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Background: Radix ophiopogonis polysaccharide (ROP) has been found to be effective against 

myocardial ischemia. One of main problems with its use is its short in-vivo half-life, which makes 

the development of an effective delivery system necessary. To achieve better therapeutic effects 

and patient compliance by prolonging its retention in plasma and increasing its distribution in 

targets, ROP was PEGylated (PEG, polyethylene glycol) in this study.

Methods: Through a moderate coupling reaction between hydroxyl-activated ROP and amino-

terminated methoxy-PEG (mPEG) (30 or 40 kDa), together with a greater than 1 molar ratio of 

ROP to mPEG in reaction, long-circulating and potentially bioactive PEGylated ROPs, with PEG 

grafting number of ∼1.0, were prepared, characterized, and the pharmacokinetics evaluated.

Results: Relative to ROP, whose half-life was approximately 0.7 hours, the two conjugates 

prepared, following intravenous administration, showed markedly prolonged retention in 

systemic circulation with half-lives in blood of 78.4 and 88.3 hours, respectively. When given 

subcutaneously, their in-vivo mean residence times were further markedly prolonged by the 

slow absorption phase. They were found to be well absorbed after subcutaneous administration, 

with absolute bioavailability being 75.4% and 43.9%, respectively.

Conclusion: With apparent molecular masses not exceeding 43 kDa, the conjugates prepared 

have been and will be demonstrated to have prominent advantages for ROP delivery, such as: 

the good absorption following subcutaneous, intramuscular, or other ways of administration; 

the effective utilization of the enhanced permeability and retention effect caused by ischemia; 

and the rapid diffusion within target tissues.

Keywords: radix ophiopogonis polysaccharide, polyethylene glycol, conjugation, pharma-

cokinetics

Introduction
Presently, there are many macromolecular drugs, either marketed or developing,  having 

a short plasma half-life following injection administration due to immunogenicity, low 

stability in vivo, and/or rapid glomerular filtration. Several approaches, including loading 

the drug in various long-circulating colloidal delivery systems and modifying the drug 

chemically, have been developed to improve the pharmacokinetic and  pharmacodynamic 

profiles of such drugs.1,2 Among these approaches, polymer conjugation, the process of 

covalent attachment of polymer chain(s) to a drug  molecule, has grown fast in the last 

few years and has already resulted in a number of products available in the marketplace.2,3 

Many synthetic, semisynthetic, and natural polymers have been investigated as candi-

dates for polymer conjugation, among which, polyethylene glycol (PEG) is the most 

successful one due to its unique advantages: (1) little antigenicity, immunogenicity and 

toxicity; (2) high solubility in many  solvents; (3) highly hydrated and flexible backbone; 

and (4) approval by the Food and Drug Administration for human use in injectable 
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 formulations. PEGylation has been becoming the strategy of 

choice for optimizing delivery of parenteral agents.4,5

Radix ophiopogonis polysaccharide (ROP), a natural 

graminan-type fructan with weight average molecular weight 

(M
w
) of ∼5 kDa, has been found to be very effective against 

myocardial ischemia.6,7 However, due to its unusual  properties, 

ROP is rarely absorbed orally, and is rapidly excreted by 

the kidneys following intravenous administration.8,9 This 

limits its efficacy and clinical application remarkably. In a 

previous study,10 it was found that the effects of PEGylation 

on the bioactivity and pharmacokinetics of ROP mainly 

depend on the grafting degree and the molecular weight of 

the conjugate, respectively. More specifically, only when the 

apparent molecular weight of the conjugate approached the 

glomerular filtration threshold for PEG (∼30 kDa) would its 

plasma elimination reduce abruptly. In general, the conjuga-

tion causes the reduction in the bioactivity of ROP; however, 

well preserved bioactivity is observed when the grafting 

degree of the conjugate is lower. In another study, it was 

found that due to the enhanced permeability and retention 

(EPR) effect caused by ischemia,11,12 the distribution of ROP 

(∼2 nm) is approximately twofold higher in myocardial 

ischemic rat hearts than in normal ones.13 However, the 

utilization of the EPR effect is significantly limited by the 

rapid glomerular filtration of ROP, making the increase far 

from ideal. To achieve better therapeutic effects and patient 

compliance by prolonging its retention in plasma and increas-

ing its distribution in targets, ROP was PEGylated in this 

study through the reaction of hydroxyl-activated ROP with 

amino-terminated methoxy-PEG (mPEG) (30 or 40 kDa) 

under a greater than 1 molar ratio of ROP to mPEG. By 

PEGylating ROP in this way, two conjugates, with mPEG 

grafting degree of ∼1.0 and thus potentially well preserved 

bioactivity, were prepared, purified, and characterized, and 

the pharmacokinetics evaluated.

