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Abstract: The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires 
suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring 
biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is 
inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, 
photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with 
different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative 
development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and 
what PDA can do in different tissue injuries. 
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Introduction
Accident trauma, inflammation, aggressive tumors, infectious diseases, and acquired or congenital abnormalities may cause 
severe damage to tissue.1–3 Unfortunately, the limited self-healing ability of tissues means that if the damage surpasses the 
ability of self-healing, the tissue damage will not heal, the healing process will be prolonged, and tissue function will be 
compromised. Biomaterials can play a role in various tissue repair and regeneration stages, such as carrying drugs to promote 
tissue growth, providing antibacterial, antioxidant, anti-inflammatory properties, and substituting defective tissue, among 
others.4–8 To achieve optimal healing of damaged tissues, it is essential to match the functions of the biomaterial to the multiple 
factors influencing the healing process. Moreover, it is crucial for biomaterials to be low-toxic or, ideally, non-toxic. Thus, 
researchers prefer materials that possess a range of properties suitable for tissue repair and regeneration, such as materials 
inspired and derived from nature.

Over the past decade, mussel-inspired and melanin-like materials have gained increasing attention in the biomaterials 
science community.9,10 The reality is that despite being inspired by different natural entities, the functional chemical 
components of these two types of materials are the same. Marine mussels are capable of secreting various types of foot 
proteins that allow them to adhere to different foreign surfaces, including the skin of marine animals, rocks, and metal ships.11 

Six types of mussel foot proteins have been identified, with the most abundant being 3,4-dihydroxy-l-phenylalanine (DOPA), 
glycine, lysine, tyrosine, and asparagine.12,13 Melanin-like materials typically encompass eumelanin, neuromelanin, 
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allomelanin, and pheomelanin.14,15 A schematic representation of the elements of melanin-like and mussel-inspired materials 
as Figure 1. The high concentration of catechol from DOPA and amine groups in these foot proteins gives them strong 
adhesive properties.16 They can convert specific spectrum’s photon energy into heat and chemical energy.17,18 Additionally, 
the polymer’s possession of free phenolic groups confers it with the ability to scavenge various reactive oxygen and nitrogen 
species.19,20 Moreover, owing to the abundance of binding groups, such as amines and catechols, among others, they exhibit 
exceptional chelating capacity.21 The aforementioned properties make mussel-inspired and melanin-like materials promising 
platform for several important biomedical applications, including tissue adhesion, drug-delivery systems, antioxidant therapy, 
and phototherapy systems. These materials were initially obtained from sources such as human hair, sepia ink, grape extracts, 
oligomeric proanthocyanidins, and others.22–24 The limited availability of raw materials and the difficulty in obtaining them 
are two significant challenges for their usage in clinical applications. According to Lee et al, dopamine (DA) was found to be 
a suitable replacement for natural materials, as it possesses both catechol and amine functionalities.25 DA is well-known as 
a neurotransmitter in human body and associate with disease like Parkinson’s disease.26 Surprisingly, they discovered that the 
straightforward structure of DA serves as a potent building block, facilitating the spontaneous deposition of thin polymer films 
on nearly any material surface. Moreover, these deposited films can be readily tailored to fulfill a wide array of functional 
applications.25 Commercial DA hydrochloride is produced by chemical synthesis and can be stored easily.27 The DA 
hydrochloride will self-polymerize into PDA nanoparticles (NPs) in alkaline environment. PDA NPs with mesoporous 
structures were obtained after removing the alkaline solution.28,29 Zeng et al reported an average nanoparticle diameter of 
approximately 200 nm,30 and while Yuan et al measured the average pore diameter to be around 16.676 nm in their study.28 

Even though many details of the PDA function and structure still remain to explore, there is little doubt that PDA have same 
properties for tissue repair and regeneration as mussel-inspired and melanin-like materials.

Several researchers have reviewed the PDA biomaterials related to tissue repair and regeneration.31–33 However, the 
emphasis of these reviews has been primarily on the wound-healing properties inherent in PDA or on the overall ability 
of these biomaterials composed of multiple materials and PDA to facilitate tissue regeneration. However, as the 
application of PDA becomes more widespread, recent articles on biomaterials incorporating PDA have investigated 
additional strategies for applying PDA. These strategies are not just simple combinations of different functional materials 

Graphical Abstract

https://doi.org/10.2147/IJN.S437854                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2024:19 860

Guo et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


with PDA to enhance its ability to promote tissue repair, but rather incorporating PDA as a part of a biological material 
system, leveraging not only its own function but also the interaction between PDA and other materials for greater impact. 
Therefore, this review analyzes the latest representative PDA application strategies in biomaterials (Table 1) incorporat-
ing PDA for tissue regeneration and provides some inspiration for subsequent researchers who want to use PDA for 
tissue regeneration.

