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Abstract: Anaplastic thyroid carcinomas (ATCs) are a rare subtype of thyroid cancers with a low incidence but extremely high 
invasiveness and fatality. The treatment of ATCs is very challenging, and currently, a comprehensive individualized therapeutic 
strategy involving surgery, radiotherapy (RT), chemotherapy, BRAF/MEK inhibitors (BRAFi/MEKi) and immunotherapy is preferred. 
For ATC patients in stage IVA/IVB, a surgery-based comprehensive strategy may provide survival benefits. Unfortunately, ATC 
patients in IVC stage barely get benefits from the current treatment. Recently, nanoparticle delivery of siRNAs, targeted drugs, 
cytotoxic drugs, photosensitizers and other agents is considered as a promising anti-cancer treatment. Nanoparticle drug delivery 
systems have been mainly explored in the treatment of differentiated thyroid cancer (DTC). With the rapid development of drug 
delivery techniques and nanomaterials, using hybrid nanoparticles as the drug carrier to deliver siRNAs, targeted drugs, immune drugs, 
chemotherapy drugs and phototherapy drugs to ATC patients have become a hot research field. This review aims to describe latest 
findings of nanoparticle drug delivery systems in the treatment of ATCs, thus providing references for the further analyses. 
Keywords: anaplastic thyroid carcinomas, anti-cancer treatment, nanomaterials, nanoparticle, nanomedicine

Introduction
Anaplastic thyroid carcinomas (ATCs) are a type of rare malignancy with an annual incidence of 0.12/100,000 and 0.1–0.3/ 
100,000 in the United States1 and Europe,2,3 respectively. It is characterized by rapid onset and poor prognosis. The median 
survival of ATC patients is less than 5 months, with the 2-year and 5-year survival of less than 15% and 7%, respectively.4 Local 
infiltration of the trachea, esophagus, blood vessels, and muscles, and distant metastases of the lung, pleura, bone, and brain are 
detectable in most of ATC patients at the initial time of diagnosis, which are all surgical contraindications5 (Figures 1 and 2). 
Notably, about 5–20% of DTC patients can experience dedifferentiation and aggravate into ATCs.6

Generally speaking, surgery-based comprehensive treatment provides survival benefits to ATC patients in stage IVA 
with the tumor lesions restricted within the thyroid. However, the application of surgery to ATC patients in stage IVB/ 
IVC with extra thyroid metastases is controversial. Xu et al7 reported that the scope of surgery and the integrity of tumor 
resection do not influence the survival of ATC. The majority of ATC patients can only be treated with local RT, systemic 
chemotherapy, targeted therapy and immunotherapy8,9 (Figure 3).

External beam radiation therapy (EBRT) is still preferred to ATC patients in R0/R1 resection. A retrospective study 
illustrated that EBRT is highly heterogenic in dose management, division, technique and combination treatment.10 The 
clinical benefit of EBRT on the prognosis relies on the combination with surgery and chemotherapy. Chemotherapy is 
a widely recognized treatment to prolong the survival.11 The latest American Thyroid Association guidelines recom-
mended the systemic treatment of ATC using genotoxic drugs like paclitaxel plus carboplatin, cisplatin plus doxorubicin, 
docetaxel plus doxorubicin, paclitaxel alone or doxorubicin alone.12,13 Primary chemotherapy resistance is a common 
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cause of treatment failure in ATC patients, leading to the mean progression-free survival (PFS) of less than 3 months. The 
poor prognosis of ATC may be attributed to the infiltration of tumor-associated macrophages (TAMs), which account for 
50% of the tumor volume. Meanwhile, the paracrine signaling transmitted by the CSF1/CSF-1R axis also accelerates 
chemotherapy resistance and tumor progression.14

Targeted therapy is another option to ATC patients. Donafenib combined with trametinib is recommended to ATC 
patients carrying BRAF V600E mutations, although this specific population only accounts of 20–50% of the total ATC 
patients.15 ATC patients barely benefit from PI3K/AKT/mTOR inhibitors like everolimus.16 Lenvatinib is an anti- 
angiogenesis, multi-kinase inhibitor that has been approved for the treatment of DTC. It exerts an acceptable anti- 
cancer effect within 3 months, although later develops an obvious drug resistance. Notably, lenvatinib may cause 
hemorrhage, esophageal fistula and tracheal fistula.17

Immune checkpoint inhibitors (ICIs) like anti-PD-1, anti-PD-L1 and anti-CTLA-4 have been widely used in the treatment 
of solid tumors. At present, application of the anti-PD-1 antibody spartalizumab to ATC patients has been tested in clinical 

Figure 1 Representative pathological images of a case of ATC. (A) CT scan of the involvement of the trachea by ATC. (B) Intratumoral calcification and the involvement of 
the trachea by ATC. (C) CT scan of lymph node metastases in the carotid sheath. (D) Pathological image of cervical lymph node metastases (magnification=200×). (E) 
Pathological image of perineural invasion by ATC (magnification=400×). (F) Pathological image of skeletal muscle invasion by ATC (magnification=100×).

Figure 2 A 76-year-old female patient with ATC after 1-year of surgery. The patient was managed by palliative resection of ATC one year ago, and developed massive 
metastases in the cervical region. She was further managed by supportive treatment in our center and suffered rupture and hemorrhage of the cervical metastatic tumor. (A) 
A 5×4×4 cm metastatic tumor (blue arrow) in the right mandibular region invaded soft tissues and muscles in the cervical region. (B) A 3×3×2 cm metastatic tumor in the 
left cervical region, with rupture and hemorrhage (red arrow).
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trials, although the highest response rate is only observed in those with 50% of expression rate of PD-L1 or above.10 The 
above-mentioned therapeutic strategies for ATC have their own limitations, and an effective treatment is urgently needed to 
improve the prognosis.

With the continuous development of nanomedicine, the role of nanomaterials becomes increasingly important in the 
prevention, diagnosis and treatment of tumors.18 Because of the excellent properties of nanoparticles, including the scale 
effect, surface effect, quantum effect and properties of light, sound, electricity, heat, and magnetism, they are promising 
materials used in the imaging and treatment of tumors.19 Since the size of nanomaterials is much smaller than that of tumor 
cells, they are capable of delivering drugs to target tumor cells.20 Nanoparticles are stable in the physiological environment, 
which produce passive targeting of tumor cells via the enhanced permeability and retention (EPR) effect. Moreover, their 
surface is modifiable and functional to connect target molecules and functional groups, thus favoring the biocompatibility 
and targeting ability to tumor cells.21–23 A series of clinical trials have been performed to analyze the treatment of solid 
tumors using nanoparticles, including colorectal cancer, non-small cell lung cancer (NSCLC), gastric cancer, breast cancer, 
and esophageal adenocarcinoma, which have achieved promising outcomes.24 According to the chemical compositions, 
nanoparticles used in anti-cancer treatment can be classified into organic, inorganic and hybrid.25 They are able to deliver 
diverse drugs like chemotherapeutic drugs, genes/siRNAs, photosensitizers, radioactive elements, optical materials and 
natural medicines to achieve the diagnosis and treatment.26,27 The present review described the use of nanoparticles in the 
treatment of ATC via cancer cell targeting, enhancement of 131I sensitivity, chemotherapy and phototherapy, thus providing 
references for opening up new avenues to the treatment of ATC (Figure 4 and Table 1).

Nanocarriers
Use of inorganic and organic nanoparticles in the treatment of ATC has been previously analyzed. Metallic and 
mesoporous hybrid silica are generally used in the delivery of conventional drugs and proteins, as well as photothermal 
therapy (PTT). Lipid nanoparticles and polymeric nanoparticles are used for the delivery of conventional drugs, 

Figure 3 Flow diagram of clinical management of ATC.
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redifferentiation compounds, and siRNAs. Inorganic and organic nanoparticles have their own merits and demerits. The 
former can combine with other therapeutic strategies like photodynamic therapy, hyperthermia and EBRT, but they can 
be accumulated in human bodies. The latter can be rapidly degraded and provide multiple types of carriers, although they 
can barely combine with other anti-cancer treatment.