Materials and methods
Materials and animals
ROP was prepared as described previously.14 Briefly, water-

soluble components of the tuberous roots of Ophiopogon 

japonicus (Cixi, Zhejiang province, China) were extracted 

with ten volumes of water at 95°C–100°C, followed by 

centrifugation. After being concentrated to a suitable level 

(1 mL of extract was pharmacodynamically equivalent to 1 g 

of the roots), the extract was precipitated by the addition of 

five volumes of 95% ethanol. The resulting precipitate was 

redissolved in water and purified by ultrafiltration (M
w
 cut-

off value of membrane: 10,000) under pressure (0.3 MPa). 

Products with molecular weights estimated to be less than 

10,000 were further purified using DEAE Sepharose® Fast 

Flow and Sephadex® G-25 columns (Pharmacia, Uppsala, 

Sweden) in tandem, eluted with water to obtain ROP. Linear 

amino-terminated PEG methyl ethers (mPEG-NH
2
) with M

w
 

30 and 40 kDa were purchased from Jenkem Technology 

Co Ltd (Beijing, China). p-Nitrophenyl chloroformate and 

4-N, N-(dimethylamino) pyridine (DMAP) were purchased 

from Fluka (Buchs, Germany). Fluorescein isothiocyanate 

(FITC) was purchased from Sigma (St Louis, MO). Extra 

dry dimethyl sulfoxide (DMSO) was purchased from Acros 

Organics (Geel, Belgium). Dichloromethane (CH
2
Cl

2
) 

and pyridine from Sinopharm Chemical Reagent Co Ltd 

 (Shanghai, China) were dried over CaH
2
 and KOH, respec-

tively, and distilled prior to use. All other chemicals were of 

reagent grade and purchased from commercial sources.

Male Sprague-Dawley rats (approximately 6–7 weeks 

old) were supplied by Lab Animal Center of the Shanghai 

University of Traditional Chinese Medicine. They were 

kept in an environmentally controlled breeding room for 

4 days before starting the experiments, and fed with standard 

laboratory food and water ad libitum. The Animal Ethical 

Experimentation Committee of the Shanghai University of 

Traditional Chinese Medicine, according to the requirements 

of the National Act on the Use of Experimental Animals 

(People’s Republic of China), approved all procedures of 

the animal experiments.

Preparation and characterization of 
PEGylated ROPs
PEGylated ROPs were synthesized through a coupling reac-

tion between hydroxyl-activated ROP and amino-terminated 

mPEG.10

In detail, the hydroxyl groups of ROP were activated with 

p-nitrophenyl chloroformate in the presence of DMAP as a 

catalyst. ROP (1 g, 0.21 mmol), p-nitrophenyl chloroformate 

(1 g, 4.97 mmol), and DMAP (100 mg) were dissolved in 

40 mL of a mixture of DMSO, CH
2
Cl

2
, and pyridine (2:1:1 in 

volume ratio) and kept at 0°C for 2 hours. The product 

was precipitated in 360 mL of a cold diethyl ether/ethanol 

(1:1, v/v) mixture and filtered. The final product was washed 

at least nine times with the precipitation reagent and dried 

in vacuo for 24 hours. The yield was approximately 90%. 

The p-nitrophenyl carbonate content of each activated ROP, 

which was determined spectrometrically,15 was approxi-

mately 13 per 100 fructose units.

The activated ROP and mPEG-NH
2
 (30 or 40 kDa) 

were dissolved in a mixture of DMSO/pyridine (1:1, v/v). 
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The molar ratio of ROP to mPEG-NH
2
 was set at 10:1 in 

this study so that conjugates with a PEG grafting number 

approaching 1.0 were prepared. The reaction mixture was 

stirred for 4 days at room temperature and then added to a 

cold diethyl ether/ethanol (3:1, v/v) mixture with stirring. The 

white precipitate was collected, washed with an excess of the 

precipitation reagent, and dried in vacuo. The product was 

dissolved in a 0.01 M NaOH aqueous solution to hydrolyze 

the residual p-nitrophenyl groups on the conjugate, followed 

by dialysis and lyophilization.