The Biomaterial for Wound Closure and Hemostasis with Adhesion Ability 
of PDA
As the scientists first noticed, PDA is an excellent adhesion material. PDA contains quinone, catechol, imine, amine 
functional groups and abundant π-conjugated structures.34 The abundant π electrons in PDA confer it with a strong 
binding capacity for various molecules possessing π electrons through π-π stacking and π-cation interactions.35

Tissue Adhesion Biomaterials with PDA for Wound Closure
Over the past few decades, medical tissue adhesives have been applied in surgical operations, especially when traditional 
suturing is not impractical or ineffective.36 Currently, in many surgical procedures, the most commonly used tissue 
adhesives include fibrin glues, albumin-glutaraldehyde adhesives, and cyanoacrylates.37 Nevertheless, the unstable 
efficacy, potential allergic reactions, and high toxicities associated with aldehyde-containing products severely restrict 
the clinical application of these tissue adhesives.38–40

As early as 2016, Fan et al designed a DA conjugated gelatin macromer double-crosslinked tissue adhesive intended for 
internal medical use.41 Chen et al reported a strategy by horseradish peroxidase cross linking γ-glutamic acid conjugated with 
DA as a tissue adhesive for wound closure.42 Pandey et al introduced PDA on the simple HA and cross-linker adhesion system 
resulting in a significant increase in the adhesion of the material. To create a mussel-inspired HA-DA product, DA was grafted 

Figure 1 Schematic representation of the elements of melanin-like and mussel-inspired materials.
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onto the hyaluronic acid (HA) backbone through (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-N-hydroxy-succinimide) 
EDC-NHS carbodiimide chemistry under aqueous conditions.43 Upon introducing PDA to this HA-DA adhesive, the adhesion 
capability of the glue experiences a significant enhancement. The tissue adhesive properties of PDA NPs exhibit a correlation 
between higher adhesive strength and smaller particle size (Figure 2A). Although the adhesive ability of PDA still remains 
a lot to explore, the current studies are enough to prove PDA is an excellent material for wound closure, even better than some 
conventional materials.

However, there are still some problems waiting to be solved, such as making products more conventional to apply in 
clinics and easily stored. Experiments should not only focus on the mechanical strength and physicochemical properties 
of PDA, but also consider its ability to support cell proliferation and tissue regeneration for effective wound closure. The 
process of wound closure not only closes the wound by adhesive simply, but also includes the following cell proliferation 

Table 1 Selected and Representative PDA Related Materials in Tissue Repair and Regeneration

Application Materials Mechanism Ref

Tissue adhesive and hemostasis

Tissue adhesive Introduced PDA on HA adhesion system Adhesive [43]

Hemostasis Hydroxyapatite hemostatic material with PDA Adhesive [53]
Hemostasis PDA modified carboxymethyl chitin microspheres Adhesive, Modification [55]

Hemostasis Hemostatic sponge modified by PDA Adhesive, Modification [56]

PDA carries a comprehensive range of drugs

Mandibular Bone Defects GPEGD hydrogel with BMP-2 loaded PDA/heparin NPs Antioxidation, Protein Loaded [71]

Bone regeneration PHA scaffolds coat with PDA-captured BMP-2 Modification, Protein Loaded [77]

Bone regeneration PDA and TA microspheres with exosomes Exosomes Loaded [78]
Osseointegration, Antibacterial PDA with LUT modified Ti substrate Modification, Drugs Loaded [57]

Radiation pneumonitis Curcumin-loaded mesoporous PDA NPs Drugs Loaded [99]

PDA applications for building controlled drug release materials

Temperature-response PDA coating with TSLs and teriparatide PTT, Drugs Loaded [105]
Ag self-rechargeable Electrospun scaffold and PDA coated MX@AgP bio-HJs PTT, Chelate Ag [114]

pH-Responsive TCPP-loaded PDA introduced PLU@PTc hydrogels PTT [124]

pH-Responsive ZIF-8-coated PDA and loaded PES PTT and Drugs loaded [123]

Multi-layers structure tissue regeneration biomaterials with PDA

Auricle reconstruction Multilayer EPL and FIB modification with PDA coating Modification [125]

Orthopedic implants PDA immobilized on β-TCP scaffold modified by chitosan Modification [126]

Osseointegration Multilayer COL1 constructed by PDA Modification [139]
Wound healing PPy/PDA/PLLA three-layer core-shell structure Modification [128]

Self-healing and shape-memory PDA biomaterials

Wound dressing Carboxymethyl chitosan-PDA hydrogels with PAM networks Adhesive [148]

Implant PCL-PDA polyurethane PTT [153]

PDA absorbs some of the inflammatory factors

Rheumatoid arthritis Dimethylamino group modified PDA NPs Biodegradability, Adhesion [160]

Bone regeneration PDA-mediated GO and nanohydroxyapatite-incorporated 

conductive scaffold

Antioxidation [166]

Spinal cord injury PDA NPs with rapamycin Antioxidation [168]

Internal organs repairment and regeneration

Kidney Injectable PDA-encapsulated MF NPs nanocomposites Antioxidant [161]
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and tissue regeneration to close the wound in a real sense. Therefore, in addition to just in vitro tissue, we should test the 
healing effects of adhesion materials in vivo.

