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Abstract: Sepsis is a systemic inflammatory reaction caused by infection. Severe sepsis can lead to multiple organ dysfunction, with 
a high incidence rate and mortality. The molecular pathogenesis of sepsis is complex and diverse. In recent years, with further study of 
the role of extracellular vesicles (EVs) in inflammatory diseases, it has been found that EVs play a dual role in the imbalance of 
inflammatory response in sepsis. Due to the great advantages such as lower toxicity, lower immunogenicity compared with stem cells 
and better circulation stability, EVs are increasingly used for the diagnosis and treatment of sepsis. The roles of EVs in the 
pathogenesis, diagnosis and treatment of sepsis were summarized to guide further clinical studies. 
Keywords: extracellular vesicles, sepsis, inflammatory response, exosome, microvesicle

Introduction
Sepsis is a life-threatening disease, usually caused by the dysregulating host response to infection, resulting in multiple organ 
dysfunction or even death.1–3 Although the mortality of sepsis has decreased to a certain extent with the strengthening of 
hemodynamic monitoring methods, the upgrading of intensive care measures and the early treatment of infection sources, it is 
still the leading cause of death around the world.4,5 There were about 48.9 million new cases of sepsis and 11 million people died 
of sepsis in 2017 according to the latest study.6 Thus, it seems that sepsis warrants more effective early diagnosis and treatment.

At present, a growing body of studies shows that the immune system plays a key role in sepsis.7,8 Invading pathogens cause 
a pathological syndrome characterized by persistent excessive inflammatory activation and immunosuppression.9 Therefore, stem 
cells, especially mesenchymal stem cells (MSCs), could regulate adaptive immune response and innate immune response.10 The 
excessive inflammatory response can be inhibited by reducing pro-inflammatory cytokines such as interleukin-1 (IL-1), inter-
leukin-6 (IL-6) and tumor necrosis factor-α (TNF-α).11–13 However, the clinical application of stem cells has many restrictions: on 
the one hand, they are difficult to cultivate in large quantities; on the other, the side effect of stem cells needs further research, 
including investigation of potential carcinogenicity and multi-differentiation. In addition, stem cell transplantation is not simply 
cell replacement, stem cells can be cleared by liver, spleen and lung, only about 1% of transplanted stem cells reach the target 
organization.14,15 Of note, studies have shown that extracellular vesicles (EVs) are the key effectors of stem cell function.16 Low 
immunogenicity and selective aggregate in acute injury and inflammation sites make EVs a promising therapy for sepsis.17

EVs are lipid bilayer-enclosed vesicles and secreted by various mammalian cells under physiological conditions and 
various disease states.18 EVs can be divided into three main subtypes according to their biogenesis and size, including 
exosomes (Exos), microvesicles (MVs), and apoptotic bodies.19 Various bioactive substances are contained in EVs, such as 
intracellular proteins, nucleic acids (DNA and RNA), lipids and metabolites, which can mediate intercellular communication 
and affect the biological functions of receptor cells.20

EVs have advantages such as low toxicity, low immunogenicity and more stable in blood circulation.21 Therefore, as a choice 
of cell therapy, EVs have been proven to play an important role in many diseases, including malignant tumors, sepsis, 
cardiovascular diseases, and autoimmune diseases.22–25 The influence of EVs on the immune system, including antigen 
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presentation, maturation and differentiation of immune cells, and the application as a drug carrier for immunotherapy have been 
extensively studied.26,27 EVs may have promising clinical value as an important target and approach for the treatment of sepsis. 
Therefore, we reviewed the potential role of EVs in the pathogenesis of sepsis and summarized the diagnosis and efficacy in the 
treatment of sepsis.

What is the Role of Extracellular Vesicles in Sepsis?
The pathogenesis of sepsis is both complicated and dynamic and mainly includes imbalance of inflammatory response, immune 
dysfunction, abnormal coagulation, mitochondrial damage and autophagy. The imbalance of inflammatory response is the most 
predominant pathogenesis of sepsis, and an increasing number of studies have demonstrated that EVs play dual roles, both pro- 
inflammatory and anti-inflammatory, during the inflammatory response to sepsis. Thus, we concluded the important studies 
regarding inflammatory response in sepsis of EVs from various cell sources, such as tissue cells, immune cells, and others 
(Table 1).

The possible pro-inflammatory effect of tissue cell-derived EVs in multiple sepsis models has been reported by numerous 
studies. In sepsis-associated encephalopathy (SAE) rat model induced by cecal ligation and puncture (CLP), Xi et al found that 
intestinal epithelial cell (IEC)-derived Exos could induce M1 polarization in mesenteric lymph nodes (MLNs) and increase the 
level of circulating IL-1β, thus aggravating the damage to hippocampal neurons.28 Balusu et al also suggested that miR-146a 
and miR-155 in EVs derived from choroid plexus epithelium (CPE) enhanced the transcription of the inflammatory gene, such 
as IL-1β, TNF, IL-6, NOS2, and NF-kB, which positively promoted the secretion of IL-6, IL-1β, and TNF in cerebrospinal 
fluid (CSF).29 Lin et al concluded that brain-derived EVs also increased the production of pro-inflammatory mediators and 
induced lung, liver and kidney injury.30 Another research by Liu et al showed that miR-92a-3p contained within alveolar 
epithelial cell (AEC)-derived Exos could activate alveolar macrophages (AMs) and activate the nuclear transcription factor- 
kB (NF-kB) signaling pathway in AMs by inhibiting the expression of PTEN.31 This process increased the expression of 
pro-inflammatory cytokines and exacerbated lung injury. In addition, the Exos derived from hepatocytes contained much high- 
mobility group box-1 (HMGB1), which is considered to be an important late inflammatory mediator.32,44