Characterization of conjugates was carried out by high-

performance gel permeation chromatography (HPGPC) in 

conjunction with anthrone-sulfuric acid colorimetry.10 The 

high-performance liquid chromatography (HPLC) system 

consisted of a Waters liquid chromatograph and a Waters 

2414 refractive index detector (Waters Corporation, Milford, 

MA). After characterization, the conjugates were labeled with 

FITC according to a method previously used.10

Assay of FITC-labeled conjugates
The assay system consisted of an Agilent 1200 series 

 (Agilent Technologies, Santa Clara, CA) HPLC with a fluo-

rescence detector set at λ
ex

 495 nm and λ
em

 515 nm. Samples 

were separated by HPGPC using an 8 mm × 300 mm 

 Shodex® OHpak SB-803 HQ gel-filtration column (Tokyo, 

Japan). The eluent was 0.1 M phosphate buffer (pH 7.4) 

delivered at a flow rate of 0.5 mL/min. The chromatographic 

procedures were performed at 30°C.

Pharmacokinetic study
FITC-labeled PEGylated ROP was administered intrave-

nously to rats via tail vein at a dose of 50 mg/kg. Blood 

samples (approximately 400 µL) were obtained from the 

orbital sinus at the specified time points and then centrifuged 

at 3000 rpm for 10 minutes. The separated plasma was frozen 

at −20°C until assay.

To a 100 µL portion of each plasma sample, 40 µL of 

1 M perchloric acid was added. The mixture was vortexed 

and then centrifuged at 10,000 rpm for 1 minute to precipi-

tate denatured proteins. The supernatant was neutralized by 

the addition of 30 µL of 1 M NaOH. After centrifugation at 

10,000 rpm for 1 minute again, 10 µL of the supernatant was 

assayed by the method described above.

Data analysis
Data were expressed as means ± standard deviations. 

 Statistical analyses were assessed using Student’s t-test. 

 Statistically significant differences were indicated by P-values 

of ,0.05. The Drug and Statistics (DAS) 2.0 pharmacokinetic 

program (Chinese Pharmacology Society, Beijing, China)

was used to calculate pharmacokinetic parameters such as 

area under the curve (AUC), mean residence time (MRT), 

terminal phase half-life (t
1/2

), total volume of distribution 

(V
ss
), systemic clearance (CL), maximal concentration (C

max
), 

time to maximal concentration (T
max

), and bioavailability by 

noncompartmental analysis.

Results and discussion
Preparation of PEGylated ROPs
Site-selective PEGylation of drugs is always preferred as 

it allows easier purification, characterization, and control 

of products and, most importantly, better preservation 

of bioactivity of drugs. Several strategies, such as thiol 

PEGylation,16 accessing specific protein amino groups in an 

appropriate solvent,17 blocking some of the reactive groups 

with a reversible protecting group,18 and glycoPEGylation,19 

had been successfully applied for the site-selective 

 PEGylation of peptides and proteins. However, due to the 

lack of structure-activity knowledge and reactivity-specific 

functional group(s), the site-selective PEGylation of poly-

saccharides is much more difficult than that of peptides 

and proteins. The strategy, using few high molecular mass 

PEG chains rather than a higher number of low molecular 

ones, is therefore especially important for the PEGyla-

tion of polysaccharide-based drugs. In addition, with the 

exception of conjugation sites, no changes in the other 

sites of polysaccharides are preferred. Several methods 

had been reported to PEGylate neutral polysaccharides 

like dextran20–23 and inulin.24,25 Among these methods, the 

one used in the study, which utilizes a moderate coupling 

reaction between the hydroxyl-activated polysaccharide 

and the amino-terminated mPEG, was believed to be more 

suitable for PEGylation of polysaccharide-based drugs 

than those that cause charged conjugates21 or require highly 

alkaline conditions for the coupling,23 since it allows the 

unreacted activated hydroxyls of polysaccharide to return 

to their original form easily by hydrolysis in a weakly 

alkaline solution and thus ensures the least influence on the 

polysaccharide structure and, in turn, on bioactivity. This, 

coupled with a greater than 1 molar ratio of ROP to mPEG 

in reaction, makes sure that the conjugates, with mPEG 

grafting degree of ∼1.0 and thus potentially well preserved 

bioactivity, were prepared. It was found that excessive ROP 

was easily removed from products by dialysis due to the 

great disparity in apparent molecular mass between ROP 

and the conjugates.
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Characterization of conjugates and  
FITC-labeled conjugates
Characterization of PEGylated ROPs is pretty challenging 