Hemostatic Biomaterials with PDA
PDA not only has the ability to adhere broken vessels and stop bleeding, but also effectively combines with conventional 
hemostatic materials that lack tissue and vessel adhesion abilities, such as chitosan,45 silica NPs,46 and graphene oxide (GO).47 

Furthermore, PDA can endow various clinical tools with hemostatic properties, such as needles,48 hydrogels, and sponges.49

The widely used commercial hemostatic materials have certain drawbacks. For instance, QuickClot©, which has been 
extensively used in warfare and saved many soldiers during the Gulf War,50 can cause scorching of the wound area and 
trigger allergic reactions due to heat release during the hemostatic process.51 In addition, the presence of oxygen- 
containing groups in a new promising hemostatic agent, GO, raises concerns about toxicity.52

Gong et al designed a hydroxyapatite hemostatic material with PDA.53 They work out that the best ratio of nano 
hydroxyapatite and DOPA hydrochloride is 20:1. The hemostatic capacity between a popular commercial production Celox 
and this composite was studied. The PM has better performance in the longest hemostatic time, the blood loss and uncontrolled 
bleeding circumstance than Celox and control. Although Celox is popular in clinical use, it was reported to perform poorly on 
uncontrolled bleeding.54 For this circumstance, Leng et al modified porous carboxymethyl chitin microspheres with PDA 
(CMCHm-PDA). This material displayed better hemostatic performance than two wide use commercial hemostatic agents 
Yunnan Baiyao® or /and Quickclean® in three kinds of rat bleeding models (tail amputation model, liver injure model and 
femoral arterial/venous cutting model), especially for CMCHm-PDA, the bleeding time was only 45s in the femoral artery/ 
vein cut model (Figure 2B and C).44 For conventional hemostatic material, Cao et al design a multifunctional hemostatic 
sponge modified by PDA. Furthermore, in rat tail amputation models, the sponge demonstrated a superior hemostatic effect 

Figure 2 (A) Schematic illustration of the usage and probable working principle of cross-linker adhesion system. The tissue adhesive properties of PDA NPs exhibit 
a correlation between higher adhesive strength and smaller particle size (*p<0.05). Reproduced with the permission from Pandey N, Soto-Garcia L, Yaman S, et al. 
Polydopamine nanoparticles and hyaluronic acid hydrogels for mussel-inspired tissue adhesive nanocomposites. Biomater Adv. 2022;134:112,589.43 Copyright © 2022, with 
permission from Elsevier. (B and C) Porous carboxymethyl chitin microspheres with PDA (CMCHm-PDA) have better hemostatic performance (clotting time and blood 
loss) than a wide use commercial hemostatic agents Yunnan Baiyao® (*p<0.05). Adapted from Carbohydrate Polymers, Volume 270, Leng F, Chen F, Jiang X. Modified porous 
carboxymethyl chitin microspheres by an organic solvent-free process for rapid hemostasis. Pages 118348. 44 Copyright © 2021, with permission from Elsevier.
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compared to conventional gauze. This enhancement can be attributed to the improved procoagulant activity and increased 
adhesion of red blood cells and platelets to the sponge.55,56

PDA Carries a Comprehensive Range of Drugs That Promote Tissue 
Regeneration and Repair
PDA has a strong binding capacity for a variety of drugs that facilitate tissue repair, like various metal ions, antibiotics, 
proteins, exosomes, etc.57–63

A Variety of Protein-Based Growth Factors Combine with PDA for Tissue Growth
For achieving more desirable tissue growth, the method commonly employed in tissue repair, particularly in osseointegration, 
is the local delivery of growth factor agents.64 Due to the short half-life and rapid clearance of protein-based growth factors 
from the body, traditional methods involving covalent or weak electrostatic encapsulation of proteins into natural hydrogels 
might lead to reduced bioactivity or potentially trigger side effects in vivo.65,66 The latest researches on PDA and protein- 
based growth factors have shown that these problems can be effectively addressed and perfectly combined PDA.