Organic Nanoparticles
Lipid Nanoparticles
Lipid nanoparticles (LNPs) are one of the frequently used and well-established bioactive nanocarriers for anti-cancer 
treatment, which are featured as excellent abilities to encapsulate drugs, and prolong the half-life and release time of 
drugs. The therapeutic efficacy enhances with the prolongation of drugs targeting tumor cells.28 It is reported that the 
cytotoxicity of gemcitabine-loaded LNPs in ARO cells is significantly higher than that of free drugs. Moreover, the 
ammonium sulfate in the inner compartment of liposomes induces the protonation of gemcitabine and reduces the reverse 
diffusion of drugs in liposomes, resulting in a 90% of encapsulation effect.29 Compared with those of free drugs, drugs 
loaded in LNPs present less photodegradation and stronger anti-proliferative ability against three thyroid cancer cell lines 
PTC1, B-CPAP and FRO.30 LNPs are biocompatible and they can be functionalized with a variety of molecules and 
mRNAs. For example, a 4-fold higher accumulation of the thyroid-stimulating hormone (TSH)-conjugated polymer-lipid 
hybrid nanoparticles is detected in FTC 133 xenografts than that of the non-targeted nanoparticles, and the former 
presents a stronger anti-cancer role against thyroid cancer.31 Li et al32 developed liposome-peptide-mRNA nanoparticles 
(LPm NP) that are composed of mRNAs, peptide core and cationic lipid core-shell nanostructures. The optimal 
transfection rate and delivery effect can be obtained by adjusting the nitrogen/phosphorus (N/P) ratio in the core complex 
and mRNA adsorption, thus increasing the proportion of cells with positively expressed sodium iodide symporter (NIS) 
in the ATC cell line 8505C.32 Liposomal delivery of miR-34b-5p significantly inhibits the proliferation, migration and 
angiogenesis in ATC cell lines 8505C and BHT-101, which also significantly suppresses the growth of BHT-101 
xenografts in nude mice.33

PLGA
PLGA, or poly(lactic-co-glycolic acid), is a copolymer with a biodegradable shell that has been widely used in preparing 
polymeric nanoparticles due to the properties of surface modification, prolonged circulation, self-assembly and tumor targeting 
by combing with aptamers or antibodies. Wang et al34 developed IR825-loaded PLGA nanoparticles (IR825@Bev-PLGA-PFP 

Figure 4 Composition of nanocomposites used in the treatment of ATC.
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Table 1 Overview of Nanoparticle Drug Delivery Systems for the Treatment of ATC

Nanoparticles Particle Diameter (nm) Zeta Potential (mV) Biological Function References

Nanocomposites for targeted 
drug delivery
131I-labeled anti-VEGFR2 targeted 

MSNPs

163±4.6 - 23.91 (A) Inhibiting tumor growth in ATC tumor-bearing nude mice;
(B) Prolonging survival without apparent systemic toxic effects.

[28]

IR825 

@Bev-PLGA-PFP nanoparticles

309±4 −11.5±0.2 (A) Sequential targeting;
(B) Combined with synergistic antiangiogenic PTT;

(C) Multimodal imaging-guided diagnosis for ATC.

[29]

(17-AAG+Torin2)@MSNs- 
antiVEGFR2

167 −5.04 (A) Inhibiting the growth of FRO cells;
(B) Prolonging the median survival of FRO-bearing mice.

[30]

Prima-1@PEI-HA-Tyrs 

-131I nanoparticles

91.01±0.51 −14.35±1.57 (A) Enhancing the sensitivity of ATC cells carrying p53 mutations to 
radiotherapy and inducing apoptosis;

(B) Slowing down the growth of ATC.

[31]

AP-1-M-doxorubicin conjugates - - (A) Inhibiting cell proliferation and induction of apoptosis;
(B) Inhibiting tumor growth in FRO cell xenograft mice.

[32]

Anti-hTERT siRNA-loaded 
nanoparticles

130 (A) Inhibiting the viability and migration of CAL-62 and 8505C cells;
(B) Inhibiting the growth of neoplasm with a minimal invasion of 

nearby tissues;

(C) Inhibiting the vascularity of the xenograft tumor without signs of 

toxicity.

[33]

131I-chitosan-pE9-hTERTp- 

yCDglyTK

80–120 (A) Upregulating suicide genes;
(B) Cytotoxic effects on host cells.

[34]

Near-infrared nanoplatform for 
systemic delivery of siRNA

50 −6.4 (A) Long blood circulation;
(B) High tumor accumulation;
(C) Property of tumor imaging.

[29]

PAMAM-PEG-cRGD Ranging from 91.7±7.1 nm to 133.7 

±6.0 nm with N/P ratio increases 
from 0.5 to 3.0

Ranging from 4.1±1.2 mV to 38.2 

±7.2 mV with N/P ratio increases 
from 0.5 to 3.0

(A) Inhibiting tumor activity;

(B) Inducing apoptosis in ATC cells.
[35]

Pep-1-PEG3.5k-PCL4k@Res - - (A) Delaying tumor growth;
(B) Inducing extensive apoptosis

(C) Causing obvious side effects and secondary drug resistance.

[36]

(Continued)
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Table 1 (Continued). 

Nanoparticles Particle Diameter (nm) Zeta Potential (mV) Biological Function References

Nanoparticles for improving 
the efficacy of 131I radioiodine 
therapy
Restoring the expression 
level of NIS
Lipid-peptide-mRNA 

nanoparticles

100 - (A) Increasing 131I accumulation and NIS expression in subcuta-
neous ATC tumor tissues and ATC cells;

(B) Inhibiting tumor growth.

[37]

In the combination 
treatment of 131I radioiodine 
therapy and PTT
131I-HSA-ICG nanoparticles 25–45 −16 (A) Dual-modality imaging and treatment of ATC;

(B) Ablation effect on tumor cells.
[38]

PEG-[64Cu]CuS nanoparticles 11 - (A) Pro-apoptotic effect;
(B) Delaying tumor growth without causing acute toxicity.

[39]

Nanomaterials for improving 
the outcome of 
chemotherapy
TSH-SiO2@Dox nanoparticles 35 (A) Increasing the apoptotic rate in FTC-133 and TPC1 thyroid cells. [40]
BSA-Dox-MONPs 224.3±21.2 −21.70±0.81 (A) Increasing drug uptake;

(B) Inhibiting drug efflux.
[41]

Surfactant-coated doxorubicin- 

loaded PLGA nanoparticles

468±19 −11.2 (A) Enable delivery of doxorubicin across the blood–brain barrier. [42]

CN-CPT 350 −27.4 (A) Inhibiting viability, clonogenic capacity and cell-cycle progression 
of ATC cells;

(B) Inhibiting the growth, the metastatization and the vascularization 
of orthotopic ATC xenografts in SCID/beige mice without 

apparent toxic effects.

[43]

Au@MSNs 110 - (A) Inhibiting the proliferation, migration and cell cycle progression, 
and induce apoptosis in FTC-133 and B-CPAP cells.

[44]

Abbreviations: MSNPs, mesoporous silica nanoparticles; Bev, bevacizumab; PLGA, poly(lactic-co-glycolic acid); PFP, perfluoropentane; ATC, anaplastic thyroid carcinoma; PTT, photothermal therapy; PEI, polyethyleneimine; HA, 
hyaluronic acid; PAMAM, polyamidoamine; PEG, polyethylene glycol; Res, resveratrol; HSA, human serum albumin; ICG, indocyanine green; Dox, doxorubicin; BSA, bovine serum albumin; MONPs, mesoporous organosilica nanoparticles; 
CN-CPT, camptothecin encapsulated in β-cyclodextrin-nanosponges.
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NPs) for the synergistic antiangiogenic PTT under the guidance of the near-infrared (NIR) laser irradiation and multimodal 
imaging-guided diagnosis for ATC theranostics. Giovanni et al35 induce the silence of hTERT using chitosan-coated PLGA 
nanoparticles encapsulating the anti-hTERT oligonucleotide. Their application does not influence the stability of genetic material 
and presents a good cell uptake rate. The poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7 
(2,1,3-benzothiadiazole)] (polyPCPDTBT) is used in creating polymeric nanoparticles for NIR imaging and BRAF siRNA 
delivery, the injection of which significantly silence BRAF and inhibit the proliferation of BRAFV600E-mutated 8505C cells.36

Albumin
Bovine serum albumin (BSA) has been used as a mild biological template in nanoparticles. Serum albumin is widely used in drug 
delivery systems through coupling interactions due to its low cytotoxicity, low immunogenicity and good biocompatibility. 
Moreover, BSA enhances the concealment of nanoparticles in blood circulation, tumor-specific accumulation and the stability of 
loaded drugs. BSA-coated nanoparticles maintain a good dispersion in serum, which achieve the accumulation in tumor sites via 
the EPR effect.37 BSA and hyaluronic acid (HA) loading remarkably enhances the targeting of drugs and their therapeutic 
efficacy. Sorafenib,38 anti-VEGFR2 antibody,39 indocyanine green,40 and copper sulfide41 loaded in mesoporous silica nano-
particles (MSNPs) coated with BSA present excellent outcomes in the treatment of targeted therapy, phototherapy and EBRT.

