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Abstract: Spinal cord injury (SCI) treatment represents a major challenge in clinical practice. In recent years, the rapid development of 
neural tissue engineering technology has provided a new therapeutic approach for spinal cord injury repair. Implanting functionalized 
electroconductive hydrogels (ECH) in the injury area has been shown to promote axonal regeneration and facilitate the generation of 
neuronal circuits by reshaping the microenvironment of SCI. ECH not only facilitate intercellular electrical signaling but, when combined 
with electrical stimulation, enable the transmission of electrical signals to electroactive tissue and activate bioelectric signaling pathways, 
thereby promoting neural tissue repair. Therefore, the implantation of ECH into damaged tissues can effectively restore physiological 
functions related to electrical conduction. This article focuses on the dynamic pathophysiological changes in the SCI microenvironment and 
discusses the mechanisms of electrical stimulation/signal in the process of SCI repair. By examining electrical activity during nerve repair, 
we provide insights into the mechanisms behind electrical stimulation and signaling during SCI repair. We classify conductive biomaterials, 
and offer an overview of the current applications and research progress of conductive hydrogels in spinal cord repair and regeneration, 
aiming to provide a reference for future explorations and developments in spinal cord regeneration strategies. 
Keywords: neural tissue engineering, electrical stimulation, electrical signal, conductive biomaterials, spinal cord injury 
microenvironment

Introduction
Spinal cord injury (SCI) is a debilitating trauma to the central nervous system (CNS) that results in permanent motor, 
sensory, and autonomic dysfunctions below the injury site, presenting a significant medical challenge.1 Globally, it is 
estimated that there are 250,000 to 500,000 new cases of SCI annually.2 The clinical management of SCI primarily involves 
surgical stabilization of the vertebrae and early spinal cord decompression, pharmacological intervention, and rehabilitative 
treatment.3 Despite considerable advancements in therapeutic techniques, a cure for SCI remains elusive.4 Treatment 
during the early stages primarily aims to stabilize the spinal cord and restore homeostasis immediately following the injury, 
while long-term management addresses symptoms caused by maladaptive plasticity and other secondary complications.5 

Spinal cord injury can be classified into traumatic and non-traumatic causes. Traumatic spinal cord injuries occur when 
acute spinal cord injury is caused by an external physical shock, such as a motor vehicle collision, fall, sports-related injury, 
or direct trauma. In contrast, nontraumatic spinal cord injuries typically occur after an acute or chronic disease process, such 
as a tumor, an infection, or degenerative disc injury. In traumatic spinal cord injuries, the primary injury damages cells and 
triggers a complex cascade of secondary injuries involving neuronal and oligodendrocyte death, and leads to the 
deterioration of the environment surrounding the lesion site, resulting in progressive pathological changes like inflamma-
tion, oxidative damage, axonal demyelination, apoptosis, and the formation of irregular cystic cavities and glial fibrosis.6 It 
is now understood that glial fibrosis and fluid-filled cysts,7 along with endogenous remyelination and poor axonal 
regeneration, impede the electrical signaling and stimulus conduction in spinal cord tissue, thereby hindering neural 
regeneration.8 Therefore, the key to treating spinal cord injuries lies in reconnecting the disrupted neural pathways, 
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stimulating neuronal differentiation and axonal growth, suppressing inflammation, and providing a regenerative environ-
ment and support for damaged neurons.9 However, current treatment approaches typically target only one aspect of these 
complex multifactorial causes and have limited efficacy.10 In recent years, biocompatible materials and tissue engineering 
approaches have emerged as promising new strategies for treating spinal cord injuries.11

Over the past few decades, hydrogels have been widely used as scaffolds in neural tissue engineering due to their exceptional 
biocompatibility, porosity, and mechanical flexibility.12–14 Scaffold designs based on hydrogels have been shown to possess 
similar biochemical and biophysical properties to the natural extracellular matrix of the brain/spinal cord, allowing effective 
filling of irregular lesions and mimicking the physiological environment of living tissues, thereby promoting the survival and 
differentiation of neurons.8,15 Moreover, they can enhance the microenvironment of the injury site and improve cell survival rates 
and axonal growth by incorporating cells, various neurotrophic factors, or drugs to release bioactive molecules.5

Although hydrogels have many desirable properties, they are typically electric insulators, impeding the transmission of 
intercellular electrical signals. Electrical signals are the foundation of neural system function, as the spinal cord commu-
nicates with other types of cells through neural networks and axonal bundles, conducting bioelectric signals.16 Neural 
networks not only participate in the differentiation and regeneration of neural stem cells,17 but also prevent scar tissue 
formation at injury sites and facilitate the transmission of biological signals to achieve specific biological functions.18,19 It 
has been established that the stimulation and transmission of electrical signals are crucial for neuronal function. Therefore, 
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during the design and preparation of neural tissue regeneration scaffolds, it is imperative to mimic the native extracellular 
matrix (ECM) of the spinal cord by integrating conductive matrices into the cellular microenvironment to provide an 
artificial environment that promotes regeneration at injury sites.20 In neural repair applications, the advantage of conductive 
hydrogels lies in their ability to simultaneously provide physical and electrical characteristics, with the former being a 
unique property of hydrogels and the latter achieved through conductive materials.

This review article summarizes recent advances in conductive hydrogels for spinal cord injury repair, providing an 
overview of the characteristics of these hydrogels (Table 1) and their clinical applications, challenges, and prospects. 
Furthermore, we expound on the mechanisms underlying electrical stimulation and signaling in spinal cord injury repair.

SCI Microenvironment
This section comprehensively explores the microenvironment following spinal cord injury. Spinal cord injury can be 
divided into primary and secondary injuries.33 Temporally, they can be categorized into acute (<48 hours), subacute (48 
hours to 14 days), intermediate (14 days to 6 months), and chronic (>6 months) phases 9 (Figure 1). Primary injuries are 
often irreversible, including compression, stretching, tearing, transection, and bleeding,34 damaging neurons and oligo-
dendrocytes (a type of glial cell in the central nervous system), disrupting the vascular system, and impairing the blood- 
spinal cord barrier, thus immediately initiating a cascade of secondary injury reactions. During the acute phase (within 
0–48 hours after injury), damage to the microvessels supplying the spinal cord leads to increased cell permeability, 
infiltration of inflammatory cells, release of cytotoxic molecules, propagation of pro-apoptotic signaling, and ischemic 
damage.35 This secondary injury results in the necrosis and/or apoptosis of neurons and glial cells (such as oligoden-
drocytes), leading to demyelination and loss of neural circuits. During the subacute phase (2–4 days after injury), 
sustained edema, the formation of blood clots, and vasoconstriction further contribute to ischemia, causing glutamate 
release,36 lipid peroxidation,37 activation of calcium influx and calpain protease,38 edema, and excitotoxic cell death.39 

The sustained infiltration of inflammatory cells contributes to further cell death,40,41 and the formation of cystic cavities 
due to the disruption of extracellular structures of cells and the spinal cord.42 In addition, astrocyte proliferation occurs 
and extracellular matrix molecules such as chondroitin sulfate proteoglycans (CSPGs), fibronectin, laminin, and collagen 
are deposited by astrocytes in the surrounding lesion area, limiting axonal growth.43,44 It has been shown that certain 
subtypes of astrocytes yield a neuroprotective effect during the injury process.45 During the intermediate and chronic 
phases (2 weeks to 6 months), axonal degeneration continues, and the astroglial scar matures, impeding axonal 
regeneration and extension.45,46 The fusion of cystic cavities further restricts axonal regeneration and cell migration.