because both PEG and ROP are neutral and hydrophilic 

macromolecules as well as lack chromophoric groups. To 

date, nuclear magnetic resonance (NMR) and gel permeation 

chromatography (or size-exclusion chromatography) are the 

most commonly used methods to characterize PEGylated 

polysaccharides. Since ROP is a fructan and thus lacks an 

anomeric proton, the 1H NMR method used to determine 

the grafting degree of PEGylated dextrans20 was found to be 

inapplicable for PEGylated ROPs. It was also found that the 

confirmation of PEGylation by 1H NMR or Fourier transform 

infrared spectroscopy was impractical due to the very few 

carbamate bonds in the conjugates prepared. In this study, they 

were therefore characterized by HPGPC in conjunction with 

the carbohydrate-specific anthrone-sulfuric acid colorimetry. 

PEGylation was affirmed mainly by (1) the slightly left-shifted 

HPGPC peaks and increased polydispersity indices of the 

conjugates when compared with the mPEG agents used, 

and more importantly, (2) the positive chromogenic reaction 

between the anthrone-sulfuric acid reagent and the eluate 

corresponding to the HPGPC peak for each conjugate. The 

calculated apparent molecular masses and PEG-grafting num-

bers for the conjugates are listed in Table 1. For convenience, 

in the following description, the conjugates are denoted as 

0.99
P

30k
-R and 

0.98
P

40k
-R, respectively. Due to the lack of specific 

microassay methods, the conjugates were pre-labeled with 

FITC to study their pharmacokinetics. In terms of the very low 

substitution degrees (approximately 0.25 and 0.15 mol FITC 

per mol 
0.99

P
30k

-R and 
0.98

P
40k

-R, respectively), pharmacokinetic 

behaviors of the FITC-labeled conjugates were believed to be 

similar to those of native conjugates.

Validation of the determination method 
for pharmacokinetic study
FITC pre-labeling coupled with HPGPC was used in this 

study to determine the conjugates in rat plasma and urine. 

The method was validated for specificity, linearity, precision, 

accuracy, sensitivity, recovery, and stability. The results 

showed that the method was specific for the conjugates and no 

obvious breakages of the conjugates were observed during the 

study (Figure 1). The typical retention times for FITC-labeled 

ROP, 
0.99

P
30k

-R, and 
0.98

P
40k

-R were approximately 19.4, 14.5, 

and 13.9 minutes, respectively. The linearity between the 

chromatographic peak height and the concentration was 

evident over the concentration range studied (4–972 µg/mL 

and 6–1458 µg/mL for FITC-labeled 
0.99

P
30k

-R and 
0.98

P
40k

-R, 

respectively), with correlation coefficients larger than 0.998. 

The detection limits for 
0.99

P
30k

-R and 
0.98

P
40k

-R were both 

approximately 2 µg/mL. The precision and accuracy of 

the method were examined by adding known amounts of 

FITC-labeled conjugates to blank rat plasma. The inter- and 

intraday precisions of analysis were not more than 10%, and 

assay accuracy ranged from 92% to 106% (Table 2). The 

absolute recoveries of FITC-labeled conjugates were tested 

at three quality control levels by comparing the calculated 

concentrations from pretreated plasma samples with those 

found by direct injection of standard solutions at the same 

concentration, which were found to be between 58.9% and 

77.3% (Table 2). Analysis of biosamples for storage and 

freeze-thaw stability testing consistently afforded values that 

Table 1 Characterization of mPEG-ROP conjugates

Materials and conjugates Mn (Da) Mw (Da) Mp (Da) Polydispersity index Grafting degree Designation

ROP 1738 2055 1991 1.18 – –
30 kDa mPEG-NH2 30836 33099 34522 1.06 – –
40 kDa mPEG-NH2 34873 41380 48015 1.19 – –
mPEG30k-ROP 32373 34864 34646 1.08 0.991 0.99P30k-R
mPEG40k-ROP 35724 42721 49479 1.20 0.983 0.98P40k-R

