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Abstract: Presently, the mechanism of occurrence and development of vascular calcification (VC) is not fully understood; a range of 
evidence suggests a positive association between diabetes mellitus (DM) and VC. Furthermore, the increasing burden of central 
vascular disease in patients with chronic kidney disease (CKD) may be due, at least in part, to VC. In this review, we will review 
recent advances in the mechanisms of VC in the context of CKD and diabetes. The study further unveiled that VC is induced through 
the stimulation of pro-inflammatory factors, which in turn impairs endothelial function and triggers similar mechanisms in both disease 
contexts. Notably, hyperglycemia was identified as the distinctive mechanism driving calcification in DM. Conversely, in CKD, 
calcification is facilitated by mechanisms including mineral metabolism imbalance and the presence of uremic toxins. Additionally, we 
underscore the significance of investigating vascular alterations and newly identified molecular pathways as potential avenues for 
therapeutic intervention. 
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Introduction
The VC procedure parallels the bone morphogenesis process and could frequently be delineated as progressive athero-
sclerosis, culminating in diminished vascular elasticity.1 Ultimately increasing the risk of future cardiovascular events. 
There are two primary forms of calcification; intimal calcification, which is present in atherosclerotic lesions of the 
intima, and medial calcification, also known as Mönckeberg sclerosis, which involves calcification of the smooth muscle 
layer of the vascular mesentery.2 Cardiovascular disease is an essential terminal phase alteration in type 2 diabetes 
mellitus (T2DM) and CKD, and it is the most prevalent cause of mortality in the populace, wherein the high frequency of 
VC is a significant contributing risk factor.3

At present, an array of investigations have demonstrated that both DM and CKD are intimately interconnected with VC. 
Recent evidence has revealed a multitude of shared mechanisms that accelerate VC in the milieu of both diseases. These 
include mitochondrial oxidative stress, pro-inflammatory cytokine release, endothelial impairment, lipid metabolic aberra-
tions, hypoxia, common signalling cascades (such as Advanced Glycation End products (AGEs)/Receptor for AGEs 
(RAGE)), extracellular vesicles, miRNAs, etc. Despite these shared mechanisms, the differences between the two in VC 
conditions are equally noticeable. VC is primarily caused by metabolic disorders such as hyperglycemia and hyperlipidemia, 
whereas in CKD chronology, VC is exacerbated by calcium and phosphorus imbalances, hormonal disorders, and intestinal 
leakage of large amounts of uremic toxins. This review will summarize recent advances in VC mechanisms in the context of 
CKD and diabetes. We will also highlight vascular alterations and newly detected molecular pathways as promising novel 
therapeutic targets. Insights into molecular mechanisms and the identification of novel targeted agents for calcification will 
foster the discovery of novel biomarkers and therapeutic strategies for cardiovascular disease.
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Relationship Between Two Different Environments and Vascular Calcification
Although many aspects of VC pathogenesis remain elusive, it is currently recognized as a multi-factorial process that requires 
careful regulation and continuous suppression. Numerous pathognomonic features have been extensively documented as 
being correlated with VC. Prolonged hyperglycemia serves as a hallmark feature of diabetes mellitus, with its clinical 
association with VC firmly established. There is mounting evidence that numerous elements of metabolic syndrome (Mets) 
linked to type 2 diabetes may promote VC, including oxidative stress, endothelial abnormalities, dyslipidemia, disordered 
mineral metabolism, and elevated synthesis of pro-inflammatory cytokines. In CKD patients, VC is amplified by multiple 
interconnected mechanisms, including aberrant mineral metabolism, inflammatory pathways, hormonal dysregulation, and 
uremic toxins, all of which could potentially augment VC directly in such patients. Therefore, we will delineate recent 
advances in VC pathogenesis in the context of diabetes and nephropathy. The similarities and correlations of these pathways 
will be discussed in more detail. VC plays a critical role in the progression of both diseases.

Similarities in the Mechanisms of Vascular Calcification in Both Environments
VC is a common risk factor for both diabetes and chronic kidney disease. The mechanisms of VC in these two 
environments have many similarities (Table 1).

Graphical Abstract
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Table 1 Similarity of Vascular Calcification Mechanisms in the Two Environments

Mechanism In the Environment of Chronic Kidney Disease In the Environment of Diabetic

Pro-inflammatory factors 1. It catalyzes the differentiation of VSMCs into osteochondrocytes.4,5 

2. TNF-α promotes the expression of MSX2 through the NF-κB signaling pathway, which enhances TNAP activity 

and thus promotes VC.6,7 

3. The release of ROS by inflammatory cytokines regulates VC by activating AKT signaling and Runx2 /CBFA1.8,9

Endothelial cell dysfunction 1. ET-1 promotes vascular calcification by inhibiting calcification inhibitors and promoting the production of pro- 

calcification mediators.10,11 

2. IL-1β and TNF-α may inhibit BMPR2 expression through activation of the BMPR-c- JNK signaling axis.12

Oxidative stress 1. The AGEs/RAGE pathway increases ROS and stimulates NF- κ B and enhance the expression of VEGF, VCAM- 

1, and other genes in vascular calcification.13,14 

2. Nox1 plays a role in oxidative stress.15 

3. Through various signal pathways. (AKT signalling pathway,8 ERK signalling pathway,16 p38 MAPK pathway17).

Decrease in SIRT1 expression 1. The acetylation of the Runx2 promoter increases, leading to a decrease in SIRT1 expression and osteogenic 

differentiation. 
2. Increased calcium flux, calcium signaling activation, and endoplasmic reticulum stress in STIM1δ / ΔVSMCs lead 

to o-glcn deficiency and VSMC calcification in STIM1δ / δVSMCs.18

Oxygen deficit 1. Hypoxia-induced osteochondrogenesis and differentiation of VSMCs are triggered by HIF-1-dependent and 

mitochondria-derived reactive oxygen species.19 

2. The expression of OCN and ALP genes regulated by osteochondrogenic transcription factors also increased 
under hypoxia.20

Dyslipidemia 1. The PGC-1α/SIRT3 pathway prevents VC.21 

2. OxLDLC and sdLDL-C are associated with calcification.22,23

Microelement 1. Magnesium antagonizes calcification by promoting CPP maturation.24 

2. Magnesium promotes osteogenic transdifferentiation by enhancing the activity of TRPM7, leading to the 

expression of anti-calcifying proteins such as BMP-7, OPN, and MGP.25 

3. Magnesium inhibits the WNT /β-catenin signaling pathway and inhibits Pit-1 expression in VSMCs.26,27 

4. Magnesium affects bone formation (Runx2, Smad1 and Osterix) by down-regulating microRNA expression 

(miR-133a, miR-30b and miR-143a).28 

5. Zinc reduces vascular calcification through antioxidant stress.29

AGE/RAGE signaling pathway 1. The RAGE receptor triggers downstream signaling cascades by activating p38 mitogen-activated MAPK, TGF-β, 

NF-κB, and PKC-ζ.30,31 

2. RAGE can stimulate ROS production through TGF-β, NF-κB, Nox-1 and other specific pathways.32 

3. The AGE/RAGE cascade can also be activated through Smad and TGF- β Signal transduction.33–35 

4. The p38 MAPK pathway is an important component of AGE/RAGE induced VSMC differentiation, regulating 
VSMC calcification.36,37 

5. AGEs can promote the increase of ECM stiffness and the development of arteriosclerosis.38,39

Extracellular vesicles 1. Phosphate may induce VSMC calcification through apoptosis or extracellular vesicles. 
2. Phosphatemia and hypercalcemia may trigger extracellular matrix mineralization in bone by stimulating human 

VSMCs secretion matrix vesicles.40

microRNA 1. MiR-21 and miR-146a have regulatory roles in the transdifferentiation of VCm and SMCs into osteoblast-like 
cells.41 

2. miRNAs are involved in the regulation of various intracellular pathways regulating osteogenic/chondrogenic 

phenotypic transformation in vsmc (WNT/β-catenin pathway,42 PI3K signaling pathway,43 STAT3 signaling 
pathway,44 or TGF-β1 /SMAD signaling pathway45).