In addition, inhibitory factors, including Nogo, myelin-associated glycoprotein (Mag), oligodendrocyte myelin 
glycoprotein (Omgp), Nogo receptor protein, and p75 neurotrophic receptor binding activation of RHOA and Rho- 
associated protein kinase (ROCK),48 strongly suppress axonal and myelin sheath regeneration which can result in the 
collapse of growth cones after SCI.49–53 The poor axonal growth capability and inhibitory factors hindering axonal 
regeneration lead to the failure of spinal cord regeneration and neural circuit reconstruction.54–56

The Mechanism of Electrical Stimulation/Electric Signal in the Repairing 
Process of Spinal Cord Injury
Spinal cord injury is a severe traumatic condition affecting the central nervous system, and it is characterized by the 
limited regenerative potential of neurons following damage. One significant obstacle in this process is the disruption of 
electrical signaling.57 In neural tissues, ion channels on the cell membrane of neural cells activate a cellular gap, leading 
to ion transport across the membrane, resulting in membrane polarization and the generation of an endogenous electric 
field. Bioelectric signals, stemming from changes in cell membrane potential, represent a primary mode of cellular 
signaling. These bioelectric signals play a vital role in processes such as neural cell proliferation, differentiation, 
migration, spreading, and apoptosis via various physiological mechanisms, including cytoskeletal rearrangement, cell 
membrane depolarization, conformational and positional changes of membrane proteins, and the regulation of transmem-
brane calcium influx.58 By facilitating signal transduction between cells and the extracellular matrix, the transmission and 
delivery of electrical signals regulate the morphology, quantity, location, migration, and differentiation of neural stem 
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Table 1 Conductive Hydrogels Applied in Spinal Cord Injuries in Recent Years

Conductive 
Components

Hydrogel Matrix Conductivity Electrical 
Stimulation

Hydrogel Properties Outcomes Reference

PPy Collagen 0.176±0.07 S/ 

cm

200 mV Most optimized mechanical strength, electrical 

conductivity, degradation, and swelling 

properties

Cell study: promote NSCs differentiation into 

neurons and inhibit the differentiation of NSCs 

into astrocytes

[125]

PPy Bioactive collagen/ 

hyaluronan

0.189 S/ m 100 mV /cm Reduced the ROS level and inhibited secondary 

oxidative damage, restored the transmission of 
endogenous electrical signals, inducing the 

neuronal differentiation of both implanted 

BMSCs and recruited endogenous NSCs

In vitro study: promote neuronal differentiation 

of BMSCs, protect the cells from ROS in the 
oxidative microenvironment 

In vivo study: reduce the cavity area, inhibiting 

the formation of glial scar, and promoting 
synaptic regeneration, remyelination, and 

motor function recovery

[127]

Chitosan-modified 

polypyrrole (DCP) 

nanoparticle (~;40 nm)

N-carboxyethyl 

chitosan (CEC)

3–6 mS/cm 100mV Self-healing, injectability and conductivity, strain/ 

motion-sensing properties, biodegradability and 

biocompatibility

In vitro study: promote the attachment, 

proliferation, and differentiation of neural stem 

cells (NSCs), 
In vivo study: rescue the motor function in 

brain-injured zebrafish

[124]

PPy Agarose+gelatin 

(Aga/Gel)

0.2×10−2S /cm - Injectable, excellent biocompatibility, the 

thermal stability of the hydrogel at body 

temperature, similar conductivity and modulus 
as the spinal cord

In vitro study: promote differentiation of NSCs 

toward neurons whereas it inhibited over- 

proliferation of astrocytes 
In vivo study: completely covered the tissue 

defects and reduced injured cavity areas, 

provided a biocompatible microenvironment 
for promoting endogenous neurogenesis rather 

than glial fibrosis formation, resulting in 

significant functional recovery

[21]

PPy Gelatin+Tannic acid 
(TA)

3.75×10−4 S 
cm−1

- Release bFGF on-demand in response to the 
SCI microenvironment, provide a favorable 

biophysical microenvironment with comparable 

mechanical and electrical properties to native 
spinal cords

In vitro study: allow the delivery of growth 
factors according to needs after varying 

degrees of MMP expression 

In vivo study: inhibit MMPs levels, promote 
axon regeneration and angiogenesis, increase 

blood vessel density and improve locomotion 

function recovery after SCI

[126]
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PANI Poly(amino acid) - Square wave, 

10 Hz, 3 mA

Good biocompatibility, biodegradability, and 

conductivity, effectively stimulated SC tissue 

repair through continuous slow release of NGF 
and in response to external ES

In vitro study: induce the differentiation of 

NSCs into neurons in the injured SC while 

inhibiting the proliferation of astrocytes 
In vivo study: stimulate endogenous 

neurogenesis and promoted the restoration of 

motor function

[130]

PEDOT Gelatin and 

hyaluronic acid

8.3×10–4± 

8.1×10–5S/cm

- Optimal porosity, with biomimetic mechanical 

performance and high conductivity to simulate 
axons

In vitro study: the scaffolds are cytocompatible 

In vivo study: diminish astrocyte reactivity. 
Decreased levels of macrophage and microglia 

reactivity at the implant site. Provides a more 

stimulating regenerative environment, allowing 
relatively larger axons to migrate and grow 

toward the target implantation site

[131]

Poly(3,4- 

ethylenedioxythiophene): 

sulfonated lignin (PEDOT: 
LS)

Gelatin methacrylate 

(GelMA), hyaluronic 

acid methacrylate 
(HAMA)

0.60 S/m - Mechanical property and conductivity similar to 

native spinal cord tissues

In vitro study: promote the neuronal 

differentiation of NSCs 

In vivo study: promote the recovery of hindlimb 
motor function, effectively promoted the 

regeneration of neurons at the injury site, 

reduced the deposition of glial scar, and 
promoted nerve axon regeneration and 

myelination

[104]

PEDOT:CSMA, TA Gelatin/ 

polyethylene glycol

(1.61±0.11)× 

10−5 S/cm

- 3D bioprinting 3D topography, technologywell 

shear-thinning and self- healing properties, 

Physical and chemical properties similar to 
natural spinal cord tissue

In vivo study: physical contact for the NSCs 

with adjacent cells and surrounding matrix was 

improved to accelerate their signal 
communication, and in vivo astrocytic 

production for the NSC-laden conductive 

composite scaffold was significantly inhibited, 
facilitating hindlimb function recovery in the 

rats suffered from the complete- transection 

SCI

[132]

(Continued)
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Table 1 (Continued). 

Conductive 
Components

Hydrogel Matrix Conductivity Electrical 
Stimulation

Hydrogel Properties Outcomes Reference

Amine functionalized 

graphene

Collagen 3.8±0.2 mS/ 

cm

100 mV/mm Sufficiently high porosity with interconnectivity 

between the pores, appropriate electric and 

mechanical cues

Ex vivo study: promote the proliferation of cells 

from proximal to distal end, thereby aiding in 

establishment of neural connections, 
In vitro study: increase the immune-modulatory 

secretions that may prevent the occurrence of 

neuro-inflammation, suppressing the neuro- 
inflammation and promoting the neuronal 

cellular migration and proliferation

[103]

Graphene oxide Polyethylene glycol 7.4 S m−1 - Suitable mechanical strength electric 

conductivity, and biochemical properties for 

creating an ideal microenvironment for axon 
regeneration, three-dimensional architecture, 

injectability and fast self-recovery

In vitro study: inhibit the astrocytes 

hyperactivation and inflammation reaction 

In vivo study: promote the SCI repairing

[141]

Molybdenum sulfide/ 

graphene oxide (MoS2/ 

GO)

Polyvinyl alcohol 

(PVA)

0.220 S/m - Highly conductive, soft, excellent 

biocompatible, and anti-inflammatory, 

appropriate mechanical property

Cell study: promoted the NE-4C cells to 

differentiate into nerve cells and inhibited glial 

cell differentiation, inhibit the production of 
ROS 

In vivo study: quickly restore the continuity and 

electrical conductivity after SCI, excellent anti- 
oxidative property, inhibit the development of 

astrocytes, promote the repair of spinal cord 

tissue and improve the locomotor function of 
SCI mice

[106]

Reduced graphene oxide 
(rGO)

Xanthan gum 2.07±0.16 S/m - High electrical conductivity that transmits 
electrical signals, soft mechanical properties 

that match the spinal cord tissue, and porous 

internal structure that provide enough space 
for cell growth

In vitro study: good biocompatibility 
In vivo study: fill the cavity, guide the orderly 

growth of regenerated nerve fibers and inhibit 

the formation of glial scar, restore the 
locomotor function of rats

[146]
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Single-walled carbon 

nanotubes

Polyethylene glycol 

diacrylate

0.01 S/m 20Hz, 

100mV

Stable, injectable, conductive In vitro study: promote the growth of SH-SY5Y 

cells, with significant neurite outgrowth while 

electrical stimulation was given 
In vivo study: promote nerve tissue 

regeneration and reduced the formation of scar 

tissue

[153]

Single-walled carbon 

nanotubes

Collagen 1723 mS/m 50 mV/mm Minimize signal attenuation and allow for a 

reproducible electrical stimulus to be applied 
across a wide range of injury geometries and 

model systems, provide some inherent benefit 

to electrically active cells in the absence of 
electrical stimulation

Ex vivo study: enhance neurite outgrowth [154]

Polydopamine modified 
GeP nanosheets 

(GeP@PDA)

Hyaluronic acid- 
graft-dopamine (HA- 

DA)

0.365 S/m - Injectable, good tissue adhesion properties, 
conductive and biodegradable

In vitro study: accelerate the neuron-oriented 
differentiation of neural stem cells (NSCs) 

In vivo study: promote immune regulation, 

endogenous angiogenesis, and NSCs 
neurogenesis, and improve the recovery of 

motor function significantly

[30]

Mxenes Polyvinylpyrrolidone 

(PVP)