EVs derived from immune cells also play an important role in the pathogenesis of sepsis inflammation. As a kind of immune 
cells, mononuclear-macrophage cells can kill and phagocytize a variety of pathogens in a non-specific manner, present antigens, 
and produce cytokines; the effect of EVs derived from mononuclear-macrophage cells in sepsis inflammation has been found in 
several studies. Li et al proved that the Exos released from macrophages could be internalized by neighboring macrophages and 
promote the release of TNF-α.33 A recent study also showed that macrophage-derived EVs highly expressed CXCL2, which 
contributed to the recruitment of neutrophils in the liver and the EVs also activated neutrophils through CXCR2/PKC/NOX4 
pathway, thereby promoting inflammatory action.34 Sui et al proposed that Exos from macrophages promoted the release of pro- 
inflammatory factors such as TNF-α, IL-1β, and IL-6 in a sepsis-induced acute lung injury mouse model.35 Dendritic cells derived 
Exos with the brain targeting peptide decoration can help access the blood–brain barrier, whereas these modified Exos increase the 
immune response of the target brain endothelium.45,46 In addition, the pro-inflammatory effect of monocyte-derived Exos in 
sepsis-induced myocardial dysfunction has been reported by Wang et al.36 They found monocyte-derived Exos delivered the 
TXNIP-NLRP3 complex to local macrophages, which could cleave the precursors of IL-1β and IL-18 and produce functional IL- 
1β and IL-18.36

Furthermore, the pro-inflammatory effect of EVs derived from plasma, serum or other body fluids has been confirmed 
by previous studies. Xu et al found the miR-126-3p, miR-122-5p, miR-146a-5p, miR-145-5p, miR-26a-5p, miR-150-5p, 
miR-222-3p, and miR-181a-5p in plasma derived EVs induced inflammation by promoting IL-6, TNF-α, IL-1β, and 
monocyte inflammatory protein-2 (MIP-2) released and neutrophil migration.37 Li et al proposed that plasma EVs 
enriched with miR-210-3p promoted THP-1 macrophage inflammation and BEAS-2B cell apoptosis and inhibited 
autophagy by downregulating ATG7 targeted gene expression.38 MiR-1-3p in plasma-derived Exos was confirmed to 
increase IL-1β and inducible nitric oxide synthase (iNOS) pro-inflammatory factor level by reducing the expression of 
the target gene stress-associated endoplasmic reticulum protein 1 (SERP1).39 Jiang et al found miR-155 could promote 
inflammation by activating macrophages in the sepsis-related acute lung injury (ALI) mouse model.40 In vitro, they found 
M1 macrophages proliferated significantly by targeting SHIP1, and the amount of pro-inflammatory cytokines, such as 
IL-6 and TNF-α, increased by targeting SOCS1.40 In addition, Murao et al proved that the Exos from sepsis serum 
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Table 1 The Role of EVs in Sepsis Pathogenesis

Effect Involved 
Organ

Model Animal Source of EVs/Exos/MVs Cargo Mechanisms Refs.

Pro-inflammatory Brain CLP Wistar rats Intestinal epithelial cell-Exos M1 polarization, circulating IL-1β↑ [28]
Pro-inflammatory Brain LPS C57BL/6 mice Choroid plexus-EVs miR-146a, miR-155 IL-6, IL-1β, TNF↑ [29]

Pro-inflammatory Lung, liver 

and 
kidney

CLP SD rats Brain-EVs IL-1β, IL-6 and TNF-α↑ [30]

Pro-inflammatory Lung LPS SD rats Alveolar epithelial cell-Exos miR-92a-3p PTEN↓, alveolar macrophages and the NF- 

κB pathway↑
[31]

Pro-inflammatory LPS C57BL/6J mice Hepatocyte-Exos HMGB1↑ [32]

Pro-inflammatory Lung LPS C57BL/6 mice Macrophage-Exos TNF-α↑ [33]
Pro-inflammatory CLP C57BL/6 mice Macrophage-EVs Recruit neutrophils, activate the CXCR2/ 

PKC/NOX4 pathway↑
[34]

Pro-inflammatory Lung LPS C57BL/6 mice Macrophage-Exos TNF-α, IL-1β, and IL-6↑ [35]
Pro-inflammatory Heart LPS C57BL/6 mice Monocyte-Exos TXNIP-NLRP3 complex Cleavage of inactive IL-1β and IL-18 in the 

macrophages↑
[36]

Pro-inflammatory LPS C57BL/6J mice Plasma-EVs miR-126-3p, miR-122-5p, miR-146a-5p, miR-145- 
5p, miR-26a-5p, miR-150-5p, miR-222-3p, and 

miR-181a-5p

IL-6, TNF-α, IL-1β, MIP-2↑, peritoneal 
neutrophil migration↑

[37]

Pro-inflammatory Lung CLP mice Plasma-EVs miR-210-3p IL-1β, IL-6 and TNF-α↑ [38]
Pro-inflammatory Lung CLP SD rats Plasma-Exos miR-1-3p SERP1↓, IL-1β and iNOS↑ [39]