Abbreviations: VSMC, vascular smooth muscle cells; TNAP, tissue nonspecific alkaline phosphatase; MSX2, matrix metalloproteinase 2; NF-κB, nuclear factor-κB; VC, 
vascular calcification; Runx2, transcription factor 2; CBFA1, core-binding factor alpha 1; ROS, reactive oxygen species; SIRT1, silent mating type information regulation 2 
homolog- 1; VEGF, vascular endothelial growth factor; VCAM-1, vascular cell adhesion molecule-1; Nox1, NADPH oxidase family protein 1; ET-1, endothelin-1; BMPR2, 
bone morphogenetic protein receptor type II; BMPR-c-JNK, BMPR-c-Jun N-terminal kinase signaling axis; HIF-1α, Hypoxia-Inducible Factor-1α; ALP, Alkaline phosphatase; 
OCN, oxLDLC, Osteocalcin; oxidized low-density lipoprotein cholesterol; sdLDL-C, small, dense, low-density lipoprotein; CPP, calcification-promoting protein maturation; 
TRPM7, transient receptor potential melastatin 7; BMP-7, bone morphogenetic protein 7; MGP, matrix Gla protein; HIF-1, Hypoxia-Inducible Factor-1; PiT-1, type III sodium- 
dependent phosphate transporters 1; MAPK, protein kinase; TGF-β, transforming growth factor-beta; NF-κB, nuclear factor-kappa B; PKC-ζ, protein kinase C-zeta; Nox-1, 
enzyme NADPH oxidase-1; ECM, extracellular matrix; PI3K, phosphoinositide 3-kinase; STAT3, signal transducer and activator of transcription 3; TGF-β, transforming 
growth factor beta.
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Pro-Inflammatory Factors
Chronic inflammation is a well-documented phenomenon in the development of VC and DM, in addition to Renal Disease. 
The present scientific consensus suggests that VC is essentially a chronic inflammatory state. There is substantial evidence 
to demonstrate that pro-inflammatory cytokines, such as interleukin-1 (IL-1), interleukin-6 (IL-6),46 interleukin-19 (IL-19), 
angiopoietin-2 (Ang-2), transforming growth factor beta (TGF-β),47 and tumor necrosis factor-alpha (TNF-α)12 play crucial 
roles in the etiopathogenesis of VC.48 Furthermore, evidence has also linked the augmented levels of TNF-α, IL-6, and 
interleukin-1β (IL-1β) with the initiation of VC by catalyzing the osteochondral differentiation of vascular smooth muscle 
cells (VSMCs).4,5 Additionally, it is well-established that the activation of t tissue nonspecific alkaline phosphatase (TNAP) 
is instrumental in the formation of hydroxyapatite crystals,49 and TNF-α promotes the expression of matrix metalloprotei-
nase 2 (MSX2) via the nuclear factor-κB (NF-κB) signalling pathway, thereby enhancing TNAP activity and thereby 
promoting VC.6,7 Furthermore, TNF-α stimulates the production of IL-6, which, in turn, induces osteochondral maturation 
of VSMCs through bone morphogenetic protein-2 (BMP2) mediated amplification of IL-6,7,50 Notably, reactive ROS 
released by IL-6, IL-1β, and TNF-α are shown to regulate VC through activation of AKT signalling and regulation of the 
associated transcription factor 2 (Runx2) / core-binding factor alpha 1 (CBFA1).8 Reactive ROS also stimulate NF-κB and 
NF-κB dependent bone-induced signalling pathways9 and augment pro-inflammatory reactions to VSMCs.51 In addition, 
protein kinase A (PKA) is demonstrated to suppress the calcification of human aortic smooth muscle cells that alleviate 
inflammatory reactions.52 Research indicates that finerone (an Angiotensin-converting enzyme II receiver antagonist 
(MRA) mitigates the mRNA expression of M1 macrophage markers IL-1β and the pro-inflammatory factor TNF-α.52 

Therefore, the suppression of inflammatory cytokines may serve as a promising strategy to mitigate cardiovascular risk 
among individuals with diabetic nephropathy.

Decreased Expression of Silent Mating Type Information Regulation 2 Homolog- 1 
(SIRT1)
SIRT1, a NAD-dependent deacetylase, is strongly associated with cellular metabolism, energy stress, and longevity. 
Acetylation of Runx2 promoter significantly controls Runx2 expression, leading to osteogenic differentiation. In an 
environment of heightened glucose levels, SIRT1 expression in the serum of diabetic subjects is notably decreased due to 
increased acetylation of Runx2 promoter in comparison with healthy individuals and under osteogenic conditions.53 This 
implies that an increased acetylation of Runx2 promoter in cells is associated with reduced SIRT1 expression (Figure 1). 
Additionally, Liu et al54 conducted an experiment demonstrating that treatment of human VSMCs with spermidine (Spd) 
resulted in a decrease in BMP2 and Runx2 activity on the seventh day. This, in turn, led to an up-regulation of SIRT1 in 
VSMCs, which ultimately reduced the expression of endoplasmic reticulum (ER) stress signal transduction molecules, 
contributing to CKD arterial calcification. These findings highlight the potential of SIRT1 activators in managing VC.

Similarities in Oxidative Stress
Oxidative stress has been demonstrated to be strongly associated with vascular endothelial dysfunction. The primary 
mechanistic pathways involved in vascular endothelial cell dysfunction include PKC, AGE/RAGE, and additional 
pathways. Specifically, PKC reduces the production of nitric oxide (NO),14 which is the key regulatory factor for the 
normalization of vascular function, which is a critical regulatory factor for the proper function of the vascular system. 
Furthermore, the AGEs/RAGE pathway promotes vascular endothelial cell inflammation and thrombosis by increasing 
the content of reactive oxygen species (ROS) within endothelial cells (ECs), stimulating the activation of NF-κB, and 
enhancing the expression of vascular endothelial growth factor (VEGF), vascular cell adhesion molecule-1 (VCAM-1), 
and other genes.13,14 (Figures 1) Antioxidant stress is also implicated in VC by stimulating the expression of p21, c-Jun 
N-terminal kinase (JNK), p38, and NF-κB. Furthermore, other animal experiments have confirmed the role of NADPH 
oxidase family protein 1 (Nox1) in oxidative stress associated with diabetes-induced atherosclerosis,15 (Figures 1) while 
a similar role is observed in CKD. NADPH oxidase inhibitors, such as Dextromethorphan (DXM), effectively decrease 
ROS production and impede calcifying mediators-induced VSMCs calcification.55,56
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Oxidative Stress - Downstream Signaling Pathway
Adequate scientific research suggests that an increase in oxidative stress is often associated with an increase in the expression 
of RUNX2 and alkaline phosphatase (ALP), and the calcification of VSMCs.57 Furthermore, the generation of hydrogen 
peroxide from a variety of sources in blood vessel cells is considered a significant contributor to oxidative stress in 
atherosclerotic lesions.19 As such, inhibiting the activation of the H2O2-activated AKT signalling pathway has the potential 
to suppress the increased expression of RUNX2 and the calcification of VSMCs.8 Concurrently, it has been established that the 
accumulation of advanced oxidation protein products (AOPPs) can promote the osteoblast differentiation of human VSMCs 
through the activation of the ERK signalling pathway, thereby stimulating VC.16 Other studies have revealed that the oxidative 
stress triggered by the ERK1/2 MAP kinase17,58 and p38 MAPK pathway can promote bone induction17 of VSMCs. 
Furthermore, oxidative stress can trigger the apoptosis of VSMCs and the progression of VC.59,60 It is increasingly being 
recognized that the upregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) can lead to 
a decrease in antioxidant enzyme expression (including superoxide dismutase (SOD)) and an increase in mitochondrial 
reactive oxygen species (mtROS) production, which are associated with VC.61, In addition, recent studies have identified an 
increase in posttranslational protein modification via oxidative stress and O-linked β-n-acetylglucosamine modification 
(o-glcnac acylation), which is linked to calcium flux62,63 and the regulation of calcium-dependent signalling.61,64 The calcium- 
sensing protein STIM1 is known to regulate intracellular calcium flux and intracellular calcium influx through store-operated 
calcium portals.65 Additional research has demonstrated that an increase in calcium flux, calcium signalling activation and ER 

Figure 1 Mechanism of oxidative stress promoting vascular calcification in diabetes. In the environment of diabetes, AGEs bind to advanced glycosylation receptor (RAGE), 
which activates NF-kB and promotes vascular calcification by enhancing the expression of VEGF, VCAM-1 and other genes. PKC pathway increases ROS level of endothelial 
cells by reducing NO production.Oxidative stress promotes VC by activating p21, JNK, p38 and NF-kB. ROS excess inhibits insulin gene transcription by opening ATP- 
sensitive K+channels, thus inhibiting insulin production and secretion. Oxidative stress promotes VC by activating p21, JNK, p38 and NF-kB. Upregulation of SIRT1 in VSMC 
leads to downregulation of endoplasmic reticulum (ER) stress signal transduction components, regulating SIRT1 and ER stress signals to inhibit arterial calcification in CKD. 
Graphics by Figdraw.
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stress in STIM1δ / ΔVSMCs can lead to STIM1-deficient O-GlcNAcylation and VSMC calcification.18 Sirtuin 3 (SIRT3) also 
plays a crucial role in mediating the protective effects of PGC-1α on mitochondrial oxidative stress and VC.66 It is worth 
noting that a recent study has highlighted the essential role of antioxidants in defending against ROS attacks.67 Therefore, 
antioxidants should be included as an integral component of modern treatment strategies. Antioxidant therapy has shown 
promising results in preventing and slowing the development of VC in patients with CKD and DM.

Similarities in Endothelial Dysfunction
The role of endothelial dysfunction in the development of cardiovascular disease has been extensively investigated. 
Endothelial cells serve as vital regulators of vascular tone through the release of vasodilators such as NO and vasoconstrictors 
like endothelin-1 (ET-1). In response to physical strain and autonomic molecules, ECs control the behaviour of VSMCs and 
contribute to the maintenance of vascular health.10,68 The potential regulatory roles of NO and ET-1 in VC have been the focus 
of recent studies. Evidence suggests that NO can inhibit TGF-induced Smad2/3 phosphorylation, thereby preventing SMC 
calcification and osteochondrocyte transformation.10 Conversely, ET-1 has been shown to contribute to VC by suppressing 
calcification inhibitors like matrix Gla protein (MGP) and osteoprotegerin (OPG). Moreover, ET-1 also promotes the 
production of pro-calcification mediators like BMP2 and osteopontin (OPN).11 In an in vitro study conducted by Sanchez- 
Duffhues et al.12 IL-1β and TNF-α were found to suppress the expression of bone morphogenetic protein receptor type II 
(BMPR2) in endothelial cells. This suppression was associated with activation of the BMPR-c-Jun N-terminal kinase (JNK) 
signaling axis, a pathway that plays a crucial role in inflammation-induced endochondral metaplasia and promotes endothelial 
osteogenic transformation. Individuals with CKD and hyperglycemia are at a relatively high risk of developing VC. High 
levels of glucose can induce mineral metabolic imbalance in ECs by increasing calcium and potassium uptake, leading to an 
irregular phosphorylation of endothelial nitric oxide synthase (eNOS) and overexpression of osteopontin through the p38 
pathway.69 These alterations ultimately undermine endothelial function and lead to the development of VC.