2.6 mS/cm - Injectable, electroconductive, adhesive, and 

self-healing and biocompatibility

In vitro study: good biocompatibility 

In vivo study: significantly accelerate spinal cord 

regeneration by accelerating angiogenesis, 
remyelination, axon regeneration and calcium 

channel activation

[105]

Mxenes Methylacrylylated 

gelatin

6.2μS/cm - Excellent biocompatibility, microgroove 

structure could induce nerve cells to grow 

directionally and further promote impaired 
nerve gaps bridge, excellent conductivity

In vitro study: improve the adhesion, 

proliferation and differentiation of NSCs 

In vivo study: promote the regeneration of the 
spinal cord and recovery of hind limb motor 

function in rats

[175]

Mxenes-Au Gelatin methacrylate 

(GelMA), poly(lactic- 

co-glycolic acid) 
(PLGA)

0.57 S/m 100 mV,100 

Hz

Containing a patterned nanofiber skeleton, 

good ROS- scavenging ability, electrical 

conductivity and antibacterial ability

In vitro study: reduce the formation of ROS, 

inflammation, and promoting the differentiation 

and growth of NSCs into neurons 
In vivo study: reduce the generation of glial 

scars, enhancing the establishment of synaptic 

connections between cells, and fostering the 
functional recovery of SCI, improve the 

recovery of motor function after SCI in rats

[177]

Notes: In the above table “-” indicates that it is not mentioned in the relevant article.
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cells (NSCs), ultimately promoting the maturation of neuronal electrophysiological characteristics.59 Therefore, the 
transmission and delivery of electrical signals are essential for neuronal survival, regenerative differentiation, and the 
activation of neural circuits.

Neurons inherently possess the ability to transmit electrochemical signals throughout the nervous system and are 
significantly influenced by external electrical stimulation.60,61 Electrical stimulation has been shown to promote axon 
extension in vitro and nerve regeneration in vivo.62 Studies have shown that electrical stimulation accelerates axonal 
regeneration and promotes functional recovery when an electric field is established between nerve defects.63 Although 
the mechanisms by which electrical stimulation promotes neuronal growth are not fully understood, it is widely thought 
that multiple mechanisms exist64(Figure 2):

(a) Calcium ion influx and calcium signaling. ES can increase intracellular calcium levels by activating calcium 
channels (VGCC) to promote more calcium ions into cells or activating GPCRs to release Ca2+ from storage in 
the endoplasmic reticulum.65,66 Calcium signaling can negatively regulate the PTEN protein, a major intrinsic 
barrier to axon regeneration.67,68 After inhibiting PTEN expression, it promotes axon regeneration in corticospinal 
neurons by upregulating mTOR activity.69,70 As a second messenger, intracellular calcium ions are the key factors 
affecting functional activities such as migration, proliferation, and differentiation of neural stem cells.71,72 In 
addition, calcium influx induces phosphorylation of the transcription factor cAMP response element binding 
protein (CREB), which can regulate the initiation of transcriptional programs and promote the expression of 
neuronal genes (i.e.NeuroD1 and Neurogenin1), thus exerting important effects on neurogenesis.73

(b) Activation of intracellular signaling pathways, such as FAK and p38 ion channels and ERK, MAPK, PI3K/AKT, 
and ROCK, and reactive oxygen species (ROS) pathways.74–76 Phosphorylation of FAK (a junction that bridges 
integrins and the cytoskeleton) by electrical stimulation further stimulates actin remodeling and downstream 

Figure 1 Pathophysiologic mechanisms of spinal cord injury. 
Notes: Reprinted from Acta Biomaterialia, 139, Kiyotake EA, Martin MD, Detamore MS. Regenerative rehabilitation with conductive biomaterials for spinal cord injury. 
43–64. Copyright 2020, with permission from Elsevier.47
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mechanical signaling, such as the MAPK and ERK pathways closely related to neural cell proliferation and 
differentiation. The subsequent activation of JNK, which is required for neurogenesis, affects neuronal 
differentiation.77,78

(c) Gap junctions: Gap junctions enable neighboring cells to exchange small molecules, and create electrical and 
metabolic couplings between these cells.79,80 Electrical stimulation can alter cell gap junctions, affecting the 
exchange of signaling molecules such as calcium, potassium, cyclic nucleotides, and inositol phosphates, and 
promote the development and communication of electroactive cells.81,82

(d) Extracellular matrix composition: Electrical stimulation can alter ECM composition by affecting proteins, soluble 
ions, or charged groups, which cause electrophoretic redistribution of cell surface receptors and altered adhesion 
of adhesion proteins, thereby affecting neurite outgrowth.83,84

(e) Electric fields are introduced at the injury site to promote axonal growth and plasticity.85–87 The use of spinal cord 
electrical stimulation (ES) to activate or increase the excitability of neuronal networks below the injury directly 
promotes axon regeneration in the environment by mimicking the action potential of the central nervous system, 
maintaining the ability of the spinal cord to respond to peripheral stimuli,88–90 which increases the local synthesis 
of major proteins in myelin, thereby stimulating myelin induction.91–94 At the same time, electrical stimulation 
enhances the expression of neurotrophic factors, such as GDNF, ENO2, and BDNF.95,96

Figure 2 Electrical stimulation acts through intracellular calcium ions, membrane receptors, ATP, ROS, gap junctions, and ECM components, thereby triggering important 
signaling pathways that regulate nerve cell proliferation, migration, and differentiation. 
Abbreviations: gf, growth factor; GR, growth receptor; CaM, calmodulin; AC, adenylate cyclase; cAMP, cyclic AMP; PKA, protein kinase A; ERK, extracellular signal- 
regulated kinase; FAK, focal adhesion kinase; JNK, c-jun N-terminal kinase; MAPK, mitogen-activated protein kinase; PI3K, phosphatidylinositol-3 kinase; PTEN, phospho and 
tensin homologous protein; Src, steroid receptor coactivator; YAP, yes-associated protein; TAZ, transcriptional coactivator with a PDZ binding motif; ROCK, Rho-associated 
protein kinase; MAP, microtubule-associated protein; mTOR, mammalian target of rapamycin; FOX1: FOX1: forkhead box protein 1; GSK3β: glycogen synthase kinase-3.
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Research Progress of Conductive Hydrogel
Hydrogels are three-dimensional structures consisting of a porous polymer network. These materials mimic the extra-
cellular matrix environment, allowing the exchange of nutrients with surrounding tissues, cell migration, and the 
diffusion of molecules. Hydrogels are characterized by their high water content and controlled release capabilities, 
making them ideal for implantation.97 They offer suitable pore sizes, porosity, biocompatibility, low toxicity, adjustable 
biodegradability, and mechanical properties. Injectable hydrogels, which can be filled into spinal cord injury sites through 
in-situ gelation, are advantageous for avoiding additional surgical damage.98,99 Therefore, hydrogels are considered the 
most suitable scaffold for spinal cord regeneration and neural tissue repair.100

Although hydrogels can generate ionic currents through ions dissolved in water, they typically act as electronic 
insulators, meaning they do not conduct electrons. Under physiological conditions, the electrical properties of hydrogels 
are generally similar to those of the surrounding tissue medium, and they are far inferior to conventional electronic 
conductors.101 One viable approach to enhance the electrical properties of hydrogels is to introduce electronic con-
ductivity alongside their ionic conductivity achieved by incorporating conductive nanomaterials into the polymeric 
matrix of hydrogels. Consequently, resulting hydrogel composite materials possess both ionic and electronic conductivity 
while preserving the unique biomechanical advantages of hydrogels. Charge carriers migrate within conductive hydrogels 
through electronic/hole transport in the polymer network and ionic flow in the porous electrolyte. This movement of 
electronic/hole carriers induces changes in the polarization of the polymer network, which, in turn, triggers the 
orientation, migration, and rearrangement of ions in the pore electrolyte of hydrogels. This leads to alterations in the 
extracellular potential of cell membranes, activating ion channels and initiating the transmembrane flow of ions. 
Additionally, this process alters the polarization state of neuron cell membranes, initiating a cascade of intracellular 
signaling pathways.102 Additionally, hydrogel matrices play a regulatory role in the fate and behavior of neural cells 
within them, providing favorable conditions for neuroregeneration in treating spinal cord injuries.