Bone morphogenetic protein-2 (BMP-2) is an essential factor known for promoting osteogenesis and has found 
widespread use in clinical applications for bone repair and regeneration.67,68 The remarkable bone regenerative ability of 
BMP-2 has captivated numerous researchers to incorporate it into biomaterials. Studies have shown that BMP-2 can 
activate cellular pathways associated with osteogenesis and effectively enhance bone formation in animal 
experiments.69,70 Wu et al designed a kind of biomimetic hydrogel may be used as a translational potential material to 
promote the construction and regeneration of mandibular bones. They combined PDA to scavenge reactive oxygen 
species (ROS) and heparin (PDAH) to prolong and control BMP-2 release (Figure 3A).71 Heparin, a naturally occurring 
glycosaminoglycan, possesses a high negative charge and exhibits a strong affinity for a class of positively charged 
growth factors.72–75 DA can undergo a chemical reaction with heparin through the interaction between the carboxyl 
groups or sulfate groups of heparin and the amino groups of PDA polymers. Typical images indicated that with the 
further increase of heparin concentration, the mixtures tend to form NP aggregates with the smaller particle size. In 
details, the BMP-2 absorption efficiencies on the PDA and PDAH NPs were 68.2% and 90.03%, respectively. Therefore, 
heparin-functionalized PDA NPs can enhance the loading capacity of BMP-2. Additionally, due to the strong affinity 
interactions between BMP-2 and heparin, these NPs can sustain the release of BMP-2 over time.76

The conservative chemical structures of biomaterials, coupled with the lack of simple and moderate modification methods and 
the instability of bioactive substances (particularly growth factors), result in poor osteoinductive signals. This ultimately hinders 
cell adhesion, growth, and differentiation, leading to hindered bone restoration and regeneration. Zhang et al built a scaffold coated 
with PDA, the PDA can capture BMP-2 in BMP-2 solution (Figure 3B).77 The amount of attached BMP-2 was observed to 
increase with the increasing initial concentration of BMP-2 (Figure 3C). The release of BMP-2 from the scaffolds exhibited no 
burst effect, with only 4.72 ± 1.55% of BMP-2 released within the first 24 hours. Furthermore, the released BMP-2 percentage 
remained stable over the course of 30 days, leading to a cumulative release percentage of 86.64 ± 1.53% (Figure 3D). For repairing 
bone defects resulting from surgery, conventional implants like titanium-based alloys and emerging materials like polyether-
etherketone (PEEK) have become the essential materials used in orthopedic and dental implants.79 The highly adhesive PDA layer 
on the substrate not only imparts a hydrophilic surface to the substrate,80,81 but also provides a secondary reaction platform for 
immobilizing growth factors like BMP-2. This is possible due to the abundant catechol and amine groups in PDA, which can react 
with amine- and thiol-containing substances through Michael addition or Schiff base reactions.82–84 BMP-2 can be combined with 
other sustained-release drug carriers, such as polylactic acid-glycolic acid (PLGA), which offers flexible regulation through 
adjustments in the lactide/glycolide ratio and the polymer molecular weight.85 Then the microsphere carriers bond to the PDA 
coating of the PEEK surface after plasma pretreatment. The strategy of combining BMP-2 and PDA to promote bone healing may 
also provide implications for other drugs combined with PDA to promote bone healing.
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PDA and Exosomes Binding Promotes Tissue Repair
Exosomes are small extracellular vesicles (30–150 nm in diameter) secreted by cells, demonstrating promising therapeutic 
potential as alternatives to living cells. They possess equivalent or even superior efficacy while requiring no external 

Figure 3 (A) PDA/heparin nanoparticles were prepared to improve the encapsulation efficiency and control BMP-2 release behavior. Reproduced from Wu Y, Li X, Sun Y, 
et al. Multiscale design of stiffening and ROS scavenging hydrogels for the augmentation of mandibular bone regeneration. Bioact Mater. 2023;20:111–125.71 Copyright © 2022 
KeAi, open access. (B) Fabrication of bone morphogenetic protein-2 (BMP2)-functionalized 3D-printed P34HB scaffold via polydopamine surface modification.77 (C) The 
amount of attached BMP2 was observed to increase with the increasing initial concentration of BMP-2.77 (D) Percentage of released BMP2 from BMP2-functionalized 3D- 
printed P34HB scaffolds during 30 days incubation in PBS buffer.77 (B–D) Used with permission of Royal Society of Chemistry, from Zhang X, Li J, Chen J, et al. Enhanced 
bone regeneration via PHA scaffolds coated with polydopamine-captured BMP2. J Mater Chem B. 022;10(32):6214–6227.77 ; permission conveyed through Copyright 
Clearance Center, Inc. (E) Schematic illustration showing the PDA coating of porous microspheres and the subsequent exosome adsorption via bioinspired dopamine 
chemistry. Gao YK, Yuan ZY, Yuan XJ, et al. Bioinspired porous microspheres for sustained hypoxic exosomes release and vascularized bone regeneration. Bioact Mater. 
2022;14:377–388. doi:10.1016/j.bioactmat.2022.01.041.78 Copyright © 2022 KeAi, open access.
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maintenance.86,87 In tissue regeneration, the therapeutic efficacy of exosomes is often limited by their low retention and 
instability.88,89 Hydrogels have been utilized as exosome carriers, enabling the encapsulation of exosomes, thereby facilitating 
the delivery of exosomes to the target site and enhancing their local retention.90,91 Indeed, exosomes encapsulated in hydrogels 
often face challenges with long-term preservation, as they cannot be effectively stored over extended periods. To preserve 
exosomes using the lyophilization method, the addition of cryoprotectants becomes necessary to maintain their stability.92 