The beneficial effects of metformin, an anti-diabetic medication, on VC have been demonstrated in animal models. 
Metformin has been shown to mitigate VC through activation of the adenosine monophosphate kinase (AMPK)/eNOS/ 
TGF-β1 signaling pathway.70 In summary, the regulation of vascular tone by ECs in response to autonomic molecules 
and physical strain is critical for maintaining vascular health. The identification of key pathways such as NO and ET-1 as 
potential targets for the prevention and treatment of VC provides important insights into the development of novel 
therapeutic strategies for this prevalent disease.

Oxygen Deficit and Vascular Calcification
Hypoxia significantly enhanced the protein expression of HIF-1α (Hypoxia-Inducible Factor-1α), GLUT1 (Glucose 
Transporter 1), and VEGFA (Vascular Endothelial Growth Factor A) mRNA expression. The activity of RUNX2, SOX9 (Sex- 
determining region Y (SRY)-box 9), OCN (Osteocalcin), and ALP (Alkaline phosphatase) proteins was also increased. 
A time-dependent accumulation of calcium was detected within the extracellular matrix (ECM) of VSMCs in response to 
hypoxia.36 Hypoxia-induced osteochondrogenesis and differentiation of VSMCs is triggered by HIF-1-dependent and 
mitochondria-derived reactive oxygen species, subsequently promoting VC. The expression of OCN and ALP genes, 
regulated by osteochondrogenic transcription factors, also increased in VSMCs under hypoxia.20 Several studies have 
indicated that hypoxia-induced ROS generation is mediated by HIF-1 activation in VSMCs.71 In addition, hypoxia enhances 
osteochondral differentiation and extracellular matrix calcification through ROS. It is believed that excess ROS generated 
during hypoxic conditions elevates the expression of HIF-1α.19 Furthermore, Zhao et al9 reported that mitigation of 
mitochondrial ROS generation can hinder phosphate-induced VSMCs osteogenic differentiation.

Lipid Metabolism Disorders
VC is often associated with disruptions in lipid metabolism. A well-researched correlation between diabetes and 
atherosclerosis is the concentration of small, dense, low-density lipoprotein (sdLDL-C).72 Notably, the prevalence of 
type B (with small-sized LDL particles) is higher in patients with diabetes,73 which contributes to the development of 
VC.74 Furthermore, the formation of sdLDL is strongly associated with insulin resistance and elevated triglycerides.73 

Although the concentration of LDLC in patients with moderate to advanced CKD does not appreciably increase, oxidized 
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low-density lipoprotein cholesterol (oxLDLC) and sdLDL-C tend to rise.22,23 In experimental conditions of high 
phosphate exposure, fat cells have been found to induce vascular smooth muscle cell calcification by secreting adipokines 
such as VEGF.75 PGC-1α, as a metabolic master regulator, controls downstream target genes in the nucleus and 
mitochondria through the recruitment of coactivators. It plays a pivotal role in mitochondrial biogenesis, fatty acid 
oxidation, and adipogenesis.76,77 In a pioneering study, Feng et al21 demonstrated that the activation of the PGC-1α/ 
SIRT3 pathway can inhibit VC. This suggests that the PGC-1α/SIRT3 pathway may be a promising therapeutic target for 
managing VC. Additionally, statins have been shown to reduce cholesterol levels and lesion areas in mice fed a high-fat 
“Western” diet. Therefore, it is hypothesized that the adjustment of triglycerides and the use of statins may assist in 
delaying the onset of VC in patients.

Microelement
The principal emphasis of this research pertains to the significance of magnesium and zinc in the prevention of VC. 
Numerous randomized studies have demonstrated that magnesium, via the antagonism of calcification-promoting protein 
(CPP) maturation, can inhibit the progression of VC.24 Magnesium has been observed to negatively regulate osteogenic 
transdifferentiation and VC25 by enhancing the activity of its transporter, transient receptor potential melastatin 7 
(TRPM7), and its invasion into cells, resulting in the expression of anti-calcification proteins such as bone morphogenetic 
protein 7 (BMP-7), OPN, and MGP. Furthermore, magnesium has been shown to inhibit the WNT /β-catenin signalling 
pathway and repress Pit-1 expression26,27 within VSMCs. The anti-calcification influence of magnesium is mediated by 
its ability to impede the WNT /β-catenin pathway, thereby preventing calcium from penetrating VSMCs and osteogenic 
transdifferentiation.78 In addition, magnesium has the potential to prevent the formation of extracellular hydroxyapatite, 
thereby preventing VSMC calcification.79 Magnesium has also been shown to influence bone formation (Runx2, Smad1, 
and Osterix) by down-regulating microRNA expression (miR-133a, miR-30b, and miR-143a).28 Emerging evidence has 
highlighted the role of zinc in oxidative stress resistance and its potential in mitigating the progression of VC.29 

Specifically, zinc may deter phosphate-induced arterial calcification by inhibiting the activation of NF-κB light chain 
enhancer. In individuals suffering from type 2 diabetes and CKD, serum zinc levels have been found to correlate 
positively with T50 (a shorter T50 indicates a heightened propensity to calcify).29 Thus, the judicious supplementation of 
magnesium, zinc, and various other trace elements may provide a promising approach to delaying the progression of VC.

AGE/RAGE Signal Cascade
AGEs refer to a class of proteins that are indirectly modified by the automatic oxidation of carbohydrates and reactive 
carbonyl compounds that are formed through the AGE process. The circulating AGEs in patients on dialysis, including 
pentanoside, are often found to be elevated.80 This class of molecules has been shown to act through a feedforward cycle, 
which results in the upregulation of RAGE expression and the exacerbation of oxidative stress.32,33 Upon interaction 
between AGEs and RAGE, RAGE initiates a downstream signaling cascade through PKC-ζ, which is mediated by p38 
mitogen-activated protein kinase (MAPK), TGF-β and NF-κB, and PKC.30,31 Studies have shown that RAGE activation 
by AGE/RAGE signaling can stimulate the generation of reactive ROS through specific pathways such as TGF-β, NF- 
κB, and Nox-1.32 Evidence suggests that members of the AGE/RAGE signaling cascade, including p38 MAPK and 
ERK1/2, are phosphorylated following RAGE activation.34 Moreover, TGF-β signaling can lead to the phosphorylation 
of Smads, a family of transcriptional regulators.81 This implies that the AGE/RAGE cascade is also associated with Smad 
activation and TGF-β signaling.33–35 RAGE signaling has also been implicated in various mitotic pathways that regulate 
VSMC calcification. The p38 MAPK pathway is an essential component of AGE/RAGE-induced VSMC differentiation. 
The role of AGE/RAGE signaling in diabetes-induced VC is attributed to the calcification caused by oxidative stress and 
the AGE-induced transformation of VSMC phenotype.36,37 In addition, the AGE/RAGE signal has been proven by 
activating and lower SOD Nox-1 expression to increase the oxidative stress and promotes diabetes mediated VC.32,82

Furthermore, studies have demonstrated that AGE/RAGE signaling can directly affect ALP activity, where p38 MAPK 
plays a key role.83,84 Janda et al85 have found that elevated serum levels of fetal protein A (fetuin-A) are a positive indicator of 
increased AGE deposition in arteries, suggesting that fetuin-A may indirectly influence the AGE/RAGE pathway, particularly 
in the presence of inflammatory molecules. Studies have also linked AGEs to matrix alterations, specifically to the formation 
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of irreversible crosslinks of stromal collagen and elastin, resulting in an increase in ECM stiffness and the development of 
arteriosclerosis. Non-enzymatic glycosylation of collagen renders it resistant to enzymatic degradation and contributes to its 
accumulation in the arterial wall.38,39 RAGE mediates PI-induced VSMC calcification86 in vitro and VC87 in enpp1 − / − mice. 
An example of AGE-induced matrix alterations is seen in enpp1 − / − mice, where AGEs alter the glomerular basement 
membrane, leading to increased albumin permeability, endothelial cell pathology, and the activation of pro-atherogenic and 
prothrombotic genes. Ultimately, this may lead to an impediment in the selective absorption of high-density lipoprotein (HDL) 
ester and HDL cholesterol from peripheral cells, thereby impeding the reverse transport of cholesterol.88

Extracellular Vesicles
Apart from the release of secretory vesicles by specialized cells, which carry, for example, hormones or neuro- 
transmitters, all cells are capable of secreting various types of membrane vesicles, known as extracellular vesicles, and 
this process is conserved throughout evo- solution from bacteria to humans and plants.89,90 Notably, these vesicles carry 
microRNAs (miRNAs, miRs), mRNAs, and proteins that undergo profound changes in protein composition as a result of 
elevated phosphate levels.91 From VSMCs, the apoptotic bodies of cells undergoing apoptosis (ABS) can also serve as 
a form of calcium crystal in the nuclear architecture, similar to matrix vesicles (MV).92 In physiological conditions, these 
vesicles remain free of crystals as they are equipped with potent mineralization inhibitors such as fetuin-A and MGP.93,94 

However, an increase in phosphatemia and hypercalcemia can stimulate the secretion of matrix vesicles by human 
VSMCs, potentially triggering the mineralization of the extracellular matrix in bone.40 In addition, it has been found that 
apoptosis induced by high phosphate may be related to extracellular phosphate-induced VSMC calcification.40 

Conversely, other research has concluded that phosphate-induced VSMC calcification is independent of apoptosis or 
extracellular vesicles.95 Therefore, whether extracellular vesicles can be novel targets for VC remains to be investigated.