To facilitate the repair and regeneration of SCI, researchers have extensively explored other properties of conductive 
hydrogels besides electrical conductivity. In this respect, Liu et al developed conductive hydrogels with a specific elastic 
modulus and mechanical strength, enabling them to prevent damage to surrounding residual tissues and maintain the 
local structure. Moreover, an appropriate elastic modulus (approximately 0.11–1 kPa) can enhance neural stem cell 
differentiation into neurons and reduce neurogliogenesis.99 Adequate porosity, permeability, and surface morphology 
have been found to facilitate material exchange and cell loading, ensuring good swelling properties and the overall 
stability of the hydrogel.103 Luo et al grafted dopamine (DA) molecules onto hyaluronic acid (HA) biomolecules to form 
HA-DA hydrogels, which resulted in HA-based hydrogels with good adhesion properties and stable adhesion to 
surrounding tissues.30 Zhang et al designed and prepared conductive hydrogels with good biocompatibility and degrada-
tion rates that align with axonal and tissue regeneration. These hydrogels could efficiently degrade in vivo as neural 
tissues regenerate, preventing long-term presence in the spinal cord tissues, which could impede neural tissue regenera-
tion or cause chronic inflammation or toxicity.104 Zhao et al prepared PPM hydrogels with significant shear-thinning 
properties. By adjusting the angular frequency, these hydrogels could be easily injected with a syringe and spontaneously 
penetrated and filled irregularly shaped areas, owing to their shape memory properties. The reversible non-covalent 
crosslinking in PPM hydrogels provided remarkable self-healing properties, ensuring structural integrity and prolonging 
their lifespan.105 These properties facilitated the rapid injection of hydrogels into the target site, offering the possibility of 
minimally invasive treatment. Additionally, Chen et al developed a hydrogel based on polyvinyl alcohol (PVA), 
molybdenum sulfide, and graphene oxide, which exhibited excellent anti-oxidative properties and effectively attenuated 
ROS, inhibiting the destructive inflammatory response.106

The selection of appropriate manufacturing methods and materials plays a critical role in controlling and manipulating 
the characteristics of hydrogels. Depending on their origin, the most commonly used biopolymer-based hydrogels for SCI 
scaffolds in current research include natural polymers, synthetic polymers and self-assembled peptides. Natural polymers 
can be divided into two main categories: protein-based (collagen, gelatin, and matrix gel) and polysaccharide-based 
(chitosan, alginate, agarose, hyaluronic acid, and methylcellulose).107 Synthetic polymers are categorized into artificial 
materials such as methacrylic anhydride and polyethylene glycol.108 The synthesis of hydrogels can be achieved through 
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physical and chemical crosslinking methods. Physical crosslinking methods encompass techniques like ion-pairing, 
complex coacervation, hydrogen bonding, phase transition (either thermal-responsive, involving heating or cooling a 
polymer solution or crystallization), and hydrophobic interactions. Chemical crosslinking methods involve processes like 
Michael addition reactions, Schiff base reactions, click chemistry, condensation reactions, crosslinking with aldehydes, 
thiol-disulfide exchange, radiation crosslinking, free-radical polymerization, photo-induced crosslinking, and enzyme- 
mediated crosslinking.109 In terms of design approaches, various hydrogel scaffold designs have been applied and studied 
in SCI tissue engineering, such as electrospun scaffolds,110 3D bioprinted scaffolds,111 patterned scaffolds, in-situ 
injectable scaffolds,98 microfluidic fabrication,112 and directed microstructures.113 For injectable conductive hydrogels, 
the rate of gelation of the material is critical . It is now understood that gelation should neither be too fast, allowing 
adequate time for injection and filling of the defect site, nor too slow, preventing the hydrogel from flowing out of the 
lesion. The gelation rate is typically adjusted through chemical or physical cross-linking methods, depending on the type 
of polymer, its relative molecular mass, concentration, and the type of cross-linking, such as ultraviolet light, pH, and 
temperature changes.

Currently, conductive hydrogels often employ electrical stimulation to promote neuroplasticity by providing a matrix 
that guides axonal growth in specific directions, aligning neural cells with fiber axons, and effectively promoting 
neurogenesis.114,115 Moreover, they can regenerate damaged tissues by delivering cells, drugs, and/or bioactive mole-
cules, thus bridging these two distinct features.116 In the following sections, we will discuss recently used conductive 
biomaterials for constructing conductive hydrogels and their advantages and disadvantages in SCI treatment.

Conductive Hydrogel for Spinal Cord Injury Repair
Over the years, the application of conductive hydrogels for spinal cord injury treatment has gained significant momen-
tum. The conductive nanomaterials used to construct these hydrogels include conductive polymers, carbon-based 
nanomaterials, phosphorus-based nanomaterials, MXene, and various combinations of these materials. Conductive 
polymers, such as polypyrrole (ppy), polyaniline, and poly 3,4-ethyl-dioxothiophene, are the most commonly used 
conductive polymers in the field of biomedical research. They offer good electrical properties and biocompatibility.117,118 

Carbon-based materials, including graphene, reduced graphene oxide (rGO), and carbon nanotubes, are also utilized in 
the development of conductive biomaterials due to their high electrical conductivity (ranging from 103 to 104 S/cm) and 
large surface area, which allows for functionalizing biomolecules and modulating cellular responses.25 GeP, as an 
emerging material in the phosphorus-based family, is known for its excellent biocompatibility, degradability, and 
electrical conductivity, making it a multifunctional nanomaterial suitable for various applications.119,120

MXene is, a class of two-dimensional transition metal carbide and nitride materials, combines the electrical 
conductivity of a transition metal with the physicochemical characteristics of carbon- nitride. Its surface is rich in 
functional groups, making MXene hydrophilic and highly modifiable for various bioengineering applications. The 
functionalization of MXene materials has become a research hotspot in recent years.121,122

Table 2 provides a comprehensive list of the advantages and disadvantages associated with each of these materials.

Conductive Hydrogels Based on Conductive Polymers
Conductive polymers (CPs) are a class of organic materials that exhibit unique electrical and optical properties similar to 
inorganic semiconductors and metals. Typically, conductive polymers have conjugated chains with alternating single and 
double bonds. Due to the highly delocalized and polarizable nature of the π electrons, they can form pathways for charge 
carriers, allowing electrons to move along the polymer chains.

In recent years, conductive polymers have attracted significant interest as biomaterials in tissue engineering applica-
tions because of their physical and chemical properties, ability to transmit electrical signals to cells, and capacity to offer 
a conducive platform for specific cell responses like cell adhesion, growth, and proliferation. Among the conductive 
polymers frequently used in spinal cord injury repair are polypyrrole (PPy), polyaniline (PANi), polythiophene(PT), and 
its derivative, poly(3,4-ethylenedioxythiophene) (PEDOT). These conductive polymers have been widely employed in 
the development of conductive hydrogel. While these conductive polymers have relatively low intrinsic conductivity, 
their conductivity can be substantially enhanced through processes such as oxidation (p-doping) or reduction (n-doping), 
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with dopant ions serving to maintain electrical neutrality. This enhancement enables them to reach the conductivity, range 
of semiconductors and metals.

PPY
PPy is one of the most commonly used conductive polymers in the treatment of spinal cord injuries. Doped PPy exhibits 
high conductivity, excellent environmental stability, ease of preparation, and easy modification. Its electrical conductivity 
can reach up to approximately 103 S cm−1, and PPy can be easily synthesized in large quantities using various common 
organic solvents and water at room temperature. Furthermore, its good biocompatibility can significantly promote the 

Table 2 Conductive Biomaterials for Use as Conductive Hydrogels

Conductive Biomaterials Advantages Disadvantages Reference

Conductive 
polymer

Polypyrrole (PPy) Easily chemically synthesized, highly 
stable, adjustable mechanical, high 

conductivity, highly cellular 

biocompatible

Irreversible oxidation, may reduce 
conductivity over time, Insoluble 

monomer and polymer in water

[21,22]

Polyaniline(PANI) Low cost, easy to synthesize, good 

chemical stability, low toxicity

Poor flexibility, poor degradability, 

poor processability, low solubility, Poor 
biodegradability

[23,24]

Poly (3,4- 

ethylenedioxythiophene) 

(PEDOT)

High conductivity when doped, Good 

biocompatibility/cell adhesion, High 

stability when doped with PSS

Stability and conductivity require 

additives or post-processing

[21]

Carbon-based 

nanomaterials

Reduced graphene oxide 

(rGO)

High conductivity, good mechanical 

properties, Good stability, 
High surface area and good 

biocompatibility

Less hydrophilic, can aggregate [25,26]

Go Excellent mechanical properties, good 

chemical stability, large specific surface 

area, better hydrophilicity, lower 
toxicity, lower toxicity, easy to 

functionalize

Low to moderate conductivity, 

dependent on oxidation, Toxicity not 

well-known, but dependent on method 
of synthesis, size, and dose,

Single-walled carbon 

nanotubes

High conductivity, good stability, large 

surface area and easy to functionalize, 

functionalized CNTs are easy to blend 
with other materials

Easy hydrophobic aggregation and 

difficult uniform dispersal, high 

hydrophobicity leads to aggregation, 
inflammation, and toxicity, invasive 

tubular

[27]

Phosphorus-based 

nanomaterials

Black phosphorus 

nanosheets (BP)

High conductivity, excellent 

biocompatibility, Naturally degradable

Lower stability [28,29]

GeP Highly conductive, Biodegradable, 

reducing residual and cytotoxicity of 

biomaterials, Scavenge oxygen free 
radicals and promotes angiogenesis

As a heavy metal element, germanium 

needs to be further studied for its 

metabolism and fate after implantation 
in the body

[30]

MXene High conductivity, hydrophilicity, rich 
modifiability, high biocompatibility, 

high mechanical properties, giving the 

hydrogel a rougher surface 
morphology, promoting cell migration, 

and reducing ROS production

Poor natural degradability [31,32]
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adhesion, proliferation, and differentiation of different types of cells in vitro.123 At the same time, it can be integrated 
into materials with large surface areas and different porosity, and can be easily modified by incorporating bioactive 
molecules, making it suitable for biomedical applications.