PDA
Polydopamine (PDA) and its coated nanoparticles have been widely used as near-infrared light absorbers at the wavelength of 
700–1100 nm for PTT due to the benzoquinone structure.42–44 NIR-induced PTT is a minimally invasive treatment that 
converts light energy into heat at 50–56°C to ablate tumors. Thermal ablation is a popular treatment of micropapillary thyroid 
carcinoma (mPTC). Microwave, laser or radiofrequency ablation causes coagulative necrosis of tumor cells, although the 
surrounding tissues may be potentially damaged.45 PDA nanoparticles are capable of visualizing tumors by infrared 
thermography, which completely ablate tumor lesions without significant systemic toxicity.46 Moreover, PDA nanoparticles 
containing phenolic hydroxyl groups are favorable to the conjugation of 131I for RT.47 Notably, mesoporous polydopamine 
nanoparticles with a cerebroid pore channel structure (CPDA) are excellent for the highest iodine-carrying capacity and higher 
photothermal conversion efficiency for acquiring high-quality tumor images owing to the maximum specific surface area and 
unique morphology, which can be synergistically applied with PTT and RT.48

Inorganic Nanoparticles
MSNPs and MONPs
MSNPs and metal oxide nanoparticles (MONPs) have been well concerned for drug loading and delivery because of the 
high loading capacity, excellent biocompatibility, large surface area, adjustable pore volume, and surface modification. 
A comparative study found that doxorubicin-loaded MSNPs are superior to melanin nanoparticles synthesized using 
dopamine hydrochloride. Although the latter provide 20% of doxorubicin loading capacity, mesoporous organosilica 
particles are composed of up to 47.02%.49 Han et al50 constructed BSA-coated MONPs as the carrier of doxorubicin, 
showing high loading efficiency and capacity and stronger anti-cancer effect on enhancing drug intake and reducing drug 
efflux in drug-resistant HTh74 cells. Wang et al51 constructed MSNPs co-loading with 17-AAG and Torin2, and they 
found that the specificity and affinity of (17-AAG+Torin2)@MSNs-anti-VEGFR2 ab are significantly higher than those 
of (17-AAG+Torin2)@MSNs in FRO cells. It is confirmed that targeting VEGFR2 inhibits the growth of ATC cells.

Metal Ions
Nanoparticles containing metal elements are usually used for photodynamic therapy (PDT) and PTT. Using the single 
radioactive copper sulfide (CuS) nanoparticle platform, the radiotherapeutic property of 64Cu combined with the 
plasmonic properties of CuS nanoparticles synergistically enhances the therapeutic outcome of RT combined with PTT 
in the orthotopic mouse model of ATC. Besides, the combination of RT and PTT significantly prolongs the survival of 
mice bearing Hth83 xenografts compared to those without any treatment or treated with laser treatment, or nanoparticle 
treatment alone, which does not produce acute toxic effects.52 131I-labeled, BSA-modified CuS nanoparticles (131I-BSA 
@CuS) have the properties of both RT and PTT, showing the optimal anti-cancer effect in vitro. Moreover, MTT assay 
validated that BSA@CuS has negligible toxicity to ARO cells.41 Cetuximab is a monoclonal antibody used to target 
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EGFR-expressing tumors like ATC. Cetuximab-conjugated perfluorohexane/gold nanoparticles enhance the efficacy of 
chemotherapeutic drugs by triggering their release through low-intensity focused ultrasound.53 The paclitaxel prodrug 
CYT-21625 delivered together with TNF-α loaded in PEGylated gold nanoparticles reduces tumor burden in mice 
bearing metastatic FTC-133 and 8505C xenografts.54 HA and oleic acid-coated gold nanoparticles functionalized with 
ATC-specific ligands like holo-transferrin and lapatinib present dual functional effect on human 8505C cells via PTT and 
targeting EGFR. Meanwhile, the anti-cancer effect of lapatinib targeting EGFR is not as effective as that of whole 
transferrin coating.55

Halloysite Nanotubes
Halloysite nanotubes (HNTs) are biocompatible aluminosilicate clay with a hollow tubular structure composed of silica 
on the outer surface and alumina on the innermost surface.56 HNTs and functionalized-HNTs (f-HNTs) are capable of 
trapping active agents in lumens and external surfaces, followed by their retention and slow release. Due to their 
attractive properties, HNTs have been used as popular nanoparticles in gene delivery systems, cancer cell isolation, stem 
cell isolation, ultrasound contrast agents, bone implants, dental fillings, cosmetics, and controlled drug delivery.57,58 

Massaro et al59 developed a novel nanocarrier composed of biodegradable HNTs-amphiphilic cyclodextrin hybrids for 
the co-delivery of silybin and quercetin, which is a potential combination treatment of thyroid cancer. Briefly, multicavity 
HNT materials are obtained by grafting amphiphilic cyclodextrin units onto the nanotube surface. Analysis of the 
interaction between cells and the carrier by fluorescence microscopy indicated that the nanomedicine is able to efficiently 
enter the cells and accumulate around the nucleus. In vitro cell experiments showed the anti-proliferative activity of the 
nanocarrier against the human ATC cell line 8505C.

Therapeutic Applications of Nanoparticles
Nanocomposites for Targeted Drug Delivery
ATC may derive de novo or from pre-existing DTC or long-standing goiter. Dedifferentiation of thyroid carcinomas can be 
caused by chromosomal gain and loss, gene mutations, and dysregulation of multiple signaling pathways that promote cell 
cycle progression and cell adhesion.7 Inactivating mutations in TERT, TP53, PTEN, TXNIP and RASAL1 and activating 
mutations in RAS are closely linked with dedifferentiation of thyroid carcinomas. The BRAF V600E activating mutations are 
the most common mutations leading to dedifferentiation of thyroid carcinomas, which are directly correlated with the 
downregulation of NIS. The TERT promoter mutations are linked with lymph node metastasis in ATC patients, and those 
carrying both TERT promoter mutations and activating mutations in RAS have a shorter survival. The PI3KCA gene 
amplification is frequently detected in ATC patients. Rearrangement of the RET gene can directly or indirectly activate the 
MAPK and PI3K/AKT pathways.28 It directly impairs the activity of the cAMP/PKA signaling that is responsible for 
regulating thyroid-stimulating hormone receptor (TSHR) and NIS levels, thus lowering the sensitivity of ATC cells to 
radioiodine therapy. MicroRNAs (miRNAs) are involved in the autophagy and apoptosis of ATC.60 So far, the p53, MAPK 
and PI3K/AKT/mTOR signaling pathways have been identified to participate in the progression of ATC61 (Figure 5). 
Nanocomposites targeting the above signaling pathways have been applied to the preclinical research of ATC.