Abbreviations: Mn, number average molecular weight; Mp, peak average molecular weight; Mw, weight average molecular weight; mPEG, methoxy-polyethylene glycol; ROP, 
radix ophiopogonis polysaccharide.
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5
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A
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3
2
1

B

Figure 1 Representative chromatograms for determination of FITC-labeled 
(A) 0.99P30k-R and (B) 0.98P40k-R in rat plasma by HPGPC.
Notes: 1, blank plasma; 2, blank urine; 3, urine samples collected after administration 
of FITC-labeled conjugates; 4, blank plasma spiked with FITC-labeled conjugates; 
5, plasma samples collected after administration of FITC-labeled conjugates.
Abbreviations: FITC, fluorescein isothiocyanate; HPGPC, high-performance gel 
permeation chromatography; P, methoxy-polyethylene glycol; R, radix ophiopogonis 
polysaccharide.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2868

Lin et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2011:6

were nearly identical to those of freshly prepared biosamples 

(the relative error was within ±15%). All the results demon-

strated that the method was accurate, specific, and stable.

Pharmacokinetics of PEGylated ROPs
In a previous study,26 the pharmacokinetics of a long-

circulating and bioactive PEGylated ROP with an average 

1.03 mEPG (20 kDa) residues per single ROP (denoted 

as 
1.03

P
20k

-R) was investigated following intravenous or 

subcutaneous administration at three dose levels (9, 20, 

and 50 mg/kg) in rats. An evident linear correlation was 

observed between administration doses and areas under the 

plasma 
1.03

P
20k

-R level versus time profile, regardless of the 

administration route. The tissue distribution of 
1.04

P
20k

-R 

in mice with normal and ischemic myocardium was also 

 studied.27 The results show that the AUC of 
1.04

P
20k

-R in 

ischemic hearts was approximately 1.6-fold greater than in 

normal hearts, indicating that the conjugate still could effec-

tively use the EPR effect caused by ischemia to passively 

target ischemic myocardia.

In this study, pharmacokinetic properties of two more 

long-circulating PEGylated ROPs, namely 
0.99

P
30k

-R and 

0.98
P

40k
-R, were evaluated in rats following intravenous or 

subcutaneous administration at a dose of 50 mg/kg. For 

comparison, blood plasma level-time profiles for ROP, 

1.03
P

20k
-R, 

0.99
P

30k
-R, and 

0.98
P

40k
-R are together shown in 

Figure 2, and main pharmacokinetic parameters are listed 

in Tables 3 and 4. Relative to ROP, whose half-life was 

approximately 0.7 hours, 
1.03

P
20k

-R, 
0.99

P
30k

-R, and 
0.98

P
40k

-R, 

following intravenous administration, showed markedly 

prolonged retention in systemic circulation, with half-lives 

in blood of 35.6, 78.4, and 88.3 hours, respectively. Just as 

for polysaccharides, PEGs, and PEGylated proteins, all of 

the three PEGylated ROPs displayed multicompartmental 

pharmacokinetics (Figure 2A). When the conjugates were 

given subcutaneously, their MRTs were further remarkably 

prolonged by the slow absorption phase. The absorption half-

lives of 
1.03

P
20k

-R, 
0.99

P
30k

-R, and 
0.98

P
40k

-R were 24.9, 24.1, and 

33.2 hours, respectively, approximately 137–188 times that of 

ROP. All the conjugates were found to be well absorbed after 

Table 2 Recovery, precision, and accuracy for the assay of FITC-labeled mPEG-ROP conjugates in rat plasma by HPGPC (n = 5)

Conjugate Concentration (μg/mL) Recovery (%) Accuracy (%) Precision RSD (%)

Intraday Interday

0.99P30k-R 10 58.9 ± 4.7 102 ± 8.2 8.04 8.96
70 77.3 ± 4.4 103 ± 5.9 5.75 8.61
700 61.7 ± 3.1 94.8 ± 4.8 5.05 7.27

0.98P40k-R 10 69.5 ± 6.9  106 ± 10.6 10.0 9.26
100 70.0 ± 5.7 95.5 ± 7.8 8.14 7.45
1000 62.7 ± 1.3 92.4 ± 2.0 2.14 6.93