Despite the above-mentioned advantages of PPy, it still has some limitations. Previous studies have shown that PPy 
can be challenging to further process due to its crystalline, mechanically rigid, brittle, and insoluble, nature, which 
makes it unsuitable for soft natural spinal cord tissue. It can readily trigger stress and induce inflammatory reactions, 
significantly limiting its application in the field of central nervous system regeneration. To address these issues, 
researchers have found that PPy’s limitations can be mitigated by carefully selecting dopants and optimizing synthesis 
methods and conditions. A common strategy involves blending PPy with other degradable synthetic or natural 
polymers, such as PLA, PLGA, PCL, chitosan, and silk fibroin, to create conductive hydrogels. For instance, Xu 
et al synthesized a shape-recoverable, self-healing conductive hydrogel by utilizing Schiff base reactions, incorporating 
N-carboxyethyl chitosan (CEC), chitosan-modified polypyrrole (DCP) nanoparticles, and a unique aldehyde-terminated 
difunctional polyurethane (DFPU) crosslinker. This hydrogel was found to promote the attachment, proliferation, and 
differentiation of neural stem cells, resulting in remarkable recovery of motor function in brain-injured zebrafish.124 

Huang et al developed a conductive hydrogel by blending collagen with PPy, achieving the most suitable Young’s 
modulus and electrical conductivity similar to spinal cord tissue. Combined with electrical stimulation, this hydrogel 
led to increased cell proliferation and differentiation into neurons, inhibiting differentiation into astrocytes.125 It has 
been established that the electrical signal transmission level in the natural spinal cord is 4.2×10−4 S cm−1, and the 
elastic modulus is 202.2 Pa. Dai et al harnessed PPy’s conductivity, gelatin’s tissue affinity, and tannic acid’s (TA) 
supramolecular interaction to create a gelatin-based conductive hydrogel (GCH) with mechanical properties and 
electrical conductivity comparable to the natural spinal cord by controlling the concentrations of gelatin and PPy 
(Figure 3). By utilizing glutathione (GSH) conjugation, this hydrogel allowed the on-demand release of bFGF in 
response to the SCI microenvironment. In vivo results showed significant attenuation of matrix metalloproteinases 
(MMPs) expression, creating a conductive microenvironment that promoted axon regeneration at the injury site, 
increasing vessel density.126

One major challenge in spinal cord injury repair is the secondary injury cascade reactions, including elevated ROS levels, 
lipid peroxidation, and other oxidative pathological microenvironments.40 Wu et al developed a conductive hydrogel composed 
of PPy and methacrylic anhydride (MA)-modified hyaluronic acid and collagen. The incorporated PPy within the matrix 
demonstrated antioxidant properties, helping to regulate the oxidative pathological microenvironment, protect exogenous cells 
from oxidative damage, and maintain electrical signals. The hydrogel also facilitated the delivery of exogenous stem cells to the 
lesion site, restoring the transmission of endogenous electrical signals.127

Importantly, the spinal cord transmits information in the form of electrical impulses along highly conductive nerve 
fibers. Endogenous bioelectrical signals are essential for maintaining neuronal function and axonal growth. Therefore, the 
design and fabrication of scaffolds for spinal cord regeneration should mimic the highly conductive properties of the 
spinal cord. Zhou et al used tannic acid (TA) as a dopant and crosslinking agent to prepare a conductive hydrogel with 
polypyrrole as the backbone. Compared with the traditional conductive hydrogel, this hydrogel synthesized a polymer 
without insulation due to PPy’s natural crosslinking with tannic acid through intermolecular interactions, resulting in 
good conductivity. Implanted highly conductive hydrogel bridges in a severe mouse spinal cord injury model promoted 
neuronal differentiation, inhibited astrogliogenesis and promoted endogenous neurogenesis, leading to functional recov-
ery by restoring disrupted spinal cord circuits.128

The pathological microenvironment after spinal cord injury can impair the electrical signal transmission of living 
nerve cells in the lesion, disrupt the electrical connection of the injured spinal cord, and ultimately destroy the neural 
circuit. To address this issue, Yang et al developed an agarose/gelatin/poly pyrrole (Aga/Gel/PPy, AGP3) hydrogel with 
similar electrical conductivity and modulus to those of the spinal cord. The physical crosslinking method employed 
makes it suitable for injection. In vivo studies have shown that AGP3 hydrogels could provide a suitable microenviron-
ment for the migration and differentiation of neural stem cells, which could significantly promote endogenous neurogen-
esis and reduce the formation of glial fibrosis. SCI mice exhibited significant functional recovery based on functional 
assessments of Basso-Beattie-Bresnahan (BBB) scores, footprint tests, and inclined plane test (IPT) scores. Further 
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analysis using RNA-sequencing revealed that the AGP3 hydrogel significantly notably regulated the expression of genes 
related to neurogenesis through an intracellular Ca2+ signaling cascade. Moreover, the incorporation of electroactive 
materials amplifies the weak local electric field generated by the cell membrane, thus creating a transmembrane voltage 
gradient that influences the inflow of ions across the cell membrane. Consequently, intracellular signaling significantly 
impacts the proliferation and differentiation of neural stem cells (Figure 4).21

PANI
Polyaniline is another commonly used conducting polymer, which can be synthesized chemically or electrochemically from the 
monomeric aniline. Similar to PPy, PANI boasts high environmental stability, cost-effectiveness in synthesis, and the ability to 
transition between conductive and resistive states, as well as various structural forms. However, the drawbacks of polyaniline and 
its derivatives in the field of biological tissue engineering primarily pertain to their limited cytocompatibility, processability, 
flexibility, and non-biodegradability, which can result in chronic inflammation and pain.129 Furthermore, as hydrogels swell 
under physiological conditions, ionic or physically loaded PANI may leach out, resulting in decreased conductivity and toxicity. 

Figure 3 Optimizing GCHs with spinal cord-like mechanical property and conductivity. (A) Time sweep of the native spinal cord (frequency = 1 Hz, temperature = 37°C). 
(B) Time-dependent G’ of hydrogels with different gelatin concentrations. (C) G’ comparison of the natural spinal cord and different hydrogels. (D) Electrical conductivity 
and impedance of pure gelatin, three GCHs, and the native spinal cord. (E) Resistance of conductive and non-conductive hydrogels. (F) Conductivity of GCHs with or 
without 50 mM NaIO4. (G) Resistance of GCHs with or without 50 mM NaIO4.. 
Notes: Reprinted from Biomaterials, 288, Fan CX, Yang W, Zhang LL, et al Restoration of spinal cord biophysical microenvironment for enhancing tissue repair by injury- 
responsive smart hydrogel. Copyright 2022, with permission from Elsevier.126
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Figure 4 Investigations of RNA-seq and assessments of intracellular calcium involved in neurogenesis. (A) Heat map of neurogenesis-related gene expression. (B) The gene 
enrichment KEGG pathway analysis. (C and D) Immunofluorescence images of L-VGCC, p-CREB and BDNF in each group on day 7. (E) WB analysis of L-VGCC, p-CREB 
and BDNF. (F) Quantitative analysis of L-VGCC, p-CREB and BDNF. (G) Pseudo-color pictures of representative calcium images before and after glutamate stimulation. (H) 
Image-derived fluo-4 intensity measurements over time in NSCs. 
Notes: Reprinted from Acta Biomaterialia, 15, Yang B, Liang C, Chen D, et al A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord 
injury repair. 103–119. Copyright 2022, with permission from Elsevier.21
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Liu et al addressed these issues by creating an electroactive hydrogel based on poly amino acid and electroresponsive polyaniline. 
It has been established that polyamino acid possesses excellent characteristics such as biocompatibility, safety after degradation, 
non-toxicity, and ease of modification, which mitigates the challenges associated with using PANI in neural tissue engineering. 
Implanting this hydrogel into a rat model of spinal cord injury and applying electrical stimulation, led to the inhibition of astrocyte 
proliferation, prompting damaged neural stem cells in the spinal cord to differentiate into neurons and stimulating endogenous 
neurogenesis. Evaluations through footprint tests and the BBB score demonstrated that the electroactive hydrogel, when 
combined with electrical stimulation, significantly enhanced the recovery of motor function in spinal cord injury rats. 
Histological and ultrastructural observations confirmed that the damaged area predominantly comprised newly generated 
neuronal cells, regenerated myelin, and axons.130