Targeting Angiogenesis
Accumulating evidence has validated the key role of VEGF in angiogenesis of malignant tumors. VEGFR is the main 
target for preventing or inhibiting tumor growth, angiogenesis and metastasis.62 High-level VEGF is a predictive 
biomarker of ATC, and VEGF-targeted therapy contributes to inhibit angiogenesis and proliferation of ATC cells.63 

Previous clinical trials have evaluated some drugs with anti-VEGFR-2 properties in ATC. However, their application is 
limited by low bioavailability and inefficient delivery to the target site, which can be solved using nanomaterials to 
achieve targeted drug delivery.64 Sorafenib is a multikinase inhibitor that has been approved by the US Food and Drug 
Administration for the treatment of local recurrence, metastasis and progression of DTC that are non-responsive to 
radioiodine therapy, but its therapeutic efficacy on ATC is poor.13 Sorafenib is encapsulated in polycaprolactone (PCL)- 
coated BSA nanoparticles, which is labeled with 131I by using chloramine T as the oxidizing agent (100% of labeling 
rate). In the ATC cell line 8305C, 131I-BSA-PCL-sorafenib provides a 7.5 times higher uptake rate of 131I than that of free 
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131I, which also assists the dynamic monitoring of drug distribution and metabolism in tumor tissues using single-photon 
emission computed tomography (SPECT)/CT.65 Bevacizumab is an anti-VEGF monoclonal antibody with a unique 
affinity for VEGF.66 It forms protein complexes on the surface of tumor cells, and therefore, bevacizumab is able to 
inhibit angiogenesis by blocking the VEGF signaling pathway and navigates nanomedicines to targeted sites. At present, 
bevacizumab is used for the treatment of metastatic colorectal cancer and advanced, metastatic and recurrent non-small 
cell lung cancer. Preclinical studies suggested that drug resistance induced by compensatory pathways of interrelated 
angiogenic factors leads to an unsatisfactory efficacy on ATC.67,68 Wang et al34 encapsulated PLGA nanoparticles loaded 
with IR825 and perfluoropentane (PFP, ultrasound contrast agent). IR825 nanoparticles are a type of photothermal agent 
with multiple functions of mitochondrial localization, and photoacoustic, fluorescence, and ultrasonic imaging. Using the 
carbodiimide method, bevacizumab is covalently attached to the shell of nanoparticles. Finally, IR825@Bev-PLGA-PFP 
nanoparticles are obtained, presenting the features of sequential targeting properties, synergistic therapeutic effect with 
anti-angiogenic PTT and multimodal imaging-guided diagnosis for ATC. In detail, serving as a sequential targeting 
nanoplatform, IR825@Bev-PLGA-PFP nanoparticles have biodegradable shells that are favorable to surface modification 
and extended circulation. The combination of bevacizumab and IR825 via linking amino and carboxyl groups achieves 
the VEGF-targeting anti-angiogenesis therapy and subcellular accumulation in mitochondria. Confocal laser scanning 
microscopy visualized a stronger and longer-lasting fluorescence signal in ATC cells induced with IR825@Bev-PLGA- 
PFP nanoparticles, suggesting its role in enhancing the targeting ability to blood vessels. They later tested the role of 
IR825@Bev-PLGA-PFP nanoparticles in the synergistic anti-angiogenic PTT. Owing to the high photothermal conver-
sion efficiency of IR825, IR825@Bev-PLGA-PFP nanoparticles can be effectively accumulated in sensitive mitochon-
dria to achieve the complete ablation of ATC cells. Moreover, IR825 favors the excellent fluorescence intensity and 
photostability, and PFP can be vaporized into microbubbles through phase-transformation NP-loaded liquid fluorocarbon. 
Therefore, IR825@Bev-PLGA-PFP nanoparticles present the properties of multimodal imaging (photoacoustic, fluores-
cence, and ultrasonic imaging). Importantly, they are highly biosafe that do not cause a significant change in the body 
weight. Their novel creation provides innovative references for the diagnosis and treatment of ATC.

Targeting the PI3K-AKT-mTOR Signaling Pathway
HSP90 is a chaperone with more than 400 client proteins, such as EGFR, MET, IGF21R, Akt, Raf21, p53, KIT, FLT3, CDK4, 
CDK6, etc. Some tumors that have already developed resistance to HSP90 inhibitors are still sensitive to HSP90 inhibitors, 
indicating that HSP90 is a potential target for overcoming drug resistance.69–71 ATC cells are in an original state of 
dedifferentiation, in which the signaling transduction is very complicated. The crosstalk between signaling pathways involved 

Figure 5 The p53 (A), BRAF (B), PI3K (C) and Axin1 (D) signaling pathways involved in the nanoparticle drug delivery systems for the treatment of ATC. The Axin1 
signaling pathway has not been validated in clinical trials for its involvement in the treatment of ATC using nanomaterials.
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in ATC leads to the poor therapeutic efficacy of a single targeted drug.72 Theoretically, HSP90 is featured as both the safety of 
a single target and the effectiveness of multiple targets. Its combination with other drugs has been validated to improve the 
anti-cancer effect.73

As a client protein of HSP90, the PI3K-AKT-mTOR signaling pathway is involved in regulating cell metabolism, 
motility, proliferation, growth, and survival. Its abnormal activation or inactivation is frequently detected in human 
cancers.74 Mutations of PIK3CA, PIK3R1, PTEN, AKT, TSC1, TSC2, LKB1, mTOR and other key genes result in the 
abnormal activation of the PI3K-AKT-mTOR signaling pathway, thus leading to carcinogenesis. Therefore, inhibiting the 
PI3K-AKT-mTOR signaling pathway is a vital anti-tumor strategy.75 At present, everolimus, temsirolimus, copanlisib 
and idelalisib are 4 inhibitors targeting the PI3K-AKT-mTOR signaling pathway that have been clinically applied. ATC 
patients carrying PI3K-AKT-mTOR mutations may benefit from everolimus, although its monotherapy is not ideal, and it 
is expected to achieve better outcomes in a combination treatment.76 17-allylamino-17-demethoxygeldanamycin (17- 
AAG) is the first HSP90 inhibitor that has been widely used as an anti-cancer agent.77 Thyroid cancer cell lines are 
highly sensitive to 17-AAG. Torin2 is a second-generation mTOR inhibitor used in scientific research, which has been 
recently well concerned due to the dual inhibition of mTORC1 and mTORC2.74

Mesoporous silica can be used for the loading of chemotherapeutic drugs, genes/siRNAs and other biologically active 
substances. Drug loading of Torin2, anti-VEGFR2 antibody and 17-AAG by MSNPs contributes to fight against AST via 
targeting different signaling pathways. Wang et al51 synthesized (17-AAG+Torin2)@MSNs-antiVEGFR2 by controlling 
the drug concentration and particle size. The loading capacity and encapsulation efficiency of 17-AAG are 7.29 ± 0.23% 
and 87.32 ± 1.36%, respectively, and those of Torin2 are 6.15 ± 0.64% and 86.23 ± 2.15%, respectively. Owing to the 
targeting effect on the anti-VEGFR antibody, (17-AAG+Torin2)@MSNs-antiVEGFR2 nanoparticles present the speci-
ficity to VEGFR2-positive FRO cells and a low cytotoxicity for normal cells. Histologically, cell necrosis is the typical 
manifestation, with reduced expression levels of Ki-67 and CD34. A quantitative analysis of HSP90 in ATC cells is 
expected to determine the selectivity and inhibitory effect of (17-AAG+Torin2)@MSNs-antiVEGFR2 nanoparticles on 
the PI3K-AKT-mTOR signaling pathway.