Pro-inflammatory Lung LPS BALB/c mice Serum-Exos miR-155 IL-6 and TNF-α↑ [40]

Pro-inflammatory CLP C57BL/6 mice Serum-Exos TNF-α, IL-6↑ [41]
Anti-inflammatory Lung and 

liver

LPS C57BL/6 mice Serum-Exos Differentiation of Th1/Th2 cells, lymphocyte 

cells proliferation and migration↑, TNF-α 
and IL-10↓

[42]

Anti-inflammatory Intestines CLP BALB/c mice Gut epithelial cell-EVs TNF-α and IL-17A↓ [43]

Notes: ↑ Represents an increase or promotion; ↓ Represents a decrease or inhibition. 
Abbreviations: EVs, extracellular vesicles; Exos, exosomes; MVs, microvesicles; CLP, cecal ligation and puncture; LPS, lipopolysaccharide; HMGB1, high-mobility group box-1.
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express a large amount of extracellular cold-inducible RNA-binding protein (eCIRP), which could induce the production 
of IL-6 and TNF-α and the migration of neutrophils.41

EVs not only have pro-inflammatory effects in the pathogenesis of sepsis but also have anti-inflammatory effects 
confirmed by some studies in recent years. Gao et al found that the Exos derived from sepsis mice serum can not only 
promote Th1/Th2 cell differentiation but also promote the proliferation and migration of lymphocytes. After the pretreatment 
of Exos from sepsis serum, both TNF-α and IL-10 declined, but TNF-α declined more significantly, which may be responsible 
for the anti-inflammatory effect of the Exos.42 Appiah et al concluded that the EVs derived from gut epithelial cell in septic 
mice reduced intestinal mucositis by inhibiting TNF-α and IL-17A expression.43 So far, the studies on the anti-inflammatory 
mechanism of EVs in the pathogenesis of sepsis are not clear enough, and both pro-inflammatory and anti-inflammatory 
effects in the inflammatory process of sepsis warrant further exploration.

How Local Extracellular Vesicles Can Treat Sepsis?
EVs are involved in intercellular communication and have the advantages of low toxicity, low immunogenicity and 
circulation stability. Therefore, EVs are increasingly becoming the focus of sepsis treatment. Here, we summarized the 
therapeutic effect of EVs on different organ injuries induced by sepsis (Table 2 and Figure 1).

How Local Extracellular Vesicles Can Treat Sepsis-Induced Lung Injury?
Lung injury is one of the common complications of sepsis, which can develop into acute respiratory distress syndrome 
(ARDS) with severe clinical symptoms, leading to a mortality rate of 40%.66,67 The therapeutic role of EVs has been 
verified by several studies on sepsis-induced lung injury in mouse or rat models.

MSCs are the most common source of EVs in sepsis treatment. Exos derived from bone marrow mesenchymal stem 
cells (BMMSCs) inhibit the expression of hypoxia-inducible factor 1α (HIF-1α), which is anti-inflammation by 
suppressing M1 polarization while promoting M2 polarization.47 Similarly, Liu et al found miR-191 in BMMSC-EVs 
attenuated macrophage inflammatory response by suppressing death-associated protein kinase 1 (DAPK1) translation.48 

In addition, Chen et al proposed that small EVs derived from human umbilical cord mesenchymal stromal cells 
(huMSCs) upregulated antioxidant enzymes IκB and inhibited mitogen-activated protein kinase/nuclear factor kappa 
B (MAPK/NF-κB) pathway, thus reducing microvascular permeability and suppressing neutrophil infiltration in lung 
tissue.49 Deng et al reported that Exos derived from adipose tissue-derived mesenchymal stem cells (ADMSCs), 
BMMSCs, and huMSCs can all inhibit macrophage glycolysis, attenuate pro-inflammatory factor synthesis, and 
ameliorate lung injury. They further compared the Exos from different MSCs and ADMSC-Exos showed greater 
protection efficacy than the other two.50 Zhou et al verified that Exos derived from endothelial progenitor cells (EPC) 
reduced cytokine and chemokine levels in plasma by promoting miR-126-3p and miR-126-5p release in CLP sepsis 
model,51 and they further found miR-126-3p and miR-126-5p inhibited the delivery of HMGB1 and vascular cell 
adhesion molecule 1 (VCAM1) to ameliorate inflammatory and attenuate vascular permeability in the lung.51

Apoptosis of alveolar epithelial cells has been suggested as a crucial pathogenesis of ALI, inhibiting alveolar epithelial cell 
apoptosis is conducive to recovery of lung function.68 Jiang et al found miR-125b-5p in cerebral microvascular endothelial 
cell-derived Exos suppressed the expression of topoisomerase II alpha (TOP2A) to inhibit inflammatory factor infiltration and 
alleviate apoptosis in the lung.52 Mizuta et al found that the Exos derived from ADMSC activated PI3K/Akt pathway by 
transferring miR-126, thus reducing the apoptosis of vascular endothelial cells.53 Similarly, lncRNA-p21 in BMMSC-Exos 
inhibited apoptosis of pulmonary epithelial cells by promoting sirtuin 1 (SIRT1) expression and downregulating miR-181.54 

Shen et al reported that circular RNA (circ)-Fryl in ADMSC-Exos inhibited the expression of inflammatory factors and 
apoptosis of alveolar epithelial cells by regulating miR-490-3p/SIRT3 pathway.55

Coagulopathies also influence the development and prognosis of sepsis to a significant extent.69 Cointe et al 
certificated that granulocyte derived MVs with high plasmin generation capacity (PGC) reduced clot formation in lung 
and kidney by expressing a higher level of uPA receptor (uPAR) on the surface of MVs.56
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Table 2 Therapeutic Effects of Native EVs in Sepsis Induced Organ Injury

Involved Organ/ 
Disease

Model Animal In vitro 
Model

Injection Dosage Source of 
EVs/Exos/ 
MVs

Cargo 
in EVs

Mechanism Effect Refs.