PEDOT
A third common conjugated polymer is poly(3,4-ethylenedioxythiophene) (PEDOT), a polythiophene (PTh) derivative. 
Compared to PPy, PEDOT offers superior electrical conductivity and chemical stability. However, its low solubility makes it 
challenging to uniformly disperse in water. Typically, polystyrene sulfonate (PSS) is used as a dopant and templating agent to 
enhance the water solubility and stability of PEDOT. Nonetheless, the disadvantages of PSS, such as its insulating properties, 
hydrophilicity, and strong acidity, limit its applicability in tissue engineering. To overcome these limitations, researchers 
synthesized PEDOT nanoparticles (NPs) through chemical oxidative polymerization within microemulsions. These NPs can 
be uniformly integrated into hydrogel-based scaffolds, substantially increasing the electrical conductivity of the scaffolds to 
8.3×10−4 ± 8.1×10−5 S/cm without biocompatibility issues.131 Gao et al introduced sulfonated lignin (LS) as a dopant, which not 
only improved the dispersion and conductivity of PEDOT but also demonstrated the excellent biocompatibility of the synthesized 
PEDOT: LS. The conductive hydrogel prepared by 3D bioprinting simulated the composition of spinal cord ECM with gelatin 
and hyaluronic acid, promoted the growth and adhesion of nerve cells, and its conductivity was comparable to that of spinal cord 
white matter (0.60 S m−1). At the same time, it simulated the structure of the parallel arrangement of the white matter of the 
spinal cord, facilitating the orderly parallel growth of new neurofilaments along the bioprinted scaffold, thus enabling efficient 
spinal cord injury repair.104 Moreover, Song et al advanced the bioinks for 3D bioprinted conductive hydrogel scaffolds. By 
integrating PECT (PEDOT: CSMA, TA) with a photocrosslinked gelatin/polyethylene glycol physical gel (GP) matrix, followed 
by a cooling process, they achieved optimal shear-thinning behavior and suitable rheological properties. This design bolstered 
cell-cell and cell-matrix interactions within a conductive microenvironment, enhancing the therapeutic effect of neural stem cells 
and promoting nerve regeneration in spinal cord injury repair.132

Hydrogels formed with conductive polymers have attracted significant interest in recent years. Through the modifica-
tion and amalgamation of various substances, they offer an appropriate microenvironment conducive to the healing and 
rejuvenation of spinal cord injuries. Importantly, as biomaterials degrade over time, ensuring enduring electrical stability 
poses a crucial challenge that demands further exploration in the future.

Conductive Hydrogels Based on Carbon-Based Materials
Numerous studies have demonstrated the excellent physicochemical and mechanical properties, as well as substantial electrical 
conductivity (ranging from 103 to 104 S/cm), of carbon-based nanomaterials. These properties enable these materials to facilitate 
axon regeneration and encourage stem cell differentiation via neural electrical signals within spinal cord tissue. Their large 
surface area is advantageous for functionalizing biomolecules and modulating cellular responses. However, the presence of 
peripheral hydrophobic groups limits their interaction with hydrophilic polymers. To address these limitations, researchers have 
either modified the surface of nanomaterials with various polar functional groups, such as -OH, -NH2, and carboxyl (-COOH), or 
enhanced their dispersion by grafting different polymer chains. Conjugated and modified carbon-based nanomaterials, including 
graphene and its derivatives and carbon nanotubes (CNTs), have shown significant potential in the context of nerve regeneration.

Graphene
Graphene is a two-dimensional material composed of a single layer of carbon atoms arranged in a hexagonal honeycomb 
lattice. Its distinct structure and geometry account for its exceptional physicochemical properties, including high fracture 
strength, a high Young’s modulus, excellent thermal and electrical conductivity, a large specific surface area, and 
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biocompatibility.133 While graphene exhibits biocompatibility as an immobilizing surface for neuronal growth and can 
induce human neural stem cells (hNSCs) to differentiate more towards neurons while preventing their differentiation into 
glial cells,134–136 its smoothness, chemical inertness, and lack of biological cues hinder its use as a conductive material for 
synthesizing conductive hydrogels. To address these limitations, researchers have modified graphene and its derivatives to 
form nanocomposites. For example, Agarwal et al developed collagen-based cryogels utilizing amino-functionalized 
graphene nanocrosslinkers. The addition of amino-functionalized graphene improved the order and crosslinking degree 
of collagen molecules in the cryogel, resulting in sufficient porosity and interconnectivity that facilitated cell penetration 
and unimpeded nutrient transfer, necessary for accelerated axon regeneration.137 The implantation of 0.5% w/v graphene 
collagen cryogel into the injured spinal cord promoted cell proliferation from proximal to distal, enhanced the secretion of 
immune regulators, established neural connections, and facilitated spinal cord regeneration and repair of injuries.103

Graphene oxide (GO), the main derivative of graphene,138 contains carboxyl groups (-OOH) on the edges of its 
structure, with epoxy groups (-O) and hydroxyl groups (-OH) on the basal plane. The negatively charged carboxylate 
groups increase colloidal stability and hydrophilicity, rendering them more conducive to nerve cell surface attachment, 
proliferation, and differentiation. Over the years, graphene oxide GO has been extensively used in neural engineering due to 
its outstanding electrical properties and affinity for neural cells.139 Studies have shown that GO can promote the 
differentiation of neural stem cells, sustain the survival of neurons, accelerate the growth of neurons, and enhance 
neuroelectric properties.140 Zhang et al developed a supramolecular conductive hydrogel by crosslinking graphene oxide 
and diacerein-functionalized four-arm polyethylene glycol. The presence of GO imparted high electrical conductivity to the 
hydrogel, which facilitated neuron growth and axon myelination. The incorporation of the anti-inflammatory drug 
diacerene provided a sustainable anti-inflammatory environment for spinal cord injury repair. In vivo experiments in rat 
models confirmed evident spinal cord regeneration.141 However, the electrical conductivity and mechanical strength of 
graphene oxide were reduced due to high vacancy defects and hole defects caused by the presence of functional groups. In 
response, Chen et al developed a composite hydrogel using polyvinyl alcohol (PVA) and molybdenum sulfide/graphene 
oxide (MoS2/GO) nanomaterials (Figure 5). The defects in GO were leveraged to enhance fast electron transfer and high 

Figure 5 The schematic diagram shows the preparation steps of MoS2/GO/PVA nanocomposite hydrogel and the treatment process of mouse SCI. 
Notes: Reprinted from Journal of Nanobiotechnology, 20, Chen LL, Wang WS, Lin ZF, et al Conducting molybdenum sulfide/graphene oxide/polyvinyl alcohol nanocomposite 
hydrogel for repairing spinal cord injury. Copyright 2022, with permission from Spring Nature. Creative Commons.106
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electrical conductivity after reacting with MoS2. This combination effectively promoted the differentiation of neural stem 
cells into neural cells. Additionally, the mechanical properties of PVA were improved by the addition of MoS2 and GO 
conductive nanoparticles, resulting in a lower elastic modulus that reduced growth resistance after spinal cord injury and 
significantly increased the proliferation rate of neural stem cells. The results demonstrated that implantation of the 
composite hydrogel promoted the repair of spinal cord tissue and enhanced the motor function of injured mice.

rGO is a structural intermediate between graphene and GO that can be synthesized in large quantities from GO through 
various reduction conditions. Compared with GO, the reduction of oxygen-containing functional groups and the restoration 
of π-π bonds in rGO result in increased conductivity. The remaining oxygenated groups can also be further modified or 
functionalized, enhancing rGO’s performance in both organic and aqueous environments. In the realm of neural tissue 
engineering, rGO boasts several advantageous attributes, including electrical conductivity, biocompatibility, biodegrad-
ability, antibacterial properties,142 and pro-angiogenic characteristics.143 Ankor et al demonstrated that rGO is biocompa-
tible with neurons and glial cells in vivo. Reduced graphene oxide could adhere to cells and induce cell migration based on 
the π-π interaction between reduced graphene oxide and cells.144 Serrano et al explored microfiber-shaped rGO materials 
(rGO-MF), revealing their potential in promoting nerve cell regeneration and the possibility of aiding axon and blood vessel 
regeneration in injured spinal cords.145 Xue et al prepared a conductive, porous, soft gel scaffold for spinal cord injury 
repair using xanthan gum and rGO. The gel scaffold exhibited an elastic modulus and high electrical conductivity similar to 
spinal cord tissue, as well as a 3D porous structure mimicking extracellular matrix, providing growth space and nutrient 
transport channels for spinal cord tissue regeneration. The endogenous bioelectrical signals generated by this scaffold, 
along with the required electric field for nerve cell growth, enhance nerve differentiation into neurons. Additionally, the π-π 
interaction between rGO and amino acids on cell membranes facilitates nerve cell adhesion within the scaffold. Both in 
vitro and in vivo experiments confirm the ability of the conductive hydrogel to inhibit astrocyte proliferation around the 
spinal cord injury area and promote motor function recovery in rats with spinal cord injuries.146