Abbreviations: FITC, fluorescein isothiocyanate; HPGPC, high-performance gel permeation chromatography; mPEG, methoxy-polyethylene glycol; P, mPEG; R, ROP; 
ROP, radix ophiopogonis polysaccharide; RSD, relative standard deviation.
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Figure 2 Plasma FITC-labeled ROP (open squares), 1.03P20k-R (open circles), 0.99P30k-R (open up-triangles), or 0.98P40k-R (open down-triangles) level versus time profiles following 
(A) intravenous or (B) subcutaneous administration at 50 mg/kg to rats.
Note: Each data point represents the mean ± standard deviation for triplicate experiments.
Abbreviations: conc, concentration; FITC, fluorescein isothiocyanate; P, methoxy-polyethylene glycol; R, ROP; ROP, radix ophiopogonis polysaccharide.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2869

Long-circulating delivery of bioactive polysaccharide

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2011:6

subcutaneous administration, with absolute bioavailability 

being 68.9%, 75.4%, and 43.9%, respectively. This indicates 

that it is promising to give them in such a more convenient 

and safer way so as to achieve better therapeutic effects 

and patient compliance. After subcutaneous administration, 

macromolecules may be transported to systemic circulation 

directly via blood capillaries or indirectly via lymphatics, 

both of which contribute to the absorption of materials from 

the subcutaneous tissue. Studies have shown that greater 

than 50% of a subcutaneous dose may be taken up by the 

peripheral lymphatics for macromolecules whose molecular 

mass exceeds approximately 20 kDa.28–30 Molecular weight, 

or size, is also thought to be the primary determinant for 

the absorption route of macromolecules after subcutaneous 

administration.29,31 In terms of their molecular masses, the two 

conjugates prepared in this study were, therefore, believed 

to be mainly absorbed into blood indirectly via lymphatics. 

Moreover, according to HPGPC chromatograms obtained in 

the pharmacokinetic study, it was believed that the  majority, 

if not all, of the conjugates transported into lymphatics 

could survive from the lymphatic system and reach blood 

undegraded. With larger hydrodynamic volumes and  longer 

plasma residence times, 
0.99

P
30k

-R and 
0.98

P
40k

-R are also 

expected to be able to passively target ischemic myocardia 

more effectively by the EPR effect than 
1.04

P
20k

-R.

In another study,10 several other PEGylated ROPs (
0.8

P
2k

-R, 

4.0
P

2k
-R, 

1.1
P

5k
-R, and 

5.4
P

5k
-R, with apparent molecular masses 

of 3.8, 10.4, 8.3, and 31.2 kDa, respectively) had been pre-

pared and evaluated in pharmacokinetics. The results, together 

with those obtained here, clearly indicate a sigmoidal-shaped 

relation between the apparent molecular masses and the half-

lives of PEGylated ROPs (Figure 3). The apparent molecular 

mass corresponding to the mean point of the sigmoid is 

25.4 kDa, which is a little lower than the reported glomerular 

filtration threshold for PEG (∼30 kDa).32,33 ROP is a highly 

branched fructan, having a backbone composed of Fruf 

(2 → 1) and a branch of Fruf (2 → 6) Fruf (2 → per average 

2.8 of main chain residues.14 By atom force microscope, it was 

found that ROP appeared to be spherical at a concentration of 

0.1 mg/mL.7 Therefore, mPEG-ROP conjugates were believed 

to be more spherical and have lower flexibility and deform-

ability in blood than linear mPEG agents alone. This allowed 

for their more difficult glomerular filtration, especially when 

their sizes were around the sieving threshold of the glomerular 

 capillary wall (∼10 nm)34 and was believed to be the reason 

for the just-mentioned disparity. This finding also coincides 

Table 3 Rat pharmacokinetic parameters following intravenous administration of 50 mg/kg mPEG-ROP conjugates (means ± SD, n = 3)

Parametera ROP10
1.03P20k-R

26
0.99P30k-R 0.98P40k-R

AUC0–∞ (g ⋅ h/L) 0.170 ± 0.024 3.05 ± 0.45 7.30 ± 0.94 23.7 ± 4.5b

MRT0–∞ (hours) 0.826 ± 0.031 22.4 ± 8.0 54.4 ± 12.7 83.2 ± 2.6c

t1/2 (hours)d 0.724 ± 0.004 35.6 ± 9.0 78.4 ± 12.2 88.3 ± 3.0e

Vss (mL/kg) 314 ± 46 853 ± 217 778 ± 109 276 ± 60
CL (L/h per kg) 0.300 ± 0.044 0.017 ± 0.003 0.007 ± 0.001 0.002 ± 0.000