Lung injury LPS C57BL/6 mice MH-S cells Intraperitoneal 50mg Exos BMMSC-Exos HIF-1α↑ Reduce the inflammatory 

response

[47]

Lung injury THP-1 cells BMMSC-EVs miR-191 DAPK1↓ Attenuate macrophages 

inflammatory response

[48]

Lung injury CLP C57BL/6 mice Tail vein 30μL MSC sEVs huMSC-EVs Anti-oxidative 
enzymes↑, 

MAPK/NF-κB 

pathway↓

Improve pulmonary 
microvascular permeability, 

inhibit neutrophil infiltration in 

lung tissue

[49]

Lung injury LPS C57BL/6 mice RAW264.7 

cells

Intravenous 100μg Exos ADMSC-Exos, 

BMMSC-Exos, 

huMSC-Exos

Inhibit glycolysis of 

macrophages and reduce the 

synthesis of pro-inflammatory 
factors

[50]

Lung injury CLP CD-1 mice HMVECs Intravenous 2 mg protein/kg EPC-Exos miR-126- 

3p, miR- 
126-5p

IL-6, IFNγ, 

TNF-α, HMGB1 
and VCAM1↓

Reduce the inflammatory 

response, attenuate vascular 
permeability

[51]

Lung injury CLP BABL/c mice Tracheal 

instillation

80 μg Exos Cerebral 

microvascular 
endothelial 

cell-Exos

miR- 

125b-5p

Topoisomerase 

II alpha↓
Inhibit inflammatory factors 

infiltration and alleviate 
apoptosis

[52]

Lung injury Histone 
infusion 

model

C57BL/6 N mice HUVECs Intravenous 3×105 cells 
ADMSC

ADMSC-Exos miR-126 PI3K/Akt 
pathway

Suppress endothelial apoptosis [53]

Lung injury LPS C57BL/6 mice MLE-12 cells BMMSC-Exos lncRNA- 
p21

SIRT1↑, miR- 
181↓

Inhibit apoptosis of pulmonary 
epithelial cells

[54]

Lung injury CLP mice AEC Tail vein 200μg Exos ADMSC-Exos circ-Fryl miR-490-3p/ 

SIRT3 pathway

Inhibit the expression of 

inflammatory factors and 
apoptosis of alveolar epithelial 

cells

[55]

Lung and kidney 
injury

CLP CD-1 mice Tail vein 107 MVs Granulocyte- 
MVs

uPAR↑ Reduce clot formation [56]

Myocardial injury CLP C57BL/6 mice cardiomyocytes Tail or jugular 

vein

2 μg/g body 

weight Exos

BMMSC-Exos miR-223 Sema3A and 

Stat3↓
Reduce the inflammatory 

response and suppress 
cardiomyocyte apoptosis

[57]

(Continued)
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Table 2 (Continued). 

Involved Organ/ 
Disease

Model Animal In vitro 
Model

Injection Dosage Source of 
EVs/Exos/ 
MVs

Cargo 
in EVs

Mechanism Effect Refs.

Myocardial injury CLP KM mice Tail vein 2 μg Exo/g BMMSC-Exos miR-141 PTEN/β-catenin 
axis

Reduce the inflammatory 
response and cardiomyocyte 

apoptosis

[58]

Myocardial injury LPS C57BL/6 mice cardiomyocyte 
HL-1

Tail vein M2 
macrophages- 

Exos

miR-24- 
3p

Tnfsf10↓ Reduce the inflammatory 
response and cardiomyocyte 

apoptosis

[59]

Myocardial injury CLP C57BL/6 mice RAW264.7 
cells

HUVEC-Exos HSPA12B NF-κB 
activation and 

nuclear 

translocation↓

Attenuate macrophages 
inflammatory response

[60]

Acute kidney 

injury

CLP C57/BL6 mice Tail vein 100 μg Exos ADMSC-Exos SIRT1 pathway Inhibit inflammation, apoptosis 

and improve microcirculation 

in kidney

[61]

Acute kidney 

injury

CLP C57BL/6 mice BMDMs Tail vein BMMSC-Exos miR-27b JMJD3/NFκB/ 

p65 axis

Reduce pro-inflammatory 

cytokines

[62]

Acute kidney 
injury

CLP C57Bl/6 mice Tail vein 120 μg Exos huMSC-Exos miR- 
146b

IRAK1↓, NF-κB↓ Inhibit inflammation, renal 
tubular cells apoptosis, and 

improve kidney function

[63]

Acute kidney 
injury

LPS SD rats 1×105 Exos and 
5×105 Exos

ADMSC-Exos, 
BMMSC-Exos

Inhibit inflammation, oxidative 
stress and apoptosis

[64]

Acute kidney 

injury

CLP C57/BL6 mice HK2 cells Intravenous 2 mg/kg EVs EPC-EVs miR-93- 

5p

KDM6B/ 

H3K27me3/ 
TNF-α axis

Inhibit inflammation, apoptosis, 

vascular leakage in kidney, and 
reduce organ damage

[65]