Surface adsorption via affinity coatings, which avoids the need for the lyophilization step, could be a more gentle and friendly 
approach for transporting delicate exosomes. This method offers a promising alternative for preserving and delivering 
exosomes without subjecting them to potentially damaging freeze-drying processes.93

In their study, Gao et al conducted a comparison of the loading efficiency and release kinetics of different surface 
coating methods, which included PDA, polyethyleneimine, tannic acid (TA), and heparin coatings (Figure 3E).94–96 The 
PDA and TA coatings demonstrated sustained release of exosomes for over one week, which was attributed to the 
adhesive properties of the catechol groups in these coatings. They utilized bioinspired injectable porous PDA-modified 
poly(lactic-co-glycolic acid) microspheres, which led to enhanced loading efficiency, an optimized release profile, and 
preserved bioactivity of the exosomes microspheres.78

Combination of PDA and Bioactive Natural Molecules Drugs for Tissue Repair
Many natural drugs are being discovered in the field of wound repair, but their diverse mechanisms of action require 
a powerful drug carrier with controlled release capabilities to carry out their effects. There have been many studies 
showing that PDAs have this capability.

Luteolin (LUT, a quorum sensing inhibitor) is a natural polyphenol flavonoid that exhibits promising characteristics as 
a natural drug for inhibiting the colony effect of bacterial biofilms. It demonstrates excellent capabilities in inhibiting and 
dispersing biofilms.97 Hu et al was loaded in PDA NPs to form PDA-LUT nanosystem.57 In response to the weak acidic 
environment of biofilm infections, LUT undergoes controlled release and selectively targets bacterial biofilms and pathogenic 
bacteria. This targeted action hinders the communication of bacterial quorum sensing signals, rendering them in a sensitive state.

Curcumin, a polyphenolic compound primarily extracted from the rhizome of turmeric, has been reported to alleviate injury 
through its anti-inflammatory, anti-oxidation, and free radical scavenging properties.98 In a study conducted by Chen et al, 
curcumin-loaded mesoporous PDA NPs were prepared and intratracheally administered to the lung for the prevention and 
treatment of radiation pneumonitis.99 The mesoporous structure of PDA offered a large inner space and numerous surface pores, 
resulting in high drug loading efficiency for curcumin. Additionally, the amorphous state of curcumin in PDA improved its 
dissolution and release, facilitating quick prevention and treatment upon pulmonary delivery.

The absence of a scientific drug-release system led to unstable drug release, resulting in the wastage of valuable 
Chinese herbal medicines and causing various discomforts to the patients. PDA as a highly binding material could 
provide a platform for the orderly release of many of these natural drugs.

PDA Applications for Building Controlled Drug Release Materials
Thermosensitive and Intelligent Drugs Delivery System Control by PTT 
Temperature-Response of PDA
To ensure effective and safe treatment of a damaged wound, it is crucial to design a drug release modulation system that 
allows for controlled release of the required medication. The approach taken for drug release modulation should be 
tailored to the specific drug being used, as different drugs have varying mechanisms of action and optimal release 
profiles.100 For instance, growth-promoting drugs may require a sustained release over an extended period, while 
antibiotics may need to be released fully and rapidly to achieve optimal efficacy. If the drug release is not properly 
controlled, there is a risk that the medication may be ineffective or even contribute to drug resistance. To achieve 
controlled drug release, researchers have developed various drug delivery systems that utilize pH, ultrasound, or near- 
infrared (NIR) laser stimuli. These systems enable a controllable release of bioactive components in response to specific 
triggers, enhancing the therapeutic efficacy and minimizing drug wastage.101 However, traditional drug delivery systems 
often lack sensitivity and have limited short-term release capabilities. Fortunately, PDA can offer several benefits in drug 
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delivery. Not only can PDA increase the amount of drug adsorption, but its PTT properties also enable the controlled 
release and accumulation of drugs. Indeed, the incorporation of PDA in drug delivery systems can lead to localized 
temperature increases. This property can be utilized to increase the rate of drug diffusion or enable an on-off effect, 
which can be activated on demand by irradiating the sample with a specific stimulus, such as near-infrared (NIR) light. 
This controlled drug release mechanism holds great promise for targeted and efficient drug delivery applications.102,103 

NIR irradiation has been shown to enhance antibiotic delivery, possibly due to physical interactions between the drug and 
the PDA that are sensitive to temperature changes. In fact, studies have demonstrated that the release rate of antibiotics 
dissolved in hydrogel with PDA under NIR is faster than without NIR.104 These findings suggest that PDA can play 
a critical role in the development of smart drug release control biomaterials.