Similarity of microRNA in Vascular Calcification
Recently, a study has found a number of miRNAs in diabetes, CKD, and coronary heart disease (CAD), which have a high 
prevalence of calcification: miR-21, and miR-146a are common in these diseases and have a regulatory role in the 
transdifferentiation of VCm and SMCs into osteoblast-like cells. Current evidence suggests that miRNAs are implicated in 
modulating various intracellular pathways that regulate osteogenic / chondrogenic phenotypic transitions in VSMCs, 
Including WNT/β-catenin pathway,96 PI3K signaling pathway,41 STAT3 signaling pathway42 or TGF-β1 /SMAD signaling 
pathway.43 These miRNAs exert a critical role in osteogenic/chondrogenic transdifferentiation of VSMCs by controlling 
various cellular operations under conditions of hyperphosphatemia, such as gene expression,44,45,97–99 inflammasome 
activation,100 apoptosis,98,101 senescence,42,98 or endoplasmic reticulum stress.101

A study by Zhou et al102 confirmed that the expression of miR-21 is stimulated by hemodynamic forces (such as oscillatory 
shear stress (OSS)) and facilitates the pro-inflammatory response in human umbilical vein endothelial cells (HUVECs) by 
augmenting the binding of c-Jun to the miR-21 promoter region. In endothelial cells, miRNAs suppress the expression of 
genes associated with NF-κB signalling, potentially playing a role in the progression of endothelial disease. Additionally, miR- 
146a-5p has been identified as a suppressor of NF-κB103 Diminished expression of miR-146a might result in diminished 
efficacy of suppression of target genes involved in NF-κB and other cytokine production and signalling pathways. 
Furthermore, interleukin-1 receptor-associated kinase (IRAK)1, TNF receptor-associated factor 6 (TRAF6), and IRAK2 
have been identified as self-targets of miR-146a,104 further highlighting its role in mitigating inflammatory cytokine 
production and pro-inflammatory conditions. The role of epigenetics44 and the currently recognized microRNAs related to 
VC.45,105 This research sheds light on the potential role of miRNAs in VC and the complex regulatory network involving 
various miRNAs and their targets in the progression of cardiovascular disease.

Differences in Vascular Mechanisms Between the Two Environments
The development of VC is a complex and multifaceted process involving a number of mechanisms, such as chronic 
inflammation, oxidative stress, and dysregulation of bone-mineral metabolism. While both DM and CKD share certain 
similarities in their aetiologies, they also exhibit several significant differences in their respective mechanisms of 
development (Table 2). In the context of DM, hyperglycemia and hyperlipidemia serve as primary metabolic ecosystems 
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that drive the progression of VC. In contrast, CKD is associated with a variety of metabolic disorders that contribute to 
the exacerbation of VC, such as disturbances in calcium and phosphorus metabolism, hormonal imbalances, and 
increased release of uremic toxins from the gastrointestinal tract. These disparities further underscore the distinct 
pathologies underlying VC in the two conditions.

Differences in Oxidative Stress
The investigation of elevated blood sugar as a potent stimulus of oxidative stress has shown that it amplifies the circulatory flux of 
citric acid, stimulating NF-κB activation.133 On the converse, an excessive production of reactive ROS can repress insulin gene 

Table 2 Differences in Vascular Calcification in the Two Environments

Mechanism In the Environment of Chronic Kidney Disease In the Environment of Diabetic

Differences in oxidative 
stress

1. The ROS production and the oxidative stress induced by 
phosphate.9 

2. Hyperphosphate-induced inflammation in VSMC may be 

associated with ROS-driven nuclear translocation of p65.9 

3. PiT-1 enhances the absorption of phosphate.106

1. Hyperglycemia promotes the accumulation of AGEs, 
initiates inflammatory signaling and exacerbates 

oxidative stress.107 

2. Hyperglycemia can amplify the circulating flux of 
citric acid and promote the excessive production of 

reactive oxygen species to promote oxidative 

stress.108,109

Loss of Klotho expression 1. It promotes calcification of VSMCs and 

differentiation of osteoblasts.110 

2. PiT-1 promotes vascular calcification by stimulating 

osteogenic differentiation of VSMCS and the discharge 

of vesicles loaded with calcium phosphate.111–113 

3.Phosphate-dependent bone-induced signaling cascade. 

(NF-kB signaling pathway, SGK1/NF-kB signaling 

pathway, WNT/β-catenin signaling pathway, mTOR 
signaling pathway, BMP-2 signaling pathway)

Differences in endothelial 
dysfunction

1. PTH triggers endothelial transdifferentiation into 

osteoblasts via activation of ERK 1/2 and NF-κB signaling 

cascade.114 

2. Uremic toxins can aggravate endothelial dysfunction.115

1. Hyperglycemia intensified hemodynamics injury, 

inhibit the generation of NO and the induced change in 

the phenotype of endothelial.116

Vitamin D and vitamin K 
deficiency

1. 1,25(OH)2D3 inhibits NF-kB and TNFα.117,118 

2. Vitamin K deficiency is conducive to vascular 
calcification.119

1. Vitamin D deficiency is associated with increased 

risk.120

microRNA 1. Activation of WNT/β-catenin signaling and 

downregulation of miR-29b may be related to VC.121 

2. lncRNA H19/miR-138/TLR3 axis may be related to 

VC in CKD.122

1. By affecting endothelial dysfunction and activation of 

inflammation as well as oxidative stress.123,124

1. Uremic toxins promote oxidative stress and 
aggravate inflammatory states by up-regulating 

proinflammatory cytokines.125 

2. Promotes damage to the intestinal barrier, which 
causes systemic inflammation.126

Hormone levels 1. PTH receptor 1 signaling in endothelial cells is 

involved in PTH-induced osteogenesis.127,128

1. Individuals with higher IR levels are more likely to 

develop TCFA, which, by promoting the production of 
pro-calcification factors, ultimately leads to osteoid 

transformation of stromal cells.129,130

Persistent activation of the 
renin-angiotensin- 
aldosterone system 
(RAAS)

1. Induces endothelial dysfunction.131 

2. Promote VSMC osteogenic transformation.132

Abbreviations: ERK, extracellular signal-regulated kinase; CAC, Coronary Artery Calcification; IR, insulin resistance; TCFA, thin-cap fibrous atherosclerosis.
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transcription, mediated by the activation of ATP-sensitive K+ channels, thereby inhibiting the generation and release of insulin. 
Alternatively, the augmented blood glucose level in diabetic patients facilitates the accumulation of advanced glycation end 
products (AGEs), which bind to the receptor for advanced glycation (RAGE), initiating inflammatory signalling and escalating 
oxidative stress.107,108 (Figure 1) In addition, within the context of CKD, phosphorus instigates oxidative stress in VSMCs by 
inciting an imbalance between antioxidant and reactive ROS production mechanisms,9,109,134 and phosphate absorption by PIT1 
may lead to intracellular alkalization.135 Zhao et al9 have established for the first time that mitochondrial ROS-driven p65 nuclear 
translocation is implicated in the hyperphosphate-induced inflammation in VSMCs. This finding further supports the notion that 
phosphate-induced ROS production and oxidative stress are both significant contributors to this phenomenon.109,135 The precise 
mechanisms by which elevated blood sugar and phosphorus contribute to oxidative stress in CKD remain to be fully elucidated. 
Future research should focus on elucidating the complex interplay between these factors and their potential impact on the 
progression of CKD.