Notes: ↑ represents an increase or promotion; ↓ represents a decrease or inhibition. 
Abbreviations: EVs, extracellular vesicles; Exos, exosomes; MVs, microvesicles; LPS, lipopolysaccharide; HIF-1α, hypoxia-inducible factor 1α; CLP, cecal ligation and puncture; sEVs, small extracellular vesicles; HMVECs, human 
microvascular endothelial cells; EPC, endothelial progenitor cells; HUVECs, human umbilical vein endothelial cells; SIRT1, sirtuin 1; AEC, alveolar epithelial cell; uPAR, urokinase plasminogen activator receptor; BMDMs, bone marrow- 
derived macrophages.
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How Local Extracellular Vesicles Can Treat Sepsis-Induced Myocardial Injury?
Myocardial injury is one of the severe complications of sepsis and is linked to a poor outcome.70,71 The mortality rate 
increased significantly when complicated with myocardial injury in patients with sepsis.72 Therefore, reducing myocar-
dial injury and promoting cardiac function recovery is helpful to reduce sepsis-associated mortality.

Wang et al suggested that BMMSC-Exos downregulated Sema3A and Stat3 by transferring miR-223 to cardiomyo-
cytes, further reducing the inflammatory response and suppressing cardiomyocyte apoptosis.57 Pei et al confirmed that 
miR-141 in BMMSC-Exos had the same myocardial protection effect by regulating PTEN/β-catenin axis.58 A more 
recent study by Sun et al found the level of miR-24-3p was high in M2 macrophages-derived Exos, which played 
a protective role in myocardial cells and improved the cardiac function after sepsis injury by downregulating the 
expression of tumor necrosis factor superfamily member 10 (Tnfsf10).59 Tu et al reported that the heat shock protein 
A12B mainly expressed in human umbilical vein endothelial cells (HUVEC)-Exos inhibited NF-κB activation and 
nuclear translocation in macrophages, thus attenuating the pro-inflammatory effect of macrophages.60

How Local Extracellular Vesicles Can Treat Sepsis-Induced Acute Kidney Injury?
About 60% of sepsis patients suffer from acute kidney injury,73 which was considered as one of the common complications of 
sepsis.74 The mortality and number of days of hospitalization of sepsis patients are closely related to acute kidney injury.75

Gao et al suggested that ADMSC-Exos inhibited inflammation, apoptosis and improved microcirculation in sepsis 
induced acute kidney injury model by activating the SIRT1 pathway.61 Sun et al verified that miR-27b in BMMSC-Exos 
regulated the JMJD3/NFκB/p65 axis to suppress the expression of pro-inflammatory cytokines, such as TNF-α, IL-1β, 
and IL-6.62 MiR-146b in huMSC-Exos also played an important role in relieving kidney injury and improving kidney 
function via downregulating interleukin-1 receptor-associated kinase (IRAK1) and inhibiting NF-κB activation.63 

A recent study by Zhang et al concluded that both ADMSC-Exos and BMMSC-Exos could attenuate inflammation, 
oxidative stress, and apoptosis in the sepsis rat model. In addition, they further compared the effect of these Exos and 
found that the protective effect of ADMSC-Exos was better than that of BMMSC-Exos.64 In addition, He et al found that 
miRN-93-5p in EPC-EVs inhibited inflammation, apoptosis, and vascular leakage in kidney via the KDM6B/H3K27me3/ 
TNF-α axis.65 They further found that EPC-EVs alleviated the damage to kidney, liver and lung tissue caused by 
histological staining.65

Figure 1 Therapeutic effects of native EVs in sepsis-induced organ injury. 
Abbreviations: BMMSC, bone marrow mesenchymal stem cell; ADMSC, adipose tissue-derived mesenchymal stem cell; huMSC, human umbilical cord mesenchymal 
stromal cell; EPC, endothelial progenitor cell.
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How Engineered Extracellular Vesicles Can Treat Sepsis?
Although native EVs showed considerable efficacy in treating sepsis, engineered EVs received more attention in recent 
years due to their increased ability in sepsis target treatment. Here, we concluded several modification methods of EVs in 
sepsis treatment (Table 3).

How Genetic Modified Extracellular Vesicles Can Treat Sepsis?
Genetic modification of donor cells can be a promising approach for sepsis treatment. The genetic modified EVs 
presented anti-inflammatory, immunomodulatory and anti-apoptotic by overexpressing or knocking down specific 
genes or proteins.

Zhou et al transfected Pink1 siRNA into huMSC, which increased the expression of PTEN-induced putative kinase 1 
(PINK1) in huMSC-Exos, and found that restoration of mitochondrial calcium efflux in cardiomyocytes provided 
a cardioprotective effect by modulating the PINK1-PKA-NCLX axis.76 Li et al engineered MSC-Exos to overexpress 
CircRTN4, which can regulate miR-497-5p/MG53 axis to reduce inflammation and suppress apoptosis in 
cardiomyocytes.77

In addition, EVs with gene knockout or suppressed protein expression can also be used for sepsis treatment. Ding et al 
transferred siCCR2 to silence C–C receptor 2 (CCR2) in macrophage-derived EVs; these modified EVs eliminated the 
chemotaxis of mononuclear-macrophage cells to C–C ligand 2 (CCL2) and decreased the mobilization of monocytes in 
the spleen.78