Notes: aCalculated by noncompartmental moment analysis assuming first-order elimination; bP , 0.01, compared with 0.99P30k-R; cP , 0.05, compared with 0.99P30k-R; 
dcalculated from the elimination rate constant (λZ) using the formula t1/2 = 0.693/λZ; 

eP . 0.05, compared with 0.99P30k-R.
Abbreviations: AUC, area under the curve; CL, systemic clearance; mPEG, methoxy-polyethylene glycol; MRT, mean residence time; P, mPEG; R, ROP; ROP, radix 
ophiopogonis polysaccharide; SD, standard deviation; t1/2, half-life; Vss, total volume of distribution.

Table 4 Rat pharmacokinetic parameters following subcutaneous administration of 50 mg/kg mPEG-ROP conjugates (means ± SD, n = 3)

Parametera ROP 1.03P20k-R
26

0.99P30k-R 0.98P40k-R

AUC0–∞ (g ⋅ h/L) 0.160 ± 0.010 2.10 ± 0.46 5.50 ± 0.74 10.4 ± 0.8b

MRT0–∞ (hours) 1.08 ± 0.04 58.4 ± 8.7 89.2 ± 1.3 131 ± 6b

t1/2 (hours)c 0.577 ± 0.082 35.1 ± 15.7 66.8 ± 9.0 89.2 ± 4.4d

ka (×10−2)e   394   2.78   2.87   2.09
Cmax (mg/L) 118 ± 13 43.7 ± 4.5 86.8 ± 17.1 99.4 ± 9.4f

Tmax (hours) 0.444 ± 0.192 18.7 ± 4.6 24.0 ± 0.0 30.0 ± 0.0
F (%)   94.1   68.9   75.4   43.9
CL/F (L/h per kg) 0.328 ± 0.020 0.025 ± 0.005 0.009 ± 0.001 0.005 ± 0.001

Notes: aCalculated by noncompartmental moment analysis assuming first-order elimination; bP , 0.01, compared with 0.99P30k-R; ccalculated from the elimination rate constant 
(λZ) using the formula t1/2 = 0.693/λZ; 

dP , 0.05, compared with 0.99P30k-R; eestimated as the reciprocal of MAT (MAT = MRTsc − MRTiv); 
fP . 0.05, compared with 0.99P30k-R.

Abbreviations: AUC, area under the curve; CL, systemic clearance; Cmax, maximal concentration; F, absolute bioavailability; ka, absorption rate constant; mPEG, 
methoxy-polyethylene glycol; MRT, mean residence time; MRTiv, MRT intravenous; MRTsc, MRT subcutaneous; P, mPEG; R, ROP; ROP, radix ophiopogonis polysaccharide; 
SD, standard deviation; t1/2, half-life; Tmax, time to maximal concentration.
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with the conclusion obtained by Arendshorst and Navar, who 

demonstrated that glomerular filtration of macromolecules 

was related not only to their size and charge but also to their 

shape and rigidity.35 In addition, the sigmoid also indicated 

that mPEG-NH
2
 with molecular mass above 40 kDa might 

not be suitable for PEGylation of ROP due to both the limited 

further increase in elimination half-life and the increased pos-

sibility of accumulation of the agents in the body.

Conclusion
Through a moderate coupling reaction between hydroxyl-

activated ROP and amino-terminated mPEG with proper 

molecular weight ($20 kDa) together with a greater than 

1 molar ratio of ROP to mPEG in reaction, long-circulating 

PEGylated ROPs, with PEG-grafting degree of ∼1.0 and 

thus potentially well preserved bioactivity, can be prepared. 

Characterization of PEGylated ROPs can be carried out 

by HPGPC in conjunction with the carbohydrate-specific 

anthrone-sulfuric acid colorimetry. With apparent molecular 

masses not exceeding 43 kDa, the conjugates prepared in 

this study have been and will be demonstrated to have the 

variety of prominent advantages for ROP delivery, such 

as the long residence time in blood, the good absorption 

following subcutaneous, intramuscular, or other ways of 

administration, the effective utilization of the EPR effect 

caused by ischemia, and the rapid diffusion within target 

tissues.
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