Loss of Klotho Expression
It is well known that dysregulated mineral metabolism and exceptionally high levels of phosphorus and calcium are the most 
essential factors for the development and occurrence of calcification in CKD patients.106 The critical importance of minerals to 
human anatomy was recently underscored by an observational cohort study.136 Calcium homeostasis is primarily regulated by 
two major hormones, parathyroid hormone (PTH) and 1.25-dihydroxyvitamin D3 (1,25D3). In contrast, phosphorus home-
ostasis is predominantly controlled by the fibroblast growth factor-23 (FGF-23)/klotho axis (Klotho is a soluble anti-aging 
protein predominantly expressed in the kidney as a co-receptor for FGF23). Additionally, PTH and 1.25D3 mediate calcium 
homeostasis. In the context of CKD, the loss of Klotho expression can instigate calcification and osteoblast differentiation of 
VSMCs137 (Figure 2B). An investigation revealed that pretreating Klotho protein in human umbilical vein endothelial cells 
co-treated with inorganic sulfate (IS) decreased the expression of superoxide radicals and monocyte chemoattractant protein-1 
(MCP-1)110 (Figure 2A). Additional research has also highlighted the role of the FGF-Klotho axis in VC in CKD patients, 
exacerbating calcium and phosphorus dysregulation138 (Figure 2C). Evidence suggests that calcimimetic agents can decrease 
calcium and phosphorus levels in the aorta139 and prevent the progression of VC in uremic mice.140

The dependence of the sodium phosphate transporter on solute carrier membrane protein (SLC) group is crucial. Type 
II transporters (SLC34 family) consist of renal API-IIa (SLC34A1), intestinal API-IIb (SLC34A2),141 and NaPi-IIc 
(SLC34A3).142 The renal NaPi-IIa (SLC34A1) incorporates NaPi-IIaelectrogenic NaPi-IIa/b and electroneutral NaPi-IIc. 
These molecules are regulated by numerous factors, including parathyroid hormone (PTH) and FGF23, which are 
instrumental in mineral metabolism.143,144 The SLC20 family encompasses two proteins: Pit 1 (SLC20A1) and PiT-2 
(SLC20A2). The phosphate signaling in osteoblasts and VSMCs may be orchestrated by the SLC20 transporter family. 
Pit 1 and PiT-2 are considered indispensable for Pi influx in systemic cells.145 A study indicated that phosphate uptake in 
VSMCs occurs through type III sodium-dependent P-cotransporters PiT-1 and PiT-2. These PiT transporters exhibit 
contrasting functions on VSMCs under hyperphosphatemic conditions.146 PiT-1 exerts a pathological effect by stimulat-
ing osteogenic differentiation of VSMC and the discharge of calcium phosphate-laden vesicles.111,112,146 Downstream 
effects of Pit-1 encompass Runx2/ core-binding factor alpha 1 (CBFA1) and osteopontin transcription.146 In contrast, 
PiT-2 deficient VSMC exhibited increased stromal calcification, which may be mediated by suppression of osteoclast 
inhibitor osteopontin.112

About Phosphate Dependency Bone Induction Signal Cascade
NF-kB Signaling Pathway
Within VSMCs, an increase in extracellular phosphate levels initiates the activation of NF-κB.113,147,148 The NF-κB 
signalling pathway partially stimulates the calcification of VSMCs by inducing the expression of MSX2 and elevating the 
levels of CBFA1, which subsequently augments the expression of ALP.148,149 TNF-α strengthens the expression of 
MSX2 in VSMCs via the NF-κB pathway, leading to the initiation of osteogenic/chondrogenic transdifferentiation of 
VSMCs.149 The receptor activator of NF-κB ligand (RANKL)/RANK system significantly contributes to VC through 
NF-κB activation.150
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SGK1/NF-kB Signaling Pathway
Phosphate has been established as a cardiovascular toxin, particularly affecting VSMCs.151 It has been observed that 
phosphate can induce the expression and activation of serum and glucocorticoid-induced kinase (SGK1) in VSMCs.152 

By interfering with the SGK1/NF-kB signaling pathway, phosphate could potentially maintain the anti-calcification 
environment of VSMCs, thereby improving VC during hyperphosphatemia.152 In a similar vein, IL-18 may activate the 
SGK1/NF-kB osteoinductive pathway,153 potentially contributing to the exacerbation of phosphate-induced calcification 
in VSMCs.153

WNT/β-Catenin Signaling Pathway
The WNT/β-catenin signaling pathway serves a critical role within the osteoinductive signaling cascade and also 
functions as a mediator of VC.26,154,155 Phosphate stimulation results in activation of the WNT/β-catenin pathway, 
leading to increased downstream effects of MSX2 and subsequent promotion of osteogenic transdifferentiation and 
calcification of VSMCs via direct upregulation of CBFA1156 and PIT1 gene expression.155 Moreover, the WNT/β-catenin 
pathway may also play a role in VC by inducing the expression of matrix metalloproteinase (MMP)2 and MMP9 in 
VSMCs.157 Similarly, RNA interference studies confirmed the role of the MSX gene in TNAP andexpression. 
Additionally, paracrine WNT signaling is integral for the refinement of osteogenic TNAP expression downstream of 
BMP2 and Sonic hedgehog (Shh).158

Figure 2 Mechanism of calcium and phosphorus imbalance in chronic kidney disease. (A) In the environment of chronic kidney disease, the decline of renal function leads to 
the dysfunction of P excretion and the increase of serum Pi level, and the decrease of 1.25(OH)2D3 secretion leads to the decrease of serum Ca level. At the same time, 
renal injury changes the intestinal microenvironment and reduces the absorption of Ca. In addition, in the environment of chronic kidney disease, hyperparathyroidism and 
increased PTH levels can not only promote the activity of osteoblasts and osteoclasts, thereby promoting calcification, but also increase the serum Pi level and promote 
changes in the intestinal microenvironment. (B) PTH, FGF-23, Klotho, and 1,25D have feedback loops to maintain calcium and phosphorus homeostasis. (C) In the 
environment of chronic kidney disease, the hormone levels of PTH, 1,25D and FGF-23 are dysregulated, thereby increasing the osteogenic activity of osteoclasts and 
promoting vascular calcification. Graphics by Figdraw.
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mTOR Signaling Pathway
In VSMC, klotho expression is down-regulated by phosphate,159 an effect associated with activated mTOR signalling 
that enhances VC.159,160

The protein kinase referred to as the mammalian target of rapamycin (mTOR) belongs to the family of PI3K-associated 
kinase (PIKK), a class of serine/threonine kinases. mTOR forms two distinct protein complexes, referred to as mTOR 
Complex 1 (mTORC1) and 2 (mTORC2), which play vital roles in various cellular processes, including protein synthesis, cell 
growth, and proliferation. Excessive activation of mTOR has been observed in various types of human cancers, as well as in 
age-related diseases such as atherosclerosis, obesity, diabetes, and Alzheimer’s disease. In a nutritionally adequate state, 
mTOR signalling is activated, and conversely, mTOR signalling is blocked, with it being reported that mTORC1 is specifically 
regulated by nutrient.161 The upregulation of mTOR by phosphate is particularly intriguing, as phosphates are essential 
nutrients involved in energy metabolism. Protein digestion leads to the production of amino acids and phosphates. It is likely 
that mTORC1 is involved in the signalling cascade activated by phosphate, which in turn activates the mTOR cascade in 
VSMCs, leading to a downregulation of Klotho expression. This downregulation can enhance the calcification of VSMCs.162 

This upregulation of mTOR in a uremic environment is yet to be fully understood. It has been reported that mTOR inhibitors 
can be considered as an upregulation of Klotho. As CKD is associated with severe kidney and systemic Klotho deficiency, 
these drugs that upregulate Klotho have been shown to protect the kidney and vascular system. Additionally, there is 
substantial evidence that supports the broad-spectrum anti-atherosclerotic effects of mTOR inhibitors, and experimental 
studies have demonstrated that rapamycin can act as a stabilizer of atherosclerotic plaques and even promote plaque 
regression.163 In animal models (such as apolipoprotein E-deficient mice), rapamycin has been shown to effectively reduce 
inflammation, inhibit progression, and enhance the stability of atherosclerotic plaques,164 Thus, it can be anticipated that 
mTOR inhibitors could be used to prevent or delay the onset of atherosclerosis.

BMP-2 Signaling Pathway
TNF-α-induced VSMC calcification is associated with increased BMP2 signalling.165 Phosphate has been observed to 
stimulate BMP-2 expression in VSMCs Phosphate induces BMP-2 expression in VSMCS.166,167 Additionally, BMP-2 
promotes VSMC calcification by stimulating the expression of PIT-1, which is upregulated and the activation of SMAD 
signalling pathways.165 Notably, phosphate has also been observed to promote TGFβ1 expression in VSMCs.168,169 

Moreover, downstream osteoinductive signals of TGFβ1 include the transcription factor NFAT5 (also known as 
TonEBP), which mediates the upregulation of CBFA1 in VSMCs through SOX9. Interestingly.10,168,169 TGFβ1 may also 
contribute to VC by inducing cellular senescence, including the upregulation of plasminogen activator inhibitor PAI-1, 
which plays a pro-calcification role.10,168

Differences in Endothelial Dysfunction
Endothelial impairment has been established as a primary concern in individuals with CKD and has been found to persistently 
elevate throughout the course of the disease. Studies have consistently demonstrated that parathyroid hormone (PTH) and 
hyperphosphatemia significantly contribute to the progression of endothelial impairment.170,171 Specifically, PTH has been 
found to trigger osteoblast transdifferentiation in endothelial cells through the activation of the extracellular signal-regulated 
kinase (ERK)1/2 and NF-κB signaling cascades.127 Conversely, an experimental study has demonstrated that uremia, 
a significant complication of CKD, can lead to the amplification of fibroblast growth factor (FGF) signaling within endothelial 
cells, which exacerbates atherosclerosis.114 Additionally, recent studies have found that fluctuations in the functional proper-
ties of low-density lipoprotein-cholesterol (LDL-cholesterol) can further instigate endothelial impairment in CKD patients.115 