How Extracellular Vesicles Can Serve as Delivery vehicles for the Treatment of Sepsis?
Proteins, genes, and drugs could be loaded selectively in EVs; the cargo was then delivered to target sites to exert 
therapeutic effects. Sun et al first used EVs as drug-delivery vehicles for the treatment of sepsis, and they found EL-4 
derived Exos could specifically deliver curcumin to the inflamed tissues and exert anti-inflammatory effects in lung tissue 
by downregulating CD11b+Gr-1+ cell levels.79 Gao et al took advantage of nitrogen cavitation for the rapid preparation 
of EVs and confirmed that these neutrophil-derived EVs subjected to nitrogen cavitation had the same function for drug 
delivery as native EVs, which inhibited neutrophil infiltration in the lung, liver and kidney tissues by loading 
piceatannol.80 Choi et al used EXPLOR technology to load super-repressor IkB (srIkB) into human embryonic kidney 
293T cell line-derived Exos, which were shown to inhibit the inflammatory response and inhibit tubular epithelial cell 
apoptosis in both LSP sepsis and CLP sepsis models.81

How Does Pretreatment of Extracellular Vesicles Treat Sepsis?
Precondition is a common EV-modification strategy that promotes EVs secretion, enhances circulatory stability, and 
regulates gene and protein expression in vesicles, thereby enhancing the treatment of disease. Multiple studies in recent 
years examined different pretreatments of EVs and found that EVs could exert antisepsis effects through multiple 
pathways.

For example, Kumagai et al pretreated neutrophils with LL-37 to promote EVs release and improve antimicrobial 
activity.82 Song et al proved that the Exos isolated from huMSC stimulated by IL-1β could upregulate miR-146a, thus 
inducing M2 polarization and reducing the inflammatory response in the septic mouse model.83 A recent study by Yao 
et al also pretreated MSC with IL-1β, they found miR-21 in Exos increased significantly and found the same result as 
Song et al.84 Furthermore, Pan et al conducted limb remote ischemic preconditioning (rIPC) in C57BL/6 mice, they 
found miR-21 increased significantly in the Exos. MiR-21 as an anti-apoptotic miRNA could both suppress apoptosis in 
the kidney and reduce the production of pro-inflammation factors by regulating PDCD4/NF-κB and PTEN/AKT 
pathways.85 They also verified the same effect of Exos derived from C2C12 cells after hypoxia and reoxygenation 
preconditioning.85 Zhu et al used the same pretreatment strategy as Pan et al and found miR-142-5p reduced the level of 
pro-inflammatory factors and neutrophil infiltration, it also relieved pulmonary oedema via the PTEN/PI3K/Akt axis.86 In 
addition, ADMSC subjected to hypoxic preconditioning promoted mmu_circ_0001295 expression in Exos, which 
attenuated renal vascular leakage and inflammation in kidney and improved kidney function.87
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Table 3 Therapeutic Effects of Engineered EVs in Sepsis

Modifications Involved 
Organ/ 
Disease

Sepsis 
Models

Source of 
EVs/Exos/MVs

Reengineering 
Routes

Target Effect ref.

Genetic 
modification

Myocardial 
injury

CLP huMSC-Exos Transfection to 
overexpress Pink1

PINK1-PKA-NCLX 
axis

Recover cardiomyocyte mitochondrial calcium efflux [76]

Genetic 

modification

Myocardial 

injury

CLP MSC-Exos Transfection to 

overexpress CircRTN4

miR-497-5p/MG53 

axis

Inhibit inflammation, suppress cardiomyocyte apoptosis and oxidative 

stress

[77]

Genetic 

modification

Lung CLP Macrophage-EVs Transfect siCCR2 to 

silence CCR2

Inhibit the chemotaxis of mononuclear-macrophage cells to CCL2 and 

the mobilization of monocytes in the spleen

[78]

Delivery vehicles Lung LPS EL-4-Exos Deliver curcumin CD11b+Gr-1+ cells↓ Inhibit inflammation [79]
Delivery vehicles Lung, liver, 

kidney

LPS Neutrophil-EVs Deliver piceatannol Inhibit inflammation [80]

Delivery vehicles Kidney CLP/LPS HEK293T cells- 
Exos

Deliver srIκB Reduce inflammatory response, inhibit renal tubular epithelial cells 
apoptosis

[81]

Precondition CLP Neutrophil-EVs Pretreat neutrophil 

with LL-37

Promote EVs release, improve antimicrobial activity [82]

Precondition Liver, lung, 

kidney

CLP huMSC-Exos Pretreat huMSC with 

IL-1β
miR-146a↑ Inhibit inflammation [83]

Precondition Liver CLP MSC-Exos Pretreat MSC with IL- 
1β

miR-21↑ Inhibit inflammation, attenuate liver injury [84]

Precondition Kidney CLP Serum-Exos rIPC miR-21↑ Inhibit inflammation, suppress apoptosis [85]

Precondition Lung LPS Serum-EVs rIPC miR-142-5p↑ Inhibit inflammation, reduce pulmonary edema [86]
Precondition Kidney CLP ADMSC-Exos Pretreat ADMSC with 

hypoxia

mmu_circ_0001295↑ Attenuate renal vascular leakage and inflammation, improve kidney 

function

[87]