Targeting the p53 Signaling Pathway
The p53 signaling pathway is impaired in the pathogenesis of ATC due to inactivating mutations in the TP53 gene or 
overexpression of its negative regulators like HMGA1 and MDM2. Loss-of-function mutations in the TP53 gene and 
gain-of-function mutations in its negative regulators eventually lead to uncontrolled cell proliferation.78 Loss of p53 or 
p53 mutations can be detected in more than 50% of ATCs.79 CD44 is positively expressed in many malignant tumors. 
Tumor patients with high expression levels of CD44 are prone to vascular invasion and distant metastasis, presenting 
shorter disease-free survival and low survival rate.80 It is reported that TP53 mutations are detected in 9/12 ATC samples, 
showing a high positive rate of CD44 like other highly invasive tumors. Cancer cells carrying p53 mutations are 
insensitive to 131I radioiodine therapy. As a result, reactivating p53 with drugs is promising in the anti-cancer treatment.81 

Prima-1 reactivates the transcriptional transactivation of mutant p53 by directly covalently binding to its core region. 
Based on the above findings, Huang et al82 constructed Prima-1@PEI-HA-Tyrs-131I nanoparticles that target CD44 and 
load Prima-1 as a p53 mutant restoring regent. In this CD44-targeted delivery system, HA is used as the hydrophilic 
material and the target ligand for CD44, and tyrosines (Tyrs) are modified on HA (HA-Tyrs) to provide sites for 
radiolabeling 131I. Besides, polyethyleneimine (PEI) is conjugated to HA-Tyr, thus obtaining PEI-HA-Tyrs conjugates for 
self-assembly into nanoparticles and load Prima-1. The mean hydrodynamic diameter, polydispersity and zeta potential 
of Prima-1@PEI-HA-Tyrs are 91.01 ± 0.51 nm, 0.181 ± 0.008 and −14.35 ± 1.57 mV, respectively. Liquid chromato-
graphy-mass spectrometry (LC-MS) data revealed that the content of Prima-1 loaded in the nanoparticles is 4.62% (w/w). 
The drug release achieves 62.4% under an acidic condition after 24 h. Thin-layer chromatography (TLC) data revealed 
that an approximately 100% of radioiodine labeling rate, with a high stability. Compared with that of C643 cells, the 
uptake efficiency is significantly higher in 8305C cells expressing a higher level of CD44, suggesting that CD44 
receptors are able to induce endocytosis. Moreover, compared with the monotherapy of 131I treatment, PEI-HA-Tyrs 
combined with 131I radioiodine therapy significantly enhances the sensitivity of ATC cells carrying p53 mutations to RT 
and induces apoptosis via upregulating p53, p21, Bax and SIPS, which may be attributed to the direct covalent binding of 
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Prima-1 to the p53 core domain and the re-activation of cell apoptosis or SIPS signaling pathway. In the in vivo ATC 
mouse model, the treatment of PEI-HA-Tyrs significantly increases the number of apoptotic cancer cells, slows down the 
tumor growth, and upregulates p21 and Bax.

Targeting Cancer Stem Cells
Cancer stem cells (CSCs) are of great significance in tumor survival, proliferation, metastasis and recurrence via the self-renewal 
and unlimited proliferation. The movement and migration of CSCs explain the metastasis of tumor cells because of the 
insensitivity to physical and chemical factors that kill tumor cells.83 As a result, tumor recurrence occurs after the conventional 
anti-cancer treatment that kills the majority of tumor cells. Drug delivery through targeting highly expressed molecules on the 
surface of CSCs but lowly expressed in normal cells is a promising anti-cancer method.84 CD133 is a well-known CSC marker 
that is positively expressed in ATC cells, indicating that ATC may have stem cell properties.85–87 Ge et al88 demonstrated that 
CD133 is overexpressed in ATC specimens and the ATC cell line FRO, which is barely expressed in normal thyroid tissues and 
cell lines, suggesting that CD133 may be a potential therapeutic target for ATC. They constructed a CD133-targeted aptamer AP- 
1 by cell-SELEX (systematic evolution of ligands by exponential enrichment), showing a high binding ability in Caco-2 and 
FRO cells. They further created AP-1-M-doxorubicin (AP-1-M-Dox) conjugates by inserting Dox at the 5′-end of AP-1-M, 
yielding higher drug loading rate, stability, drug endocytosis, apoptotic rate, and a lower proliferative rate of CD133-positive cells 
without a significant cytotoxicity in CD133-negative cells. It is suggested that AP-1-M-Dox conjugates precisely recognize 
CD133 and release Dox into intracellular compartments. Furthermore, AP-1-M-Dox conjugates significantly inhibit tumor 
growth and angiogenesis in mice bearing FRO xenografts in vivo. They present less toxicity to mouse liver and kidney compared 
with those of unconjugated Dox. Therefore, AP-1-M is a potential carrier for drug delivery to CD133-positive tumors, and the 
pharmacological efficiency of Dox can be significantly enhanced by binding to it. Aptamer-nucleic acid conjugates have been 
widely studied, which conjugate anti-cancer drugs by modifying chemically active groups at certain base positions base pairing 
or physical mosaic. They are featured by excellent serum stability, long circulation and anti-enzymolysis capacity, which have 
yielded acceptable outcomes in the treatment of breast cancer, prostate cancer, leukemia, etc. Aptamers conjugated with anti- 
cancer drugs are expected as a promising anti-cancer treatment of ATC in the future.

Targeting Nuclear Acids
TERT is overexpressed in thyroid cancers with lymph node metastasis. TERT promoter mutations have been detected in 
75% of ATC tumor samples by next-generation sequencing.7 Silence of hTERT by siRNA transfection significantly 
inhibits the growth, invasion and migration of ATC cells either carrying hTERT promoter mutations or not.89 Hence, 
hTERT has become an optimal therapeutic target for thyroid cancer, and how to prevent the rapid degradation of siRNA 
by extracellular ribonucleases should be well concerned.

Giovanni et al35 encapsulated anti-hTERT oligonucleotides (5′→3′ sequences of the hTERT-a-specific siRNA: 
AGGCACUGUUCAGCGUGCUCAACUA) using PLGA and chitosan. They analyzed the inhibitory effect of 
targeting TERT on the in vitro and in vivo ATC models, and the influence of silencing TERT on telomere length. 
Encapsulated by PLGA and chitosan, siRNA delivery does not influence the physical stability of anti-hTERT 
siRNA-loaded nanoparticles. The treatment of 20 nmol/L anti-hTERT siRNA-loaded nanoparticles reduces the 
viability of CAL62 and 8505C cells by 40%, and their migratory rate is reduced by 40% and 60%, respectively. In 
SCID mice bearing ATC, injection of 2.4 mg/kg PLGA-chitosan-Na-siTERT for 7 days significantly lowers the 
tumor mass, downregulates hTERT and Ki67, and reduces angiogenesis rate. Histological analyses on the liver, 
intestine, lung, kidney, heart, and spleen samples, and blood cell analysis do not provide evidence of toxicity. In 
addition, the telomere length is not significantly changed by the treatment of anti-hTERT siRNA-loaded nano-
particles, suggesting that the anti-cancer effect of silenced hTERT is independent of telomere length modification.

The suicide gene/prodrug system involving thymidine kinase (TK) and Escherichia coli cytosine deaminase (CD) has 
been analyzed in many types of cancer cell lines. The suicide gene system driven by hTERTp is highly specific to thyroid 
cancer cells,90 although the driving efficiency in cancer cells is relatively low.91 Chang et al92 constructed 131I-chitosan-pE9- 
hTERTp-yCDglyTK nanoparticles containing the radiation enhancer E9 and a dual-suicide gene system driven by hTERTp, 
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which are labeled with 131I by using chloramine T. Under a weak radiation of 131I, E9 significantly upregulating suicide genes 
by enhancing the activity of hTERTp. Besides, 131I also has a certain killing effect after entering the host cells.

Targeting BRAF
The V600E mutation is a typical mutation of the BRAF gene, which can be detected in 15–44% of ATC patients. It is 
closely related to tumor growth, aggressiveness, and the development of drug resistance. In addition, mutations of 
downstream genes of BRAF affect 20–40% of ATC patients, and therefore, BRAF is an attractive target for ATC 
therapy.93 At present, RNA interference (RNAi) targeting BRAF that delivers BRAF siRNA to ATC via nanocarriers has 
not been extensively analyzed. Previous studies usually assess the efficacy of gene silencing via measuring the protein 
expressions of target genes, while it is unable to assess the distribution of nanomedicines in tumor lesions. The thyroid 
gland is anatomically located in the superficial region. Hence, it is highly feasible to construct a non-invasive 
nanoparticle platform of NIR fluorescent polymers for siRNA delivery. Under the guidance of NIR, siRNA nanoparticles 
delivered to tumor tissues and metastatic lymph nodes can be visualized to reflect the anti-cancer effect.94–96 Liu et al36 

constructed a nanoparticle polymeric platform for NIR imaging and siRNA delivery using polyCPDTBT, with the 
encapsulation efficacy of 50%. Owing to the use of polyethylene glycol as the surface coating, their innovatively 
constructed nanoparticles are highly stable. After nanoparticle injection for 4 h in mice, the fluorescence intensity of the 
NIR nanoparticles is relatively stable, with the decay at 12 h of only 14%. A clear contrast of tumor tissues with adjacent 
ones by NIR fluorescence contributes to determine the adjacent blood vessels surrounding the tumor and their potential 
infiltration. Moreover, a strong fluorescence intensity of sentinel lymph node can be rapidly detected within 10 min, 
which is featured as low cost, less exposure to radiation and high contrast ratio. In 8505C cells treated with the 
constructed nanoparticles, the number of invasive and metastatic cells decreases by 5 and 15 times than those of 
controls, respectively. In mice bearing BRAFV600E-mutated 8505C xenograft tumors injected with BRAF siRNA 
nanoparticles, significantly downregulated BRAF and Ki67 in tumor tissues, smaller tissue volume and less pulmonary 
micrometastases all validated the anti-cancer capacity.