Carbon Nanotubes
Carbon nanotubes (CNTs) are cylindrical nanostructures arranged in single-walled or multi-walled nanotubes composed 
of a lattice of carbon atoms. Carbon nanotubes exhibit unique properties such as flexibility, electrical conductivity, 
mechanical strength, and ease of functionalization, making them well-suited for interaction with electrically active 
tissues. Current studies suggest that carbon nanotube substrates can support neuron survival and promote the growth of 
neuronal processes,147–149 and the high conductivity of carbon nanotubes improves the transmission efficiency of 
neuronal electrical signals. For example, hippocampal neurons grown on CNT substrates showed increased spontaneous 
synaptic activity and firing frequency.150 CNTs can also facilitate synaptogenesis and, thus, neural connectivity of neural 
circuits.151,152 However, a significant drawback of carbon nanotubes is their insolubility in water, leading to aggregation 
and cytotoxicity in the central nervous system. This aggregation can trigger inflammation, excessive production of ROS, 
mitochondrial dysfunction, and impaired synaptic plasticity. To address this issue, Sang and colleagues used a multi-
functional crosslinking agent to polymerize single-walled carbon nanotubes, forming a thermosensitive hydrogel. The 
inclusion of dodecylamine, an amphiphilic coupling agent, and long hydrophobic alkyl chains stabilizes carbon 
nanotubes and promotes SH-SY5Y cell and neurite outgrowth when coupled with in vitro electrical stimulation. This 
SWNT-PNIPAAM hydrogel enhances neural tissue regeneration and reduces scar formation in a spinal cord injury 
model.153 In addition, Koppes and colleagues investigated the synergistic effects of electrical stimulation when combined 
with conductive 3D hydrogels. They found that SWCNTs loaded at various concentrations promoted neurite outgrowth. 
Interestingly, 20 μg/mL displayed the most significant advantages, particularly regarding total neurite outgrowth and the 
longest neurite length. Lower concentrations of more dispersed SWNTs increased electrical conductivity and did not 
significantly impact the elastic modulus, highlighting the dose-independent advantages (Figure 6). Combining these 
nanomaterial-loaded hydrogels with electrical stimulation further enhanced neurite length.154

The low solubility of carbon nanotubes makes it challenging for non-functionalized carbon nanotubes with high 
conductivity to disperse in aqueous polymer solutions. Existing studies have attempted to modify carbon nanotubes with 
various functional groups, including hydroxyl, carboxyl, and amino groups. However, traditional carbon nanotube 
functionalization processes often resulted in the destruction of the sample, causing defects and reducing electrical 
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Figure 6 Electrical stimulation enhances neurite outgrowth in SWCNT composite hydrogels. (A) DRG cultured in nanomaterial-free hydrogel and without electrical 
stimulation. (B) DRG cultured in nanomaterial-free hydrogel but using electrical stimulation (50 mV/mm, 8h, 1mA). (C) DRG cultured in hydrogels with 20 µg/mL SWCT 
without electrical stimulation. (D) DRG cultured in hydrogels containing 20 µg/mL SWCNTs and using electrical stimulation (50 mV/mm, 8h, 1mA). (E) DRG using electrical 
stimulation (50 mV/mm, 8h, 1mA) and cultured in hydrogels containing 20 µg/mL SWCNT had the largest total neurite outgrowth compared with the other three control 
groups. (F) DRG using electrical stimulation (50 mV/mm, 8h, 1mA) and cultured in hydrogels containing 20 µg/mL SWCNT had the longest neurite length compared with 
the other three control groups. Green = β-III-Tubulin neurites, Red = Phalloidin actin, Blue = DAPI nuclei, Bar = 500 µm, 20x. * = p < 0.05 compared to all conditions, # = p 
< 0.05 compared to all conditions, n = 3, standard error shown. 
Notes: Reprinted with permission from Acta biomaterialia, 39, Koppes AN, Keating KW, McGregor AL, et al Robust neurite extension following exogenous electrical 
stimulation within single walled carbon nanotube-composite hydrogels. 34–43. Copyright 2016, with permission from Elsevier.154
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conductivity. Inspired by mussel foot proteins.155 Inspired by mussel podiacin, Shin et al combined and efficiently dispersed 
single-walled carbon nanotubes and PPy into catechol-functionalized HA hydrogels via oxidative catechol chemistry. This 
approach created a biocompatible, dynamic, and conductive 3D extracellular matrix for neuronal regeneration. The 
formation of HA-CA hydrogels overcame the difficulties in uniformly dispersing non-functionalized conductive materials, 
such as oxidized PPy and/or CNTs, within 3D HA hydrogels.156,157 Experimental results indicated that the conductive 3D 
environment provided by the CNT/PPy-containing HA-CA hydrogel promoted neurogenesis in human stem cells by 
increasing the expression of functional calcium channels (Cav1.2) and intracellular calcium levels.158

While conductive hydrogels based on carbon-based materials hold promise for spinal cord injury repair and 
regeneration, more extensive safety assessments are essential for their future clinical application. These assessments 
should explore long-term toxicity, genotoxicity, biodegradation, distribution, metabolism, and organ accumulation.

Conductive Hydrogels Based on Phosphorus-Based Materials
Conductive hydrogels based on phosphorus-based materials offer significant advantages in the context of spinal cord 
injury repair. Unlike conventional conductive materials such as conductive polymers and carbon nanomaterials, phos-
phorus-based conductive hydrogels provide the high conductivity required for nerve tissue regeneration while gradually 
degrading alongside the regeneration of new nerve tissue, leaving no foreign body residues.159 In recent years, 
phosphorus-based 2D nanomaterials, such as black phosphorus(BP), silicon phosphide, and germanium phosphide 
(GeP), have attracted significant attention for applications in nerve repair and regeneration.160,161 Black phosphorus, 
which has a similar structure and properties to graphene, boasts a high conductivity of up to 300S/M and offers both 
conductivity and degradation characteristics.162 Moreover, being an allotrope of phosphorus, a basic element of the 
human body, it can naturally degrade into non-toxic phosphorous acid, phosphate, and other PxOy substances under 
physiological conditions, ensuring good biocompatibility.163 Silicon Phosphorus (Si P) introduces biologically active 
silicon elements; in addition to providing conductivity and degradability, it promotes angiogenesis. Germanium phos-
phorus has a narrower band gap, larger charge carrier mobility, and higher conductivity.164 The inclusion of silicon and 
germanium effectively slows down the oxidation process. To enhance the biostability and biocompatibility of GeP 
nanosheets, Xu and colleagues doped polydopamine (PDA)-modified GeP nanosheets into a hyaluronic acid hydrogel 
matrix. In this system, PDA improved the stability of GeP nanosheets, while dopamine molecules grafted onto HA 
biomolecules endowed the hydrogel with excellent tissue adhesion properties. This injectable hydrogel, crosslinked using 
horseradish peroxidase (HRP)/H2O2 as an initiator system, enhanced neuron-directed differentiation of neural stem cells 
in vitro. In a rat model of complete spinal cord injury, the implantation of this hydrogel promoted immune regulation, 
reduced local inflammatory responses, facilitated endogenous angiogenesis and NSC neurogenesis, and significantly 
improved motor function recovery.30 The unique advantages of phosphorus-based materials, such as their biocompat-
ibility, conductivity, and degradability, position them as promising candidates in the field of spinal cord injury repair. 
Given that phosphorus-based conductive materials are natural constituents of the human body, they offer inherent 
degradation properties. However, long-term studies are warranted to assess whether excessive phosphate ions in the 
body could lead to phosphate poisoning and the loss of other essential metal ions, such as calcium and magnesium.