Similarly, another in vitro experiment revealed that triggered by urinary toxin IS, injured endothelial cells generate excessive 
microvesicles, which modulate calcium accumulation, inflammation, and osteogenic transdifferentiation of SMCs.172 The 
same time, uremic toxins perturb endothelial function in CKD patients by competitively inhibiting eNOS.170 Recent studies 
have indicated that modifications in the functional properties of low-density lipoprotein-cholesterol may contribute to the 
development of endothelial impairment in patients with CKD. However, in the context of diabetes, hyperglycemia exacerbates 
hemodynamic damage, specifically shear stress, which can suppress NO production and induce alterations in endothelial 
phenotype. These changes can lead to alterations in vascular permeability and leukocyte recruitment during inflammation.173 
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It has been suggested that in the diabetic milieu, a decrease in the abundance of proteoglycans may provide protection against 
the development of atherosclerosis.116

Vitamin D and Vitamin K Deficiency
CKD is strongly associated with VC through Vitamin D deficiency. In fact, a vitamin D deficit often presents in 
individuals affected by CKD174 (Figure 2A). The potential mechanisms that link CKD and VC may involve the 
capacity of Vitamin D to inactivate RUNX2 regulation, as demonstrated in recent studies.175,176 Furthermore, 
individuals with CKD often experience elevated FGF23 concentrations due to a compromised Glomerular 
Filtration Rate (GFR). This elevation in FGF23 consequently impairs vitamin D levels.177 Moreover, 1.25(OH) 
2D3 suppresses NF-kB and TNFα, key signalling molecules involved in bone-induced signalling cascades.117,178 In 
a similar study involving patients with Type 1 Diabetes, vitamin D deficiency was associated with an increased risk 
of Coronary Artery Calcification (CAC).118 Therefore, vitamin D supplements have shown beneficial effects on VC 
in CKD.

Despite a correlation between vitamin K deficiency and enhanced VC severity in CKD patients, this correlation did 
not consistently lead to increased cardiovascular disease or mortality.Vitamin K deficiency was associated with increased 
severity of VC in patients with CKD, but, paradoxically, vitamin K deficiency was not consistently associated with 
cardiovascular disease and mortality.120 Potential mechanisms for vitamin K’s ability to reduce calcification propensity 
include an increase in the activity of vitamin K-dependent calcification inhibitors or a reduction in inflammation by 
inhibiting innate immune system components.179

MicroRNAs and Epigenetic Modifications at Different Points in Vascular Calcification
There were different epigenetic modifications to VC in the two environments. During hyperphosphatemia, different 
epigenetic modifications, including DNA methylation, histone modifications, and dysregulation of microRNAs, con-
tribute to osteoinduced cell signaling.119,180 It has been confirmed that methylation in the SM22α promoter region can 
induce VC at higher pi levels. It has been reported that the downregulation of miR-29b and activation of WNT/β-catenin 
signalling may be involved in VC in IS-induced CKD.181 A potential lncRNA H19/miR-138/TLR3 axis121 was predicted, 
and its downstream microRNAs were enriched in the NF-κB signalling pathway, which may be related to VC in CKD. 
Interestingly, microRNAs play a role in the diabetic environment by affecting vascular dysfunction and inflammatory 
status. As endothelial miR-126 affects vascular dysfunction and inflammatory status,122 it is thought that activation of 
miR-21 may be a key event associated with the development of diabetes and atherosclerosis. It may trigger endothelial 
activation, affecting foam cell formation, circulating monocyte adhesion, macrophage apoptosis, and phagocyte 
clearance.123 In the diabetic environment, miR-21 functions again appear in inhibitory mechanisms of antioxidant 
response, regulating ROS homeostasis through Krev interaction trapping protein (KRIT)-1 and silencing the major 
mitochondrial antioxidant enzyme SOD2.182 Therefore, miRNAs could serve as potential therapeutic targets for the 
treatment of VC.

Intestinal Microbiota and Uremic Toxins
As a source of uremic toxins, the gut microbiome represents a significant contributor to cardiovascular disease in CKD. It 
executes a pivotal role in human health and the onset of kidney disease.124,183 It is hypothesized that the altered gut 
microbiome and its metabolic byproducts in CKD may be implicated in the VC process.184 A number of studies have 
shown that uremic toxins such as indoxyl sulfate (IS), p-cresol (PC), p-cresol sulfate (PCS), uric acid, etc., released by 
the gut microbiome, stimulate oxidative stress and augment the inflammatory state by upregulating proinflammatory 
cytokines such as TNF-α and IL-6.185 In addition, endotoxin (LPS) and short-chain fatty acids (SCFA) are specific 
categories of gut microbiome-derived metabolites that are capable of causing systemic inflammation if the intestinal 
barrier is compromised. (Figure 3). Uric acid may be synthesized in endothelial cells, leading to local vascular smooth 
muscle cell proliferation and migration through the release of platelet derived growth factor, thereby promoting 
inflammation through the release of monocyte chemoattractant protein-1, and intensifying oxidized low-density 
lipoprotein.125 Furthermore, urate deposits serve as a trigger for local intravascular inflammation, which can stimulate 
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the progression of atherosclerosis and the formation of adjacent inflammatory plaques.126,186,187 As a result, maintaining 
the balance of the gut flora is crucial for the therapeutic management of CKD patients, as well as patients with end-stage 
renal disease (ESRD).

Hormone Levels
The hormone release rates in the respective environments are not consistent, which in turn results in variations in the mechanisms 
associated with VC. The experimental findings from both in vivo and in vitro models propose that the regulation of calcification is 
mediated by a combination of hormones: angiotensin II,188 aldosterone,189,190 and glucocorticoid,191 such as estrogen, thyroid, 
adiponectin, parathyroid, FGF23, calcitriol, testosterone, insulin, etc., exert protective effects against VC. Recent animal 
investigations have suggested that the increase of PTH triggers the transformation of aortic endothelial cells into 
chondrocytes171 and the PTH receptor 1 (PTHR1) signaling of endothelial cells plays a pivotal role in PTH-induced osteogenesis 
and is correlated to angiogenesis.192 It is acknowledged that insulin resistance is closely associated with diabetes, and insulin 
stimulates the release of endothelial NO, which in turn oxidizes lipoproteins, decelerates the rate of intimal calcification, and 
suppresses vasa vasorum formation.128 Upon the occurrence of insulin resistance (IR), the higher concentration of free fatty acids 
in the liver prompts the body to amplify the absorption and very low-density lipoprotein (VLDL) triglyceride production and 
secretion to compensate; therefore, the susceptibility to blood vessel calcification escalates. Iguchi et al have demonstrated that 
individuals with higher IR levels are predisposed to develop thin cap fibroatheroma (TCFA) and exhibit notably thinner caps.193 

Elevated insulinemia reduces OPG and MGP levels, activates BMP2, and enhances carboxy-terminal propeptide of 

Figure 3 Uremic toxin and intestinal flora disorder. Lipopolysaccharide and short chain fatty acid imbalance, promote intestinal flora disorder, promote intestinal 
microorganisms and uremic toxins to destroy intestinal barrier. Uremic toxins such as IS increase TNF-α and IL-6, leading to an increased inflammatory state by promoting 
oxidative stress. Graphics by Figdraw.
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type I collagen (CBFPa-1) and ALP levels, culminating in the bone-like transformation of stromal cells.129 As such, hormone 
levels are equally indispensable for the progression of VC.

Persistent Activation of the Renin-Angiotensin-Aldosterone System (RAAS)
The role of RAAS in the pathophysiology of hypertension, cardiovascular and renal diseases is well known.CKD complica-
tions such as RAAS activation can induce endothelial dysfunction and atherosclerosis. These pathologies coexist during the 
progression of CKD and exacerbate VC. VSMCs express the mineralocorticoid receptor, and the activation of mineralocorti-
coid promotes VC.130 As renal function declines, the standard defence mechanism, phosphorus (Pi) and calcium (Ca) 
endocrine axis, becomes overwhelmed and disrupted. Pi can directly induce the expression of aldosterone synthase in the 
adrenal gland and vascular tissues, which may be related to FGF-23-mediated activation of RAAS.131 Increased levels of 
angiotensin II increase the production of aldosterone that activates sodium-phosphate cotransporter (Pit-1), leading Pi to enter 
the VSMC. In addition, aldosterone promotes inflammatory processes by inducing TNF-α.194 Furthermore, vascular injury 
caused by excessive activation of mineral corticosteroid receptor (MR) can be manifested as inappropriate vascular remodel-
ling, endothelial dysfunction and increased vascular stiffness.132

Therapeutic Strategies for Vascular Calcification in Two Environments
Research on the treatment of VC targets still has important clinical significance, the next (Table 3) summed up in two 
kinds of environments drugs for the treatment of VC.