Targeting hERG
The hERG promoter region contains multiple binding sites of oncogenes like Sp1, NF-κB and p53.97 Overexpression of 
hERG induces cell proliferation by accelerating cell cycle progression via altering the resting membrane potential of 
tumor cells. Silence of hERG is able to regulate the proliferation, adhesion and invasion of myeloid leukemia cells and 
glioma cells.98–100 Li et al101 synthesized a multivalent nanocarrier PAMAM-polyethylene glycol-cRGD (PAMAM-PEG- 
cRGD). Poly(amidoamine) (PAMAM) is a nanoscale polymer with a cationic surface environment that provides an 
electrostatic interaction with siRNA interaction and complexation, a better permeability and a higher siRNA loading. 
PEG encapsulation and cyclic Arg-Gly-Asp (cRGD) contribute to improve the biocompatibility and endocytosis of tumor 
cells, respectively. The treatment of PAMAM-PEG-cRGD in HTC/3 cells with an adjusted N/P results in a 68% of 
transfection efficacy, and hERG is downregulated to 26.3% of that in the control group. Knockdown of hERG inhibits 
tumor activity and induces apoptosis by suppressing the release of vascular endothelial growth factor and triggering the 
caspase-3 cascade in ATC cells.

Targeting IL-13Rα2
IL-13Rα2 is a 380-amino-acid glycoprotein located on the plasma membrane, which stimulates tumor development by 
activating relevant signal transductions like the PI3K, AKT and SRC signaling pathways.102 IL-13Rα2 is overexpressed 
in ATC tissues but negatively expressed in adjacent normal thyroid tissues, suggesting the tumor specificity.103 

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a non-flavonoid polyphenolic organic compound with a well-known anti- 
cancer property. However, a very low concentration of resveratrol is incapable of inhibiting tumor growth.104 It is 
necessary to enhance the cell uptake of resveratrol. Xiong et al105 constructed resveratrol nanoparticles Pep-1-PEG3.5k- 
PCL4k@Res with the drug loading rate and encapsulation efficiency of 6.81% and 40.84%, respectively. Compared with 
those injected with normal saline, subcutaneous tumor volume of nude mice injected with Pep-1-PEG3.5k-PCL4k@Res 
nanoparticles slowly grows (15.99% vs 4.92%), showing a similar anti-cancer effect with that of docetaxel and 
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doxorubicin. In vitro data revealed that resveratrol upregulates PTEN in ATC cells via targeting IL-13Rα2, which also 
inhibits the activation of the PI3K/AKT/mTOR signaling pathway by blocking the transformation of PIP2 into PIP3.

In addition to the above-mentioned targets used in nanoparticle drug delivery systems for the treatment of ATC, 
recent next-generation sequencing (NGS) analysis showed that the EIF1AX mutations have been detected in 14% of ATC 
cases, which is a novel target to be analyzed for the development of nanomedicines.

Nanoparticles for Improving the Efficacy of 131I Radioiodine Therapy
Nanoparticles for Restoring the Expression Level of NIS
The barely expressed NIS on cell membrane causes the ineffective targeted radionuclide therapy for ATC.106–108 The 
expression level of NIS decreases with the increased malignant level of ATC, predicting a poor prognosis. Therefore, 
restoring the expression level of NIS on the membrane of ATC cells is expected as a reliable way to enhance the 
sensitivity to 131I radioiodine therapy. Li et al32 developed lipid-peptide-mRNA (LPm) nanoparticles that deliver the 
mRNA encoding NIS into ATC cells, thus enhancing the sensitivity to 131I. After the treatment of NIS-mRNA LPm 
nanoparticles for 24 h, the proportion of NIS-positive cells and iodine uptake in 8505C cells increase by 13% and 70 
times, respectively. Moreover, the uptake of LPm nanoparticles is non-specific in either ATC cells, fibroblasts or 
macrophages. SPECT/CT visualized that 131I is significantly distributed in ATC tissues of mice treated with NIS- 
mRNA LPm nanoparticles combined with 131I radioiodine therapy, with a 4000-times higher radioactivity than other 
131I-treated groups. In conclusion, nanoparticles significantly enhance the efficacy of 131I radioiodine therapy by restoring 
the expression level of NIS without causing damages to important organs (Figure 6).

Nanoparticles Used in the Combination Treatment of 131I Radioiodine Therapy and PTT
Thermal therapy combined with 131I radioiodine therapy prevents the repair of damaged DNA, leading to the residual of 
DNA double-strand breaks and cell apoptosis. Because of the adjustable composition and structure of nanoparticles, 

Figure 6 The design of lipid-peptide-mRNA (LPm) nanoparticles and their application in the treatment of ATC. (A) The design of LPm nanoparticles that deliver the mRNA 
encoding NIS into ATC cells. (B) TEM scans of Peptide/mRNA complexes (scale bar=500 nm and 50 nm). (C) NIS in ATC cells treated with naked NIS-mRNA or NIS-mRNA LPm 
nanoparticles by Western blot. (D) 131I uptake in ATC cells treated with NIS-mRNA LPm nanoparticles. (E and F) SPECT/CT imaging of mice treated with saline, NIS-mRNA LPm 
nanoparticles, 131I, EGFP-mRNA LPm nanoparticles + 131I, or NIS-mRNA LPm nanoparticles +131I for 24 h, and the quantitative analysis of the radioactivity of 131I. White arrow 
indicates the SPECT/CT scans of the thyroid gland and tumor tissues in mice. ***P<0.001. Reprinted from Li Q, Zhang L, Lang J, et al. Lipid-Peptide-mRNA nanoparticles augment 
radioiodine uptake in anaplastic thyroid cancer. Adv Sci. 2023;10(3):e2204334. © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. Creative Commons..32 

Abbreviations: LPm, lipid-peptide-mRNA; ATC, anaplastic thyroid carcinomas; NIS, sodium iodide symporter; TEM, transmission electron microscope; SPECT, single- 
photon emission computerized tomography; CT, computed tomography.
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a nanoparticle system can be composed of different therapeutic strategies and imaging methods to achieve the synergistic 
anti-cancer treatment.109 Zhang et al40 constructed 131I-HSA-ICG nanoparticles with 131I labeled on human serum 
albumin (HSA) and indocyanine green (ICG) covalently bound to 131I-HSA. The photothermal conversion efficiency 
of 131I-HSA-ICG nanoparticles yields 24.25%, and they have the highest ablation effect on tumor cells under the 
irradiation of an 808-nm laser (2.5 W/cm2) compared with that of other groups. Copper sulfide (CuS) has been well 
concerned for its application in PTT. 131I-BSA@CuS has the properties of both RT and PTT, with the 131I labeling rate 
and photothermal conversion efficiency of 66–80% and 28.07%, respectively. The combination of PTT and 
131I radioiodine therapy presents the optimal anti-cancer effect. Huang et al48 synthesized mesoporous polydopamine 
nanoparticles with a cerebroid pore channel structure (CPDA), serving as the nanocarriers to 131I, the 131I labeling rate 
(88.39%±5.17) and photothermal conversion efficiency (η=50.3%) of which are adjusted by optimizing their structure. 
CPDA-131I nanoparticles exerts a 130-times higher cellular uptake rate than that of free 131I. 131I-labeled anti-VEGFR2 
loaded in MSNPs coated with BSA (131I-BSA-MSN-anti-VEGFR2) which are nanoparticles constructed to enhance the 
intracellular accumulation of 131I and thus the RT outcome via targeting VEGFR-2 and MSNP-induced EPR.