Che et al designed a biomimetic and bioactive scaffold with intelligently pulsatile teriparatide delivery for local and 
systemic osteoporosis regeneration. They have utilized thermosensitive liposomes (TSLs) as temperature-reactive media.105 

These TSLs can be easily controlled by temperature, allowing for stable drug retention at lower temperatures and rapid drug 
release at higher temperatures. This temperature-sensitive behavior offers a versatile and precise drug delivery mechanism that 
can be tailored to specific therapeutic needs.106 Moreover, when the temperature of the system rises above the transition 
temperature, the extravasation of TSLs is significantly enhanced, leading to an immediate and rapid release of payloads.107 

This makes TSLs a promising candidate for controlled drug delivery, as they offer the ability to trigger drug release at the 
desired location and time by manipulating temperature. Liposomes are structures that can quickly recover to a dense form and 
remain stable with little drug release once the temperature drops below the transition temperature. In order to manage the TSLs 
reaction, PDA can be used as a heater under NIR, which can penetrate deep tissues and provide acute temperature control.108 

Recent studies have shown that using this technique, drug release from TSLs can be pulsatile and closely aligned with the 
average release rate over a 14-day period, in contrast to groups without NIR control, which released 34.7% of drugs within the 
first two days. Another strategy for controlling drug release is to combine TSLs with materials that respond to the PTT 
temperature-stimulated response. Exactly, phase-change materials like lauric acid and stearic acid (PCM) can serve as thermal 
response “gatekeepers” in drug delivery systems. When these materials are combined with PDA and subjected to NIR 
irradiation, and the temperature rises above their melting point (39−40 °C), the PCM undergoes a gradual melting process. 
This temperature-triggered melting, in turn, sequentially triggers the release of antibiotic drugs that are concealed within the 
material, allowing for controlled and targeted drug delivery. This approach could offer new possibilities for developing 
targeted and effective drug delivery systems.30

Metal ions, particularly silver (Ag), have been extensively studied and have been shown to possess broad-spectrum 
bacteriostatic properties. Ag has been demonstrated to penetrate bacterial cell membranes, disrupt internal proteins and 
genetic material, and ultimately lead to bacterial death.109,110 Despite these advantages, the accumulation of metal ions 
and their cytotoxicity remains a significant concern as a potential side effect.111 Recent studies show different strategies 
benefit from the PTT property. In 2013, Zhang et al synthesized hybrid materials consisting of Ag NPs, PDA, and 
graphene nanosheets as a novel antibacterial material.112 Indeed, PDA exhibits excellent biocompatibility, which can help 
reduce the cytotoxicity of Ag+ and facilitate its combination with other materials.113 In a recent study by Yang et al, they 
developed a “Ag+ self-rechargeable” stubborn infected cutaneous nanofibrous membrane designed to recover released 
metal ions, which helps moderate their toxicity and replenish the antibacterial capacity of metal ion therapy. This 
innovative approach offers a sustainable and effective solution for combating bacterial infections while minimizing the 
harmful effects of metal ions on surrounding healthy tissues.114 They reach the metal ions self-rechargeable ability by 
combining PDA and photodynamic therapy (PDT, photosensitizers yield ROS under light irradiation with an accom-
modative wavelength) materials (Figure 4A–D). PDA’s redox-active catechol group undergoes spontaneous oxidation to 
quinone, which acts as a reducing agent to convert Ag+ ions to Ag0 NPs on the surface of PDA when exposed to 
moderate solution conditions (Figure 4C).115,116 Under NIR irradiation, the Ag NPs on the surface of PDA are oxidized 
back into Ag+ ions and subsequently released into the wound again (Figure 4B). This process ensures that the synergistic 
therapy remains potent and effective, while maintaining a rechargeable function to sustain the antibacterial capacity over 
time. The ability to recycle and reuse the released metal ions enhances the overall therapeutic efficacy and makes the 
system more practical for long-term applications (Figure 4D).
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Figure 4 (A) Illustration of the manufacturing procedure of the “self-rechargeable” membranes.114 (B) Diagram of the photothermal and photodynamic mechanism of the 
“self-rechargeable” system.114 (C) Antimicrobial and “self-rechargeable” effects.114 (D) In the “recycle-release” process, the “self-rechargeable” ability will gradually diminish, 
but PDA can slow this down significantly.114 Reproduced from Yang Y, Zhou X, Chan YK, et al. Photo-Activated Nanofibrous Membrane with Self-Rechargeable Antibacterial 
Function for Stubborn Infected Cutaneous Regeneration. Small. Mar 2022;18(12):e2105988.114 © 2022 Wiley-VCH GmbH.
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pH-Responsive Bacteria Reactive Biomaterials with PDA
Bacterial growth during wound infection can result in tissue hypoxia, leading to glycolysis and acidification of the surrounding 
environment. The pH of infected wounds can drop to approximately 5.5.117,118 The pH changes in infected wounds can be 
designed with a number of pH-responsive biomaterials for monitoring bacterial changes in wounds with PDA. Correct, PDA 
exhibits high sensitivity to acidic pH, which enables it to act as a switch for controlling drug release. In acidic environments, 
such as those found in certain disease sites or endosomes, PDA undergoes changes in its structure or properties, triggering the 
release of drugs from the carrier system. This pH-responsive behavior makes PDA an attractive candidate for targeted drug 
delivery, allowing for the release of drugs precisely at the intended site of action.119,120