Notes: ↑ represents an increase or promotion; ↓ represents a decrease or inhibition. 
Abbreviations: EVs, extracellular vesicles; Exos, exosomes; MVs, microvesicles; CLP, cecal ligation and puncture; LPS, lipopolysaccharide; rIPC, remote ischemic preconditioning.
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How Extracellular Vesicles Can Help Diagnose Sepsis?
Early clinical intervention may improve outcomes and reduce the mortality of patients with sepsis.88 Consequently, recent 
studies focus on the early diagnosis of sepsis. To date, conventional biomarkers for the diagnosis of sepsis were C-reactive 
protein, procalcitonin (PCT) and L-lactate.89 Except these, novel biomarkers, such as heparin-binding protein,90 

presepsin,91,92 iNOS93 have been applied in the early diagnosis of sepsis, but their diagnostic value is controversial.94,95 Of 
note, EVs might also play an important role in the early diagnosis, condition monitoring, and prognosis of sepsis.

Increased numbers of EVs have been suggested as an early marker for sepsis diagnosis in several studies.96–98 In 
addition, elevated EVs in plasma are also strongly associated with mortality in patients with sepsis.99,100

EVs were actively secreted by a variety of cells, and the surface proteins were similar to donor cells. The association 
between membrane protein on the surface of EVs and the prognosis of sepsis has been certified by studies. For instance, 
higher CD63-positive Exos indicated severe organ failure and higher mortality in sepsis patients.101 CD14-positive EVs 
derived from bronchoalveolar lavage fluid were correlated with the severity and mortality of sepsis-induced ARDS.102 

Annexin V-positive, CD45-positive, CD16-positive, CD14-positive, and CD41-positive EVs were increased significantly 
in case of death, which could be used as biomarkers for the prognosis of sepsis.103

In addition, bioactive substances contained in EVs, such as nucleic acids and protein, may be used as biomarkers for sepsis 
diagnosis and prognosis. MiR-483-3p and Let-7d-3p in plasma-derived EVs were related to the severity of sepsis and 
identified as biomarkers for early diagnosis.104 In a recent clinical study, Ye et al found that the level of miR-150-5p from 
neutrophil-derived EVs in sepsis-induced cardiomyopathy patients was significantly lower than that in a healthy person and 
septic patients without septic cardiomyopathy; thus, miR-150-5p might be a predictor of septic cardiomyopathy.105 The 
prognosis of sepsis could also be predicted by the presence and amount of miRNA in Exos, such as miR-125b-5p and miR- 
27b-3p.106 Hermann et al regarded miR-1246 as the biomarker for the risk of community-acquired pneumonia complicated 
with sepsis.107 DNA methyltransferase (DNMT) mRNA load in plasma EVs might be used to diagnose septic shock.98 The 
levels of hsa_circRNA_104484 and hsa_circRNA_104670 in serum-derived Exos of sepsis patients were different from that 
of healthy people, which were considered as diagnostic biomarkers of sepsis.108 Except for nucleic acids contained in EVs, 
proteins such as activating transcriptional factor 3 (ATF3), iNOS, were also helpful for early diagnosis.109,110 Protein SPTLC3 
was closely related to the development of sepsis, thus it might be useful to monitor the progression of sepsis.111

How Nano-Medicinal Materials Can Help Diagnose and Treat Sepsis?
There are still some deficiencies in EVs limiting the application in clinical practice: low production yield, presence of 
unwanted cargos, and rapid elimination.112,113 To overcome these problems, nano-medicinal materials were widely used 
for the treatment of disease since the 1990s.114,115 Nanoparticles (NPs) were synthesized from organic or inorganic 
particles, with a size of 1 to 100 nm.116 In recent years, the importance of NPs in the diagnosis and treatment of sepsis 
has also received more attention. In this section, we classified NPs according to their structure and composition and 
summarized the therapeutic effects of different classification of NPs on sepsis (Figure 2).

Lipid NPs were the first nano-medicinal materials used as a durg-delivery system in clinical practice.117 In recent 
years, Hou et al delivered the antimicrobial peptide and cathepsin B (AMP-CatB) mRNA to macrophages by using 
vitamin C lipid nanoparticles (VCLNPs), which enhanced the bactericidal activity of macrophages and played a role in 
sepsis caused by multi-drug resistant (MDR) bacteria.118 Schrijver et al loaded the fusion protein of apolipoprotein A1 
and IL-4 into lipid NPs and found these lipid NPs could overcome immunoparalysis in septic mice.119 As an early 
discovered lipid NPs, liposomes were proposed as an effective drug-delivery system. Chen et al suggested that lanosterol- 
containing liposomes (LAN-L) had anti-inflammatory effects in sepsis and reduced mortality in septic mice.120

Inorganic NPs are composed of a metal core and an organic layer covering the surface of the core. Due to their special 
structure, they are considered to be a good choice for sepsis diagnosis. NPs in electrochemical immunosensor can increase the 
detection sensitivity of sepsis biomarkers such as PCT.121–123 NPs were also used in the biosensor for the detection of IL-6.123–126 