Table 3 Comparison of the Treatment of Vascular Calcification in Two Environments

Mechanism In the Environment of Chronic Kidney Disease In the Environment of 
Diabetic

Metformin 1. Metformin alleviates VC through the AMPK-eNOS-NO pathway.195 

2. Metformin induces vascular calcification by activating AMPK signaling 

in VSMCS.196 

3. Down-regulate the overexpression of RANKL gene receptor 
activator.196 

4. Improve macrophage dysfunction, reduce NLRP3 inflammatory 

vesicles, inhibit ROS production.197

Thiazolidinediones (TZD) 1. TZD exerts its therapeutic effect by stimulating the activity of 

PPARγ.198 

2. PPARγ induces the proliferation of VSMCs by regulating PI.198 

3. Induces inflammatory factor secretion and promotes endothelial 

dysfunction.199,200

Sulfonylurea 1. Description The NLRP-3 expression is reduced.201,202 

2. The mRNA expression level of inflammatory factors was down- 

regulated.203

1. Inhibits ATP-sensitive K+ 
channel receptors located in 

pancreatic beta cells and 

promotes insulin release.204

Dipeptidyl peptidase-4 (DPP-4) 
inhibitor

1. By reducing the presence of mast cells and macrophages, as well 

as by lowering proinflammatory cytokines.205 

2. Prevention of endothelial dysfunction.206

Selective Sodium-Glucose 
Transporter-2 Inhibitors (SSGT −2)

1. It has anti-inflammatory effect.207

GLP-1 agonists 1. Reduces the production of inflammatory cytokines.208

Alpha-glucosidase inhibitor (AGI) 1. It has anti-inflammatory effects and reduces oxidative stress.209–211

Antioxidants (Antioxidants) 1. It acts as an antioxidant.212,213

(Continued)
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Metformin
Currently, metformin is the first-line medication to treat T2DM in most guidelines and is used daily by >200 million patients. 
Surprisingly, the mechanisms underlying its therapeutic action are complex and are still not fully understood. Metformin 
activates protein kinase (AMPK) through phosphorylated AMP, and by activating AMPK signalling in VSMC, the RANKL 
gene is an essential inducer of VC. Metformin can down-regulate the overexpression of the receptor activator of RANKL 
gene.224 Metformin has been shown to alleviate VC through the AMPK-eNOS-NO pathway.196 In the rat model of adenine- 
induced CKD, Metformin has shown that the expression of inflammatory cytokines TNF-a and IL-1β and to decrease serum 
PTH and FGF-23 hormone levels significantly are reduced in the kidneys of rats treated with Metformin.195 Metformin can 
improve macrophage dysfunction, reduce NLRP3 inflammatory vesicles, and inhibits ROS production.225 Therefore, 
Therefore, metformin is currently one of the most promising therapies to reduce VC. However, Interestingly, More insights 
into the benefits of metformin on healthspan and lifespan in humans will hopefully be provided by the MILES (Metformin in 
Longevity Study) and TAME (Targeting Aging with Metformin) clinical trials.197 The ability of metformin to promote health 
or increase lifespan in healthy populations remains to be determined.

Thiazolidinediones (TZD)
TZDs exhibit their therapeutic effects by stimulating the activity of nuclear peroxisome proliferator-activated receptor 
gamma (PPARγ). This stimulation of PPARγ signalling has been implicated in the regression of VC. Previous research 
indicates that PPARγ is capable of regulating the proliferation of VSMCs induced by platelet-derived growth factor- 
induced protein (PI)226 Further studies have shown that the administration of a PPAR-γ inducer was able to suppress NF- 
kB-dependent secretion of inflammatory cytokines in a rodent model.198 Similarly, pioglitazone, a thiazolidinedione-like 
drug, has been shown to mitigate TNF-α-induced endothelial dysfunction in patients with diabetes.199 A retrospective 
study involving 156 patients with T2DM demonstrated that rosiglitazone significantly reduced TNF-α, interleukin-6, 

Table 3 (Continued). 

Mechanism In the Environment of Chronic Kidney Disease In the Environment of 
Diabetic

Angiotensin-converting enzyme II 
receptor antagonist (MRA)

1. Reduce oxidative stress and prevent endothelial dysfunction, thereby 
controlling VC.214,215 

2. VC and oxidative stress are reduced by decreasing the activity of 

MMP-2,9 in plasma.216

Vitamin supplement and new 
preparation

1. OEG2-IP4 may prevent and treat VC.217 

2. Vitamin K supplements can lower VC.218

Combating mineral imbalance 1. Mg can reduce inflammatory damage associated with oxidative 

stress.219 

2. Zinc inhibits ROS-induced LDL-C oxidation.29 

3. Cinacalcet reduces the synthesis and secretion of PTH, reduces 

serum calcium, and is often accompanied by a reduction in phosphate, 
which reduces VC.220 

4. Increased levels of Klotho improve kidney function and delay the 

progression of CKD.

Statins 1. It promotes low density lipoprotein metabolism and increases high 

density lipoprotein concentration by inhibiting HMG-CoA reductase 
during cholesterol synthesis in vivo.221,222 

2. By inhibiting vitamin k dependent protein and to participate in the 

blood vessels to protect.223 

3. PCSK9 inhibitor evolocumab can significantly reduce LDL 

cholesterol and plaque regression.223

Abbreviations: NLRP3, NOD-like receptor thermal protein domain associated protein 3; MMP-2,9, matrix metalloproteinase-2,9; OEG2-IP4, OEG2-derived inositol 
phosphate; HMG-CoA, hydroxymethylglutaryl-CoA.
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high-sensitivity C-reactive protein (hs-CRP), and malondialdehyde (MDA) levels.200 Based on these findings, thiazoli-
dinedione (TZD) drugs can be utilized as the primary treatment for VC. TZDs are commonly utilized as second-line oral 
hypoglycemic drugs. However, there is emerging evidence suggesting that long-term use of TZDs may exacerbate 
cardiac dysfunction.227 Therefore, it is crucial for healthcare professionals to consider multiple factors when adminis-
tering TZD drugs.

Sulfonylurea
Sulfonylureas, such as glimepiride, elicit insulin release by virtue of their ability to inhibit ATP-sensitive K+ channel 
receptors located in pancreatic β cells.228 This phenomenon is underscored by a study demonstrating that treatment with 
glimepiride decreased renal NLRP-3 expression in a rodent model of adenine-induced CKD.201,204 In addition, in 
diabetic mice treated with glibenclamide, it was demonstrated that VC development was delayed by down-regulating 
IL-10, IL-18, TGF-β, and mRNA levels.202 A study on whether diabetes treatment has a beneficial effect on calcification 
markers showed that anti-diabetic treatment with glibenclamide for 18 weeks resulted in a significant reduction in 
circulating OPG, suggesting that this may slow the progression of VC.203 This finding suggests that sulfonylureas may 
exert anti-calcifying effects through the manipulation of inflammatory and oxidative pathways.

Dipeptidyl Peptidase-4 (DPP-4) Inhibitor
The dipeptidyl peptidase-4 (DPP4) is a crucial enzyme in the regulation of the incretin system. This system, which is 
responsible for regulating blood glucose levels, functions by suppressing the hormone glucagon-like peptide 1 (GLP-1). 
By blocking the activity of DPP4, DPP4-inhibitors (DPP4-i) can enhance GLP-1 concentration, thereby controlling blood 
glucose levels.229 A study conducted on high-fat diet-induced obesity-related glomerulopathy (ORG) rat model demon-
strated the ability of ghrelin to suppress local inflammation by reducing the presence of mast cells and macrophages, and 
by decreasing the expression of proinflammatory cytokines such as TNF-a and IL-6.230 Interestingly, a random clinical 
study on T2D patients suggested that linagliptin treatment for 4 weeks prevented impairment of renal endothelial 
functions205 However, DPP4-I is currently controversial, and recent studies have shown that DPP-4 inhibition can induce 
cancer metastasis.206 However, this controversy in the carcinogenic mechanism of diabetes has been shown to be 
complex, including excessive ROS formation, destruction of essential biomolecules, chronic inflammation and impaired 
healing phenomena, which together lead to carcinogenic effects in diabetic patients. A recent study by Zendehdel et al231 

found that patients with type 1 diabetes had a 19% increased risk of developing cancer, particularly gastric, cervical, and 
endometrial cancers. This risk is higher compared to the risk observed in patients with CKD. Compared to CKD, 
although it can promote kidney cancer itself, some other anti-tumour drugs (such as cisbo) can themselves have a harmful 
effect on kidney function, leading to renal cell carcinoma. The combination of cancer with impaired renal function 
worsens patients’ outcomes and complicates their management and treatment.

Selective Sodium-Glucose Transporter-2 Inhibitors (SSGT −2)
SGLT-2 inhibitors, such as empagliflozin, function by inhibiting glucose reuptake in the proximal tubules of the nephron.232 In 
an ApoE−/− mouse model, studies have indicated that chronic empagliflozin administration for eight weeks resulted in 
a decrease in atherosclerotic lesions and a reduction in TNF-α and IL-6 levels.233 Furthermore, clinical trials have provided 
support for the anti-inflammatory effects of empagliflozin in reducing atherosclerosis in individuals with T2DM.207 

A subsequent analysis of the therapeutic efficacy of empagliflozin on the Kidney Disease Improving Global Outcomes 
(KDIGO) classification of CKD suggested that SGLT-2 inhibitors may exhibit cardioprotective and nephroprotective 
effects.234 A recent comprehensive meta-analysis of 11 cardiovascular outcome trials (CVOTs) examining the effects of 
SGLT-2 inhibitors on cardiorenal outcomes in individuals with type 2 diabetes agreed with these findings.235

GLP-1 Agonists
GLP-1 primarily modulates postprandial glucose surge through augmenting insulin production and suppressing glucagon 
release.236 Several recent studies have further elucidated the effects of GLP-1 and its receptor agonists on cardiac and vascular 
physiology, inflammatory responses, and platelet function.237 For instance, Liraglutide, a GLP-1 agonist, has been shown to 
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significantly reduce pro-inflammatory cytokines, such as TNF-α and IL-6, thus attenuating local inflammation.230 Similarly, 
Exenatide, another GLP-1 receptor agonist, has demonstrated the ability to mitigate VC by downregulating RANKL 
expression.208 Thus, these data suggest that GLP-1 agonists may have therapeutic potential in the management of VC. 
Furthermore, it has been observed that co-administration of liraglutide with GLP-1 agonists has reduced the risk of 
cardiovascular events in patients with diabetes.238 The cardiovascular safety profile of liraglutide in patients with type 2 
diabetes appears to be relatively reassuring.