When exposed to a weak alkaline environment at room temperature, DA can undergo spontaneous polymerization and 
form a PDA film. This PDA film can effectively encapsulate drugs, providing a versatile and simple method for drug delivery 
and controlled release applications.121 In the acidic microenvironment of biofilms with a pH below 6.0, the outer layer of PDA 
degrades. This degradation process exposes the inner drugs within the PDA film to bacteria present in the deeper layers of the 
biofilm (Figure 5A). The pH-responsive nature of this strategy allows for on-demand drug release in situ, precisely targeting 

Figure 5 (A) Illustration of the pH-responsive nanocomposites (PDA@Kana-AgNP) coated with PDA based on kanamycin in combination with AgNPs. Reprinted from Colloids and 
Surface B: Biointerfaces, Volume 208, Li X, Li B, Liu R, Dong Y, Zhao Y, Wu Y. Development of pH-responsive nanocomposites with remarkably synergistic antibiofilm activities based on 
ultrasmall silver nanoparticles in combination with aminoglycoside antibiotics. Pages 112112.61 Copyright © 2021, with permission from Elsevier. (B) Bacterial infection triggers TCPP 
release to restore red fluorescence emission under illumination at 410 nm, and hydrogels generate antibacterial PDT under illumination at 660 nm. Hydrogels with wrapped bacterial 
debris are removed under illumination at 808 nm and changed into fresh hydrogel dressings to promote wound healing. Reproduced with permission from Ran P, Zheng H, Cao WX, 
et al. On-Demand Changeable Theranostic Hydrogels and Visual Imaging-Guided Antibacterial Photodynamic Therapy to Promote Wound Healing. Acs Appl Mater Inter. 2022.122 

Copyright © 2022 American Chemical Society. (C) PES-release behavior from MPDA@ZIF-8/PES NPs at different pH without NIR irradiation.123 (D) PES-release behavior of 
MPDA@ZIF-8/PES NPs at different pH under NIR irradiation.123 Used with permission of the Royal Society of Chemistry from Peng D, Liu G, He Y, et al. Fabrication of a pH-responsive 
core-shell nanosystem with a low-temperature photothermal therapy effect for treating bacterial biofilm infection. Biomater Sci. 2021;9(22):7483–7491. 123 Copyright © 2021, 
permission conveyed through Copyright Clearance Center.
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the biofilm microenvironment, and facilitating biofilm dispersion. This pH-responsive approach holds great promise for 
combating bacterial infections associated with biofilms, as it enhances drug delivery efficiency and the therapeutic effect. This 
pH-responsive strategy is well-suited for on-demand drug release in situ and biofilm dispersion.61

A kind of pH-responsive bacteria monitoring wound hydrogel was developed by Ran et al using Tetrakis(4-carbox-
yphenyl)porphyrin (TCPP) and PDA122 (Figure 5B). TCPP generates a strong red fluorescence, but under physiological 
conditions, the fluorescence of TCPP is quenched by PDA NPs. However, in the acidic microenvironment of bacterial 
infection, TCPP is released from PDA NPs, leading to the restoration of fluorescence emissions, which enables real-time 
diagnosis under 410 nm illumination.124

Peng et al developed a pH-responsive core-shell nanosystem designed to exhibit a low-temperature photothermal therapy 
(PTT) effect to treat bacterial biofilm-infection. This innovative nanosystem demonstrates effective potential in treating 
bacterial biofilm infections. The pH-responsive nature of the nanosystem allows for controlled drug release in acidic 
microenvironments, while the low-temperature PTT effect enhances its therapeutic efficacy against biofilm-associated 
infections.123 Pifithrin-μ (PES) is a heat-shock protein inhibitor. In their research, Peng et al proposed integrating PES into 
the PTT system. They hypothesized that by doing so, the inclusion of PES could reduce the tolerance of bacteria to heat, 
consequently decreasing the temperature required for PTT to eliminate biofilms. This approach aims to enhance the treatment 
efficacy of bacterial infections by making the PTT system more effective in eradicating biofilms. They prepared zeolite-based 
imidazole framework (ZIF-8)-coated PDA core–shell NPs and then loaded PES. ZIF-8 is a type of pH-responsive metal– 
organic framework. It remains stable in physiological environments but degrades in an acidic environment. This degradation 
leads to the release of zinc ions, which can have various therapeutic effects and applications in drug delivery, tissue engineering, 
and other biomedical fields. The pH-responsive behavior of ZIF-8 makes it a promising candidate for targeted drug delivery 
and controlled release systems that can selectively release drugs in response to the acidic microenvironment of specific disease 
sites (Figure 5C and D). The outer shell ZIF-8 was used to load PES. The release of PES could be achieved by the degradation 
of the outer shell under the stimulation of the acidic environment caused by bacterial infection. Then, the released PES acted on 
the biofilm and reduced the heat tolerance of the bacteria in the biofilm. Therefore, through the combined action of PES and 
localized PTT stimulation, the biofilms were effectively ablated, and the bacteria were eliminated. This innovative approach 
allowed for low-temperature PTT, making it a promising strategy for the treatment of bacterial biofilm infections.