In addition to 131I, nanoparticles labeled by other radioactive metals like 186Re/188Re, 64Cu, 90Y and 198Au have been 
synthesized as potential radiotherapeutic drugs. They are featured as small damages to non-targeted tissues due to the 
small range of radiation within millimeters.110 The use of 64Cu-labeled nanoparticles in RT has not been widely reported. 
Polyethylene glycol (PEG)-coated [64Cu]CuS nanoparticles exert the properties of both RT and PTT via 64Cu and CuS, 
respectively. Similarly, they present the optimal pro-apoptotic effect at 2.5 W/cm2. PET/CT scans revealed the same 
metabolic form and in vivo radioactivity distribution of PEG-[64Cu]CuS nanoparticles and 131I-labeled nanoparticles. The 
absorbed doses and retention time of intratumorally injected PEG-[64Cu]CuS nanoparticles are both superior to 
intravenous injection, which are comparable to those of 131I-labeled nanoparticles. Importantly, combined RT/PTT 
remarkably delays tumor growth without causing acute toxicity.

Collectively, the acceptable efficacy of combined RT/PTT on ATC can be attributed to the suppression of RT-induced 
DNA damage repair by PTT, the increased intratumoral tissue blood flow and oxygenation, hypoxia and reoxidation of 
tumor cells, and non-selective effects on tumor cells and CSCs. In the future, the improvement of the accumulation of 
radioactive substances in tumor cells and the selection of radiation dose and administration methods that ensure the 
biological safety require further explorations.

Nanomaterials for Improving the Outcome of Chemotherapy
Currently, chemotherapy is still preferred to ATC patients without specific gene mutations. Paclitaxel plus carboplatin, 
cisplatin plus doxorubicin, docetaxel plus doxorubicin, paclitaxel alone or doxorubicin alone are recommended as the 
systemic treatment of ATC. However, the doubling time for tumor volume of ATC is as short as 3–12 days, and the very 
short dosing interval of chemotherapeutic drugs results in a high toxicity. ATC patients benefit less from a single 
chemotherapy, with the mean PFS of less than 3 months. Their poor prognosis is mainly attributed to the decreased drug 
uptake, increased efflux and the infiltration of tumor-associated macrophages.12,13 Loading of chemotherapeutic drugs 
using nanomaterials contributes to enhance the intracellular drug uptake and the dosage. Li et al111 constructed TSH-SiO2 

@Dox nanoparticles that effectively deliver doxorubicin to tumor tissues and promote internalization via thyroid- 
stimulating-hormone receptor (TSHr) and acid induction. Through the targeting effect on TSH, the treatment of TSH- 
SiO2@Dox nanoparticles significantly increases the apoptotic rate (79.0% vs 29.6%) in FTC-133 and TPC1 thyroid cells 
than that of free doxorubicin.111 Nevertheless, TSHr is lowly expressed in ATC cells, and FTC-133 and TPC1 cells are 
lowly invasive. The inhibitory effect of TSH-SiO2@Dox nanoparticles on the apoptosis of strongly invasive resistant 
cells remains unclear.

It is reported that the efficacy of doxorubicin loaded in dopamine-melanin nanoparticles on the drug-resistant ATC 
cell line, but the loading rate only ranges about 20.0%.112 To further enhance the loading rate, Han et al50 synthesized 
BSA-stabilized MONPs loaded with doxorubicin, which are excellent at the increased loading rate (47.02%), increased 
drug uptake rate in the drug-resistant cell line HTh74R, and decreased drug efflux.

Although the drug loading rate of doxorubicin can be significantly enhanced via nanomaterials, its toxicity should be 
well concerned. To reduce the cumulative dose, drug-loaded nanobubbles contribute to control the drug release in the 
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targeted area via extracorporeal shock waves (ESW). The combination of doxorubicin-loaded glycol chitosan nanobub-
bles and ESW therapy significantly reduces GI50 value by 40%. The toxicity of cardiomyocytes in rats treated with 
doxorubicin loaded in glycol chitosan nanobubbles combined with ESW therapy is much lower than those treated with 
free doxorubicin. Notably, ESWs trigger the intracellular drug release by targeting nanobubbles, leading to the highest 
nuclear drug dosage. A direct intranuclear drug delivery is found to overcome drug resistance.113 Therefore, drug-loaded 
nanobubbles combined with ESW therapy are believed as a novel strategy to prevent drug resistance.

Camptothecin (CPT) is a type of topoisomerase 1 (TOP1) inhibitor with the anti-cancer activity. Irinotecan and 
topotecan are typical analogues of CPT, the dosage and anti-tumor effect of which are greatly limited by the time- 
consuming administration due to a low solubility, and severe myelosuppressive adverse events. β-Cyclodextrin-based 
nanosponges are characterized by the high encapsulation capacity. CN-CPT nanosponges are obtained by cross-linking β- 
Cyclodextrin-based nanosponges with CPT at 1:4 molar ratio and PEG encapsulation.114 The treatment of CN-CPT 
nanosponges in ATC cell lines BHT-101 and CAL-62 significantly inhibit the cell viability, colony formation and cell 
cycle progression, showing a faster and stronger anti-cancer effect than that of free CPT. Moreover, CN-CPT nanos-
ponges significantly inhibit the release of IL-8 and VEGFA in vitro, and xenograft growth, metastasis and angiogenesis in 
SCID/Beige mice in vivo without an obvious toxicity.

All-trans retinoic acid (ATRA) exerts its anti-cancer effect by regulating the expression level of RXR via activating 
the activating retinoic acid receptors (RARs) and retinoid X receptors on the nuclear membrane of cancer cells. However, 
it is unstable in the oxygen-rich and acidic environment, which can be protected by encapsulating them in nanoparticle 
drug delivery systems. Liposomes are able to embed hydrophilic, lipophilic, and amphiphilic substances, which can 
adjust the biopharmaceutical properties of encapsulated compounds and improve their stability, and even prevent 
photodegradation. ATRA loaded in DPPC/Chol/DSPE-mPEG2000 liposomes presents a stronger anti-proliferative effect 
against thyroid cancer cell lines PTC-1, B-CPAP and FRO than that of free ATRA.115

Synergistic Nanoparticle Platforms for Enhancing the Efficacy of PTT
PTT is a popular anti-cancer treatment, which can be applied to the synergistic treatment with photothermal agents, 
photosensitizers or chemical drugs loaded in nanoparticle platforms. The thyroid and its draining lymph nodes are superficial 
organs. Compared with other organs located in the abdominal cavity, PTT for thyroid diseases is simple and effective. 
However, a single PTT or PDT hardly yields a satisfactory outcome due to the heat shock effect of PTT and the obstruction 
caused by the hypoxic tumor microenvironment in PDT. At present, nanocomposites with the property of PTT combined with 
other anti-cancer treatment significantly improve the outcome.116 Hypericin (Hyp) is an active ingredient of Hypericum 
perforatum L., which is used as a photosensitizer in PDT.117 It is found that Hyp-assisted PDT significantly increases the level 
of intracellular reactive oxygen species (ROS) and mitochondrial damage in FRO cells in vitro and achieves tumor regression 
in FRO xenograft mice in vivo. It is found that carboplatin combined with radachlorin-PDT induces apoptosis in FRO cells 
and inhibits the growth of tumor xenografts in athymic mice by activating PTEN and deregulating EGFR/PI3K. Genistein is 
a major component in soybean, serving as a potential chemopreventive agent to enhance the anti-cancer efficacy in the 
combination of chemotherapy/radiotherapy.118–120 The combination treatment of genistein and photofrin-PDT significantly 
induces apoptosis, increases ROS level and upregulates caspase 3/8/9/12 and cytochrome c.121