For MMP-9 detection, Alekhmimi et al used peptide-magnetic NP conjugates in the biosensor.127 In addition, inorganic NPs also 
help for sepsis treatment. Gold nanoparticles (AuNP) that have anti-inflammatory and antioxidant effects were used to treat 
inflammatory diseases.128 These effects were enhanced when the AuNP and n-acetylcysteine (NAC) association is present in 
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sepsis treatment.129 Di Bella et al concluded that citrate-covered gold nanoparticles (cit-AuNP) had the same effect in the brain of 
septic mice.130 In addition, Cu2O-coated non-metallic core-shell selenium NPs were regarded as an effective therapeutic method 
for sepsis by consuming endogenous H2S.131 Wang et al found that zero-valent iron nanoparticles (nZVIs) could also alleviate 
sepsis induced myocardial injury through anti-inflammatory and antioxidant effects.132 Wang et al concluded that sulfide- 
modified nZVIs had higher stability and more myocardial protective efficacy than nZVIs.133 Inorganic NPs were also played 
a role in drug delivery. Silver NPs loaded with resveratrol conferred better protective effect in liver injury caused by sepsis.134

The therapeutic effect of polymeric NPs in sepsis has become a focus of much research. Poly(lactic-co-glycolic acid) 
(PLGA) and poly(lactic acid) (PLA) were often used as polymeric NPs for treatment of sepsis due to their good 
biocompatibility and biodegradability. Yang et al loaded γ3-PLGA NPs with Sparfloxacin (SFX) and Tacrolimus (TAC), 
which conferred a protective effect in lung injury by inhibiting inflammatory and immune responses.135 Reddy et al 
encapsulated moxifloxacin (MOX) in transferrin decorated PLGA NPs to reduce complicated intra-abdominal 
infection.136 Moreover, silymarin (SM) loaded PLGA NPs could reduce inflammatory response by promoting M2 
polarization.137 MiR-223 could promote macrophage polarization; thus, Ding et al loaded miR-223 on cyclodextrin- 
based NPs to target M1 macrophages; they found that these NPs reduced inflammation by targeting Pknox1 and 
inhibiting the NF-κB signaling pathway.138 Furthermore, as a natural polymer, chitosan (CS) also be used as a drug- 
delivery carrier in sepsis treatment. Teng et al synthesized an octenylsuccinic anhydride (OSA)-functionalized CS 
nanoformulation to strengthen the treatment of sepsis-induced lung injury.139 Polymeric NPs can also treat sepsis through 
immune regulation. For example, Lasola et al synthesized immunomodulatory nanoparticles (iNPs) by PLA with either 
poly(vinyl alcohol) (PVA) or poly(ethylene-alt-maleic acid) (PEMA), and found that iNPs exert anti-inflammatory effect 
through the inhibition of NF-κB p65 phosphorylation.140 In addition, Koda et al synthesized amphiphilic block 
copolymers by poly(ethylene glycol) (PEG) and hydrophobic poly(cysteine) (PCys). These block copolymers were 
used to increase the half-survival time of septic mice.141

Biomimetic NPs have been suggested as a promising novel treatment of sepsis by several recent studies. For example, 
EV-mimetic ghost nanovesicles had a 200-fold greater production yield than EVs, and could inhibit the release of IL-8 by 
targeting the delivery of dexamethasone to endothelial cells.142 Exosome biomimetic NPs loading specific miRNA ratio 
alleviated organ injury of sepsis by suppressing inflammation and diffuse coagulation, which showed a greater 

Figure 2 Therapeutic effects of nanoparticles in sepsis. Created with Biorender.com.
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therapeutic effect than native Exos.143 Park et al prepared a large number of EV-mimetic nanovesicles (NVs) derived 
from MSCs by serial extrusions and floating in a density gradient.144 The septic mice were then injected with these NVs 
intraperitoneally, and Park et al found that NVs play an anti-inflammatory role by increasing the level of IL-10.144 

Molinaro et al found that leukosomes, derived from macrophage biomimetic NPs, can suppress the inflammatory 
response of endothelial cells by decreasing pro-inflammatory factors and increasing anti-inflammatory factors, thus 
prolonging the life span of septic mice.145 In addition, NPs derived from fibroblast cell have anti-inflammatory and 
bactericidal effects in the treatment of sepsis.146

Future Perspectives
Although EVs have been confirmed by multiple studies to play an important role in the inflammatory response and have 
significant potential in the early diagnosis and treatment of sepsis, the limitation of EVs still needs further study.

In the study of the pathophysiological role of EVs in sepsis, the imbalance of inflammatory response is still the focus, 
but the pathogenesis of sepsis is complex, immune dysregulation, abnormal coagulation, and autophagy are increasingly 
well accepted. Sepsis is a continuous process, so there might be significant pathophysiological differences between the 
different stages thereof. Excessive systemic inflammation and cytokine storms are the main cause in the early stage of 
sepsis; however, immunosuppression plays an important role in the late stage of sepsis.147,148 It is therefore necessary to 
explore the effect of EVs in other mechanisms and different stages of sepsis.

For review of current preclinical studies, small animals, such as mice and rats, are mainly used in sepsis model 
construction, and the diagnostic and therapeutic role of EVs confirmed by small animal model may be different from that 
in humans. The administrative route and dosage of EVs in various organ injury models are inconsistent, necessitating 
exploration of the effect of EVs in large animal sepsis models to define the most effective mode of administration in 
different organ injuries induced by sepsis.

Although NPs showed the potential in promoting transmembrane transport, prolonging circulation times, with easy 
large-scale preparation, there remain some limitations of NPs, such as their simple types of cargo delivery and drug 
resistance. At present, the treatment of sepsis with EVs or NPs remains focused on preclinical research. Perhaps 
combining the knowledge of these two fields will accelerate the clinical application of sepsis treatment.
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