MXene-Based Conductive Hydrogels
MXenes represent a new class of 2D materials consisting of nitrides, carbides, and carbonitrides of transition metals,165 

with the general formula Mn+1Xn (n=1–3), where M is an early transition metal (eg Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo) and X 
is carbon or nitrogen.166 These materials offer rich physical and chemical properties and functionalities, owing to the 
various types and quantities of transition elements and the diverse functionalizations they undergo. MXenes combine the 
metallic conductivity of transition metal carbides/nitrides with the hydrophilicity of their hydroxyl/oxygen/fluorine- 
terminated surfaces in the presence of intact metal atomic layers and abundant surface functional groups.167 This endows 
MXenes with fascinating properties such as good electrical conductivity,168 antibacterial properties,169 hydrophilicity,170 

degradability171 and biocompatibility.172 Notably, MXene’s increased hydrophilic groups make it more amenable to surface 
modifications,173,174 rendering it well-suited for diverse applications in spinal cord injury repair. Yu et al successfully 
developed hydrogels using phytic acid (PA), polyvinylpyrrolidone (PVP), and MXenes, offering properties like 
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injectability, conductivity, adhesion, and self-healing capabilities. The electrically stimulating microenvironment enabled 
by MXenes triggers the MEK/ERK signaling pathway, leading to increased secretion of nerve regeneration-related 
cytokines and eventual promotion of spinal nerve regeneration (Figure 7). In vivo experiments have further verified that 
hydrogels containing MXene groups create an optimal microenvironment that accelerates nerve regeneration, angiogenesis, 
remyelination, axon regeneration, and calcium channel activation.105 To achieve targeted neuronal growth, Cai et al 
designed a composite hydrogel of gelatin methacrylate (GelMA) and MXene with a microgroove structure, which 
effectively promoted the adhesion, proliferation, and targeted differentiation of NSCs, attributed to MXene’s excellent 
electrical conductivity.175 In addition, MXenes and their derivatives can be effectively integrated or hybridized with various 
materials, including metals, graphene and its derivatives, carbon dots, MOFs, and CNTs, to enhance their overall 
performance and functionality.176 Kong et al combined gold nanoparticles (AuNPs) and MXene, harnessing the good 
electrical conductivity and biocompatibility of metal nanoparticles (AuNPs), as well as the characteristics of promoting the 
differentiation of NSCs and the growth of neurons. Coupled with the anti-oxidative ability of MXene to reduce the 
inflammatory response in the spinal cord injury area, an MAu-GelMA hydrogel loaded with NSCs combined with ES was 
constructed (Figure 8). The experimental results showed that MAu-GelMA hydrogel could reduce the accumulation of 
inflammatory cells by scavenging ROS, creating a more suitable microenvironment for NSC growth in the injured area 
compared to the MXene-GelMA control group. Combined with electrical stimulation, it further promoted the differentia-
tion of NSCs into neural cells and reduced the generation of glial scars, thereby improving the establishment of intercellular 
synaptic connections and promoting the functional recovery of SCI.177

Figure 7 Possible molecular mechanisms of PPM hydrogel promoting spinal cord regeneration. (a) Western blot analysis of regenerated nerves in SCI, PP and PPM groups; 
(b) p-MEK/MEK relative protein expression level analysis; (c) MEK/GAPDH relative protein expression level analysis; (d) p-MEK/MEK relative protein expression level 
analysis; (e) ERK/GAPDH relative protein expression level analysis; (f) Possible molecular mechanisms of PPM hydrogel promoting spinal cord regeneration; *: P < 0.05 
compared with SCI group; #: P < 0.05 compared with PP group; n = 5. 
Notes: Reprinted with permission from Chemical Engineering Journal. Yu QN, Jin SC, Wang SC, Xiao HN, Zhao YT. Injectable, adhesive, self-healing and conductive hydrogels 
based on MXene nanosheets for spinal cord injury repair. Copyright 2022, with permission from Elsevier.105
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Benefiting from its excellent conductivity and diverse surface functional groups, MXene holds the potential to serve 
multiple roles within conductive hydrogels. The development of improved design and preparation methods for MXene 
composite hydrogels, addressing drawbacks such as poor dispersion and rapid oxidation,178 is expected to pave the way 
for their application in the repair and regeneration of spinal cord injuries.

Conclusions and Prospects
The process of repairing and regenerating spinal cord injury is a multifaceted one influenced by numerous factors. 
Despite extensive research in this area, no single therapeutic approach has yet emerged to achieve full motor and sensory 

Figure 8 A novel multifunctional hydrogel containing MXene-Au composite and NSCs combined with electrical stimulation therapy was constructed to promote motor 
function recovery after SCI in rats. The combination of MAu-GelMA with NSCs and ES could promote the proliferation and differentiation of NSCs and stimulate the growth 
of nerve cell synapses. 
Notes: Reprinted from Ceramics International, 49, Kong WJ, Zhao YL, Yang XY, et al Combined treatment using novel multifunctional MAu-GelMA hydrogel loaded with 
neural stem cells and electrical stimulation promotes functional recovery from spinal cord injury. 20623–20,636. Copyright 2023, with permission from Elsevier.177
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recovery after a spinal cord injury. A promising avenue involves integrating regenerative medicine and rehabilitation 
approaches to stimulate the regeneration of neural pathways and facilitate functional rehabilitation post-SCI. This 
comprehensive approach encompasses regenerative medicine179 (eg, cells, drugs and bioactive molecules, biomaterials) 
and rehabilitation therapies (eg, motor training, electrical stimulation). While rehabilitation therapies have demonstrated 
positive results in previous clinical studies, their effectiveness diminishes in cases where the injury is severe and 
significant neural tissue loss has occurred. On the other hand, regenerative medicine approaches, relying on cells, 
drugs, and bioactive molecules, face their own set of limitations, such as constraints on cell sources, challenges in cell 
culturing, and difficulties ensuring cell survival following implantation.120 While capable of reducing secondary damage 
at the injury site and promoting regeneration, drugs and bioactive molecules require multiple administrations over 
extended periods to maintain therapeutic efficacy, rendering clinical treatment challenging. In light of advancements in 
biomaterials science and research pertaining to the microenvironment following spinal cord injuries, conductive 
biomaterials have emerged as a promising component of regenerative medicine. These biomaterials offer the potential 
to promote SCI repair while being compatible with electrical stimulation to enhance neuroplasticity. For instance, 
preformed catheters and fibrous scaffolds created through electrostatic spinning, multilayer stacking of electrically 
conductive materials, or nanofibers can guide the directional growth of axons and serve as carriers for cells, drugs, 
and bioactive molecules.180,181 However, these scaffolds often lack the mechanical strength required to match spinal cord 
tissue, presenting challenges in bridging irregular defects caused by contusion or compression-type injuries and 
potentially leading to secondary damage.

Biomaterials, particularly conductive hydrogels, have proven effective in addressing the limitations of the aforemen-
tioned treatment approaches. Currently, these conductive hydrogel scaffolds are designed to closely mimic native spinal 
cord tissues in terms of properties such as swelling rate, porosity, mechanical strength, electrical conductivity, structural 
features, and biochemical characteristics. Injectable hydrogels can fill irregular injury gaps and improve the microenvir-
onment at the injury site by providing damaged spinal cord tissue with a matrix for delivering cells, drugs, and bioactive 
molecules. Leveraging their electroactivity, these conductive hydrogels can reestablish interrupted neuroelectrical signal 
transmission, deliver electrical stimuli to enhance axonal regeneration and neurogenesis and accelerate the formation of 
synaptic connections and neurogenesis, ultimately promoting injury repair. Simultaneously, the incorporation of electrical 
stimulation within the spinal cord injury repair process can lead to more effective functional recovery. While there is 
limited research on the application of conductive hydrogels in spinal cord injury, the reported results thus far are highly 
promising and underscore the potential of conductive hydrogels within current tissue engineering and regenerative 
medicine strategies for enhancing spinal cord injury repair.

Despite the excellent physicochemical properties and applications of conductive hydrogels in spinal cord repair, there 
is room for improvement when it comes to translating them into clinical practice. The challenge lies in fabricating 
conductive hydrogels with various combinations of functionalities. Future conductive hydrogels should not only provide 
spatial and directional support for spinal cord regeneration but should also mimic the electrophysiological microenvir-
onment of neural tissues, transmit endogenous bioelectrical signals, and regulate the microenvironment and endogenous 
neural stem cells. Further refinement is necessary to ensure these hydrogels possess more appropriate and effective 
properties, such as maintaining long-term electrical stability, aligning the rate of scaffold degradation with the rate of 
tissue regeneration, and autonomously responding to changes in the microenvironment to meet the specific repair 
requirements during different stages of spinal cord injury. Moreover, additional preclinical assessments are required, 
encompassing long-term toxicity studies, evaluations of cellular uptake, and assessments of effects on metabolic path-
ways to ensure safe clinical application. Subsequent in vivo studies should include multiple long-term assays examining 
scaffold components in various body sites, organs, blood, and cells. Furthermore, future research should focus on 
determining the type and location of electrical stimulation and the parameters of electrical stimulation in synergy with 
conductive biomaterials. In summary, several challenges exist regarding the development of biomaterials and their 
clinical application, necessitating further research and development to unlock the full potential of conductive hydrogels 
as a new direction in spinal cord injury treatment.
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