PDT has been widely reported in the treatment of superficially located skin tumors or deeply located digestive tract 
tumors. Its application to the treatment of malignant thyroid tumors, however, has been rarely reported. Generally, DTC 
has a good prognosis that can be effectively controlled by conventional therapeutic strategies, while ATC is rapidly 
aggravated that results in a limited sample size for further research. PDT for the treatment of ATC is able to overcome the 
disadvantages of insufficient laser wavelength and the requirement for a dedicated irradiation probe. Meanwhile, lymph 
node tracers can be loaded to achieve the goal of a combination treatment. A synergistic treatment of targeted therapy, 
immune therapy and chemotherapy with nanomedicines for PDT is a promising anti-cancer treatment in the future. 
Besides, the design of targeting optical probes and the control of laser irradiation are key factors to ensure the accuracy of 
PDT to minimize the damages to surrounding tissues. Currently, optical diffusers are used to deliver laser light uniformly 
and reduce laser dispersion by using circumferential light distribution and facilitating the physical interaction between 
photons and tissues.
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Natural Drugs Delivered by Nanoparticles
The anti-cancer effect of natural drugs isolated from animals and plants has been concerned in recent years. Polyphenolic 
compounds in plants have been designed and developed as anti-cancer agents. Their disadvantages like the low solubility, 
low concentration in the circulatory system and unstable chemical properties are now can be largely solved by 
nanoparticle drug delivery systems.122–124 Novel nanotube materials consisting of biodegradable HNT and functionalized 
amphiphilic cyclodextrin that co-deliver silybin and quercetin are designed to the treatment of ATC.59 Yu et al125 

developed photo-triggered gold nanodots capped mesoporous silica nanoparticles Au@MSNs loaded with capsaicin for 
PTT. The anti-cancer effect of capsaicin on ATC cells is significantly improved by the loading of Au@MSNs 
nanoparticles, which inhibit the proliferation, migration and cell cycle progression and induce apoptosis.

Research Demerits
Due to the biological characteristics, ATC is poorly responsive to conventional treatment. Nanoparticle drug delivery 
systems are emerging tools to assist the treatment of ATC. However, they have the following demerits.

Demerits of Inorganic Nanoparticles
Inorganic nanomaterials like silica are suitable for the delivery of conventional chemotherapeutic drugs due to the 
expandable surface area and the property of PTT/PDT. However, it is unable to determine whether chemotherapy or PTT/ 
PDT provides more clinical benefits. Currently, surface modification of inorganic nanomaterials and the exact drug 
loading by them have been rarely reported. Meanwhile, adverse events caused by the in vivo accumulation should be 
well concerned.126

Demerits of Organic Nanoparticles
Organic nanoparticles are more conducive to the delivery of targeted drugs and siRNAs due to their excellent 
biocompatibility and high cellular uptake. However, the poor stability and high rate of degradation in blood circulation 
should be highlighted in the future research.127

Demerits of the Combination Therapy
Calculation of the iodine uptake rate of ATC cells is essential for favoring the outcome of internal radiotherapy by the 
combination of nanomaterials and 131I radioiodine therapy. Compared with papillary thyroid cancer cells, ATC cells have 
extremely poor iodine uptake due to downregulation of NIS and loss of radioactive iodine affinity for 131I, which is 
unable to be solved by drug delivery systems that increase the cellular uptake.92

Research Gap of Endogenous Stimuli-Responsive Drug Delivery Systems in ATC Cells
At present, pH-responsive, enzyme-responsive, temperature-responsive and reduction-responsive nanomaterials have 
been widely analyzed in liver cancer, gastric cancer, intestinal cancer, lung cancer and breast cancer.128 Because of the 
low incidence of ATCs, they have been rarely analyzed in tumor microenvironment of ATCs. Besides, sustained, 
controlled release, and highly specific drug delivery systems that have been extensively analyzed in tumors have not 
been fully elucidated in ATCs.

Lack of Clinical Trials
So far, nanoparticle drug delivery systems developed to the treatment of ATCs have been validated in in vitro cell models 
and in vivo animal models, and their application should be further explored in clinical trials. In addition, the potential of 
nanoparticle drug delivery systems in predicting the outcome of ATCs is a research gap. There is no comparability 
between the anti-tumor efficacy of intratumoral injection and intravenous injection.

Research Directions in the Future
We recommended the following aspects to future analyses of nanoparticle drug delivery systems to the treatment of 
ATCs.
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Nanoparticle Drug Delivery Systems Targeting Anti-Angiogenesis
Anti-angiogenesis is a promising aspect for the design of nanoparticle drug delivery systems for ATC treatment, because 
the excessive angiogenesis is an indispensable factor in the dedifferentiation and evolution of ATCs. At present, 
nanotechnology-based anti-angiogenic drugs like bevacizumab and sorafenib have yielded acceptable outcomes in 
clinical trials. CA4P, also known as fosbretabulin, has been validated very effective in drug-resistant solid tumors in 
a phase III clinical trial.129 How to increase the anti-angiogenesis ability of CA4P via loading in nanomaterials and its 
combination with chemotherapy and other anti-angiogenic agents to target key signaling pathways involved in the 
development of ATC are the future research highlights.

Nanoengineered Drug Delivery Systems for Target Gene Therapy
Nanoengineered drug delivery systems for target gene therapy are research hotspot, which not only target the specific 
gene in tumors but also provide a synergistic effect on the internal radiation via upregulating NIS and promoting the 
internalization of 131I-labeled nanoparticles. With the great strides made on genome sequencing, gene targets of ATC (eg, 
TERT, TP53, BRAF, PIK3CA, PTEN) identified by this technology can be loaded in nanoparticle drug delivery systems. 
EIF1AX mutations have been frequently detected in ATC patients by the next-generation sequencing, and nanomedicines 
targeting it are expected to be explored in the future.130

In addition, nanoengineered drug delivery systems are expected to reduce chemotherapy resistance by enhancing drug 
internalization and reducing drug efflux. POLIVY, PADCEV and ENHERTU belong to the antibody-drug conjugates 
(ADCs), presenting dual functions of potent cytotoxicity as chemotherapy drugs and tumor targeting property as ADCs. 
They greatly enhance the efficacy of anti-tumor therapy and the survival of tumor patients.131 Nanoengineered drug 
delivery systems for delivering ADCs contribute to enhance the targeting property in ATCs.

Nanoengineered drug delivery systems are capable of enhancing the labeling rate of 131I and promoting the 
internalization of 131I-labeled drugs in ATC cells like anti-TSHR antibodies by targeting subcellular structures.101 

Collectively, nanoengineered drug delivery systems may be a promising therapeutic strategy for ATCs.

Nanoengineered Drug Delivery Systems for PTT/PDT
Nanoengineered drug delivery systems for photodynamic therapy have been thoroughly analyzed, which are superior to 
the treatment of thyroid cancer because of the superficial location, simple procedures, high repeatability and recognition 
of tumor lesions, metastatic lymph nodes and other important anatomical structures like parathyroid glands and thoracic 
duct.132 Improving the photoresponse and photothermal conversion efficiency of composite nanomaterials and modifying 
the irradiation range and intensity of the laser irradiator are future research fields in the treatment of ATC patients who 
are unable to achieve R0 resection.

Nanoengineered Drug Delivery Systems for Tumor Immunotherapy
Nanoengineered drug delivery systems for tumor immunotherapy via blocking PD-1 and PD-L1 have yielded acceptable 
outcomes.133 In phase I/II clinical studies involving advanced/metastatic ATC patients, the response rate of PD-1-positive 
ATC patients treated with Spartalizumab (a monoclonal antibody against PD-1 receptor), especially those with the 
positive rate of greater than 50%, is significantly higher than those of negatively expressed patients.134,135 Enhancing the 
response rate and inducing immunogenic cell death (ICD) by combining PTT/PDT are research directions in the future.

In vitro and in vivo evidence has shown encouraging findings in the application of nanoparticle drug delivery systems 
to the treatment of ATCs. Targeted drugs, genes/siRNAs, photosensitizers, radioactive elements, optical materials and 
natural medicines delivered by nanoengineered drug delivery systems are expected to be an alternative to ATC patients, 
especially providing clinical benefits to advanced patients who are unable to be surgically treated.
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