Alpha-Glucosidase Inhibitors (AGI)
AGI exhibits a promising role in the treatment of VC by virtue of its ability to suppress postprandial hyperglycemia 
through the restraint of α-glucosidase in the brush border of the small intestinal mucosa. Studies have demonstrated the 
efficacy of acarbose, an α-glucosidase inhibitor, in the management of type 2 diabetes (DM) in rodent models. Acarbose 
treatment was observed to diminish oxidative stress and reduce reactive ROS levels.239 Additionally, it was shown to 
have an anti-inflammatory effect, thereby dampening pro-inflammatory factors.209,210 It is noteworthy that AGI displays 
the same therapeutic efficacy as other anti-diabetic medications in controlling glycosylated haemoglobin and blood 
glucose levels, and its effect is comparable to metformin. Despite its promising potential, AGI is currently underutilized 
in clinical practice, particularly in patients with advanced CKD, due to its limited safety profile in these patients. 
However, further research on AGI’s safety in severe renal impairment is warranted to determine its therapeutic potential 
in this patient population.

Antioxidants
Oxidative stress is considered to play a pivotal role in the progression of VC, which has been established as a standard 
mechanism for the development of VC in conditions such as DM and CKD. Research indicates that various nutrients and 
dietary plant metabolites exhibit antioxidant activities, such as α- and γ-tocopherols, retinol, β-cryptophanes, ascorbic 
acid, α- and β-carotene, lutein and zeaxanthin, and lycopene.211,212 For example, Vitamin E has been shown to act as an 
antioxidant and has been identified as a compound that can decelerate VC progression.212 Furthermore, Vitamin C, 
possessing vital antioxidant functions, is capable of reducing reactive ROS levels and maintaining vascular and 
endothelial functionality.213 Other dietary plant metabolites, such as quercetin,240 curcumin,184 resveratrol,241 ursolic 
acid and others, can also function as antioxidants and exert protective effects against VC.In a systematic review and 
meta-analysis of the effects of age and dose on the glycemic impact of resveratrol in managing type 2 diabetes, it was 
demonstrated that resveratrol significantly reduced blood glucose, insulin, and Glycosylated Hemoglobin, Type A1C 
(HbA1c) levels in patients aged 60 years.242 Therefore, the positive and significant role of antioxidant compounds in 
CKD is undeniable, highlighting the significant role they play in disease prevention and intervention through the 
regulation of free radicals.The consumption of these antioxidant compounds through diet, including fruits, vegetables, 
and grains, plays a crucial role in disease prevention and intervention.

Angiotensin-Converting Enzyme II Receptor Antagonist (MRA)
An experimental study was performed, in which angiotensin di-receptor (AT2) knockout rats were utilized. Results 
indicated that these rats demonstrated diminished aortic ring calcification in comparison to controls, indicating that AT2 
stimulation can inhibit phosphate-induced VC.243 Finenone, an MR antagonist, can inhibit reactive ROS production, 
decrease oxidative stress, and prevent endothelial dysfunction, thereby providing control over VC.214,244 It is worth 
noting that the expression of pro-inflammatory molecules and macrophages plays a crucial role in the development and 
manifestation of VC. A study conducted on rats with CKD demonstrated that finenone therapy reduced the activity of 
matrix metalloproteinase-2,9 (MMP-2,9) in plasma, thereby curtailing VC and oxidative stress.215 In addition, MR 
antagonists can also block the pro-inflammatory effects of IL-6.216 Further, MRAs are considered a promising therapeutic 
strategy in diabetic kidney disease. Additionally, other non-steroidal MRAs have shown anti-albuminuric effects in 
diabetic kidney disease. Whether the concurrent administration of MRAs with other nephroprotective drugs, such as 
sodium-glucose cotransporter-2 (SGLT2) inhibitors, can provide synergistic protective effects requires further 
investigation.
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Combating Mineral Disorders
It has been documented that phosphate-binding agents augment P excretion and diminish VC by reducing FGF-23 in 
clinical trials pertaining to phosphate disturbances.245

In a rat model, Mg alleviated inflammatory damage associated with oxidative stress.246 Zinc has been shown to 
inhibit ROS-induced LDL-C oxidation.48 Similarly, inadequate Zn intake was associated with increased ROS 
production,29 which is essential in reducing the burden of VC.219 Cinacalcet is a second-generation calcifying agent, 
and a clinical meta-analysis of Cinacalcet showed that Cinacalcet reduced PTH synthesis and secretion, decreased serum 
calcium, and was often accompanied by a decrease in phosphate, thereby reducing VC.247 Klotho is a critical protein that 
protects the kidney. Its deficiency is implicated in the pathogenesis and progression of CKD. Conversely, an increase in 
Klotho levels results in improved kidney function and delays CKD progression. Therefore, mineral supplementation may 
become a therapeutic agent for VC in the future.

Vitamin Supplement and New Therapies
Vitamin K supplementation is essential for VC.220 I In previously publicized studies, vitamin K-dependent carboxylation 
of glutamate residues activates MGP in hemodialysis patients, and VC is regulated and, to a certain extent, inhibited by 
MGP.248 Moreover, preliminary results from clinical trials imply that vitamin K supplementation reduces VC.249 

Additionally, paricalcitol and lower clinical doses of paricalcitol may thwart VC.218 However, a clinical randomized 
controlled trial revealed no significant distinction in the progression of coronary artery calcification (CAC) or valvular 
calcification between treatment with osteopontin and paricalcitol in patients with CKD over 48 weeks.250 A more 
advanced drug now available in clinical studies for the treatment of VC is an inositol hexaphosphate (IP6) formulation 
called Sanifit’s SNF472.251 Recent studies have identified an OEG2-derived inositol phosphate (OEG2-IP4) that may 
have clinical implications in the prevention and treatment of VC.252 Novel therapies may help prevent VC progression in 
CKD and DM. Further clinical studies are needed to determine clinical efficacy.

Statins
Statins promote low-density lipoprotein metabolism and increase high-density lipoprotein concentration by inhibiting 
hydroxymethylglutaryl-CoA (HMG-CoA) reductase in the body’s cholesterol synthesis process.217 This has been 
evaluated in several randomized controlled clinical trials, each showing that statins have a significant LDL-lowering 
effect.221,253 However, the effect of statins on VC is still controversial. A prospective, multi-country study using 
continuously computed tomography angiography (CT) scans at 2-year intervals to detect atherosclerotic plaque progres-
sion showed that patients taking statins had a faster rate of lesion calcification, a lower rate of atherosclerosis progression 
and a lower occurrence of high-risk plaque features compared to controls.222 This means that statins do not affect 
progression in the percentage of coronary artery disease stenosis severity but induce plaque phenotypic transformation. 
Another prospective study suggests a possible mechanism by which statins promote calcium accumulation in arterial 
walls by inhibiting vitamin K-dependent proteins and participating in vascular protection.254 In contrast, Doran et al223 

recently suggested that statin therapy promotes the reversal of significant microcalcification in mice. Another study found 
that treating coronary heart disease patients treated with statin with PCSK9 inhibitor evolocumab can significantly reduce 
LDL cholesterol and plaque regression. Therefore, whether for patients with CKD or DM, long-term statin use can 
significantly prolong the survival of patients by reducing apolipoprotein a, but there is also an impact on VC. Generally 
speaking, the benefits outweigh the disadvantages.

Conclusions and Perspectives
Due to meticulous investigation into their mechanisms, significant breakthroughs have been achieved in the pharma-
cotherapy of two diseases. Studies have established a link between diabetes and CKD with VC. Recent data suggest the 
existence of multiple, convergent mechanisms accelerating VC within the framework of these diseases. These mechan-
isms involve mitochondrial oxidative stress, pro-inflammatory cytokine release, endothelial dysfunction, lipid metabolic 
disorders, hypoxia, and common signalling cascades. Additionally, extracellular vesicles and miRnas are also implicated 
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in VC. Although these factors share some similarities, there are also distinct differences. For example, metabolic 
disorders are the primary factors for VC in diabetes, while excessive calcification in CKD is intensified by calcium 
and phosphorus imbalances, hormone dysregulation, and the release of massive amounts of uremic toxins from the 
intestine. Despite significant advances in the research of VC within diabetic and CKD milieus, including the elucidation 
of mechanistic aspects and the initiation of clinical pharmacological trials, the complex and heterogeneous pathophy-
siological mechanisms underlying VC within these contexts have yet to be fully understood. This complexity has posed 
significant challenges for the identification of optimal therapeutic targets and the advancement of drug development. 
Furthermore, it is important to emphasize the need for increased research on the pathophysiological mechanisms and 
preventative measures of VC. By addressing these aspects of the disease, we can develop more effective strategies to 
mitigate the negative consequences of VC and ultimately improve patient outcomes.
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