticles.

We also demonstrated the ability of amorphous 

 silica nanoparticles to decrease endothelial cell viability. 

These results were observed in direct proportion to incu-

bation time and nanoparticle concentration, but inversely 
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Figure 7 Amorphous SiNP induce upregulation of gene expression of inflammatory 
mediators by NF-κB activation in primary human umbilical vein endothelial cells. 
Upregulation of gene expression of ICAM1, VCAM1, seLe, F3, and IL8 derived from 
exposure of cells to 10siNP (10 µg/mL) was significantly lower in the present of 
lactacystin 1 µM indicating that NF-κB was involved in their expression. expression 
of each gene, within each sample, was normalized against 18s rrNA expression and 
expressed relative to the control sample using the formula 2−(∆∆Ct).
Notes: Two-tailed student’s t-test: *P , 0.05, **P , 0.01, ***P , 0.001 compared 
with controls in the presence of siNP but in the absence of lactacystin. Filled bars 
correspond to cells which were not exposed to nanoparticles (control) and open 
bars to cells exposed to nanoparticles in the present (1 µM) or absence (0) of 
lactacystin.
Abbreviations: siNP, silica nanoparticles; ICAM1, intercellular adhesion 
molecule 1; VCAM1, vascular cell adhesion molecule 1; seLe, selectin e; MMP9, 
matrix metalloproteinase 9; IL6, interleukin-6; IL8, interleukin-8; COX, cyclo-
oxygenase; F3, tissue factor.
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proportional to nanoparticle size. Napierska et al also 

showed size-dependent cytotoxicity of silica nanoparticles 

in EAHY926 cells.51

In summary, amorphous silica nanoparticles penetrated 

the plasma membrane of endothelial cells and stimulated 

rapid NO release. The rapid increase and prolonged pro-

duction of NO lead to an uncoupling of endothelial nitric 

oxide synthase and generation of ONOO−, that eventually 

produced an overall decrease in the [NO]/[ONOO−] ratio. An 

increase in the level of oxidative/nitroxidative stress induced 

by ONOO− decreased the bioavailability of cytoprotective 

NO. The depleted NO and increased ONOO− production 

resulting in a low endothelial [NO]/[ONOO−] balance was 

inversely proportional to nanoparticle size, but in direct 

correlation with particle concentration, and inflammatory 

and cytotoxic responses. This article provides for the first 

time quantitative and qualitative data linking the deleterious 

effects of silica nanoparticles directly to dysfunction of 

endothelial nitric oxide synthase and overproduction of 

ONOO−. Amorphous silica nanoparticles have toxic effects 

on endothelial cells and may impair vascular homeostasis. 

These effects are especially severe for silica nanoparticles 

smaller than 50 nm.
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Figure 8 Amorphous siNP induce cytotoxicity in primary human umbilical vein endothelial cells. exposure of cells to 10siNP (A) and 50siNP (B) significantly decreased 
cell viability. In contrast, 150siNP (C) and 500siNP (D) failed to do so, even after a 30-hour incubation at a 100 µg/mL nanoparticle concentration. Cell viability after each 
nanoparticle treatment was expressed relative to the control sample.
Notes: All values are presented as the mean ± standard error of the mean of n = 4. One-way analysis of variance, Tukey–Kramer multiple comparison test: *P , 0.05, 
**P , 0.01, ***P , 0.001 compared with the control. Filled bars correspond to cells which were not exposed to nanoparticles (control) and open bars to cells exposed to 
nanoparticles.
Abbreviation: siNP, silica nanoparticles.
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