Multi-Layers Structure Tissue Regeneration Biomaterials with PDA
Tissue regeneration is a complex process that requires biomaterials to meet various demands, including moistness, cell 
adhesion, water absorption, and drug chelation. It is challenging for individual materials to possess all of these 
characteristics simultaneously. Therefore, the current approach is to combine different materials and optimize their 
interaction to achieve proper tissue regeneration. When modifying the surface of inert and non-bioactive tissue repair 
materials, a single biomaterial modification may not achieve the desired effect. Multiple modifications or the combination 
of different modification strategies may be necessary to achieve the desired properties.125 To achieve the desired 
properties, layer-by-layer (LBL), core-shell, multi-layers, sandwich-like, and other techniques have been developed to 
layer different materials in an orderly fashion.126–128 Among these techniques, the PDA coating has garnered more 
attention as a surface modification due to its essential roles in multilayer structures.129–131

Layer-by-Layer Structure
LBL assembly, a highly promising technique, involves the fabrication of thin multilayer coatings through the electrostatic 
mutual attraction of oppositely charged polyelectrolytes. This approach allows for precise control over the coating 
thickness and composition, making it an attractive option for various applications, including drug delivery, tissue 
engineering, and surface modification.132,133 Yin et al successfully modified the surface of high-density polyethylene 
(HDPE) using three different functional biomaterials through LBL modification.125 They used PDA as an adhesive 
material to modify the surface of 3D-printed HDPE scaffold as the base layer, providing a platform for further LBL 
modification with bioactive factors. ε-Polylysine (EPL), a small antibacterial cationic peptide with a large positive 
charge, and fibrin, essential for vascular and endothelial tissue regeneration with a small negative charge, were used as 
the subsequent layers.134–137 EPL was able to react with the amino groups of the PDA layer to form the EPL layer, and 
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the EPL and fibrin LBL coating was successfully generated through the interaction resulting from the electrostatic 
absorption principle.138 For LBL modification on titanium implants, Zhao et al found that using PDA as the base layer 
resulted in an interconnected network of type I collagen (COL1) on the surface, with a higher COL1 content and 
satisfactory layer stability compared to the group without the PDA basement.139

Sandwich-Like Structure
Wu et al utilized a sandwich structure consisting of PDA and carboxymethyl chitosan (CCS) layers to achieve long-term 
stable delivery of bone morphogenetic protein BML-284 (BML).126 The PDA layer serves as a platform for immobilizing 
BML via Schiff base formation and physical adsorption, as well as electrostatic and chemical interactions between the 
PDA and the –NH2 of BML. The CCS layer contains carboxymethyl groups that are negatively charged and can interact 
electrostatically with positively charged drugs such as BML.140 This allows the BML to be released from the hybrid films 
in a controlled manner, with its release further restricted within the scaffold for sustained delivery through the combined 
electrostatic and chemical interactions between BML and CCS. This approach has great potential for achieving long-term 
stable delivery of various bioactive factors in tissue regeneration applications.

Core-Shell Sturcture
Polypyrrole (PPy) is a typical conductive polymer. Recently, the incorporation of PPy-PDA NPs has been shown to 
enhance the PTT conversion capacity of scaffolds, leading to improved sterilization efficacy.141 Electrospun poly 
(l-lactide) (PLLA) nanofibers have been widely used in various tissues regeneration but limited by its poor 
hydrophilicity.142–145 Therefore, Xiong et al made a core-shell structure to fix the PLLA shortcoming and add PPy 
functions.128 PDA modification of PLLA fibers, when polymerized in situ, can act as an effective binder between PPy 
and PLLA, while also synergistically enhancing the hydrophilicity, biocompatibility, and endogenous conductivity of 
composite materials.

Self-Healing and Shape-Memory PDA Biomaterials
The self-repairing ability of hydrogels can help maintain the material’s integrity at the wound site, which is crucial in 
preventing foreign material from entering the wound and causing infection.146 Moreover, self-healing hydrogels can 
adapt to the wound’s shape and provide a scaffold for new tissue growth.147 The self-healing property of hydrogels is 
accomplished by reassociating catechol groups via dynamic Schiff bonds, π-π stacking, and hydrogen bonding interac-
tions between polymer chains.148 PDA is enriched with diverse functional groups, including benzene rings, catechol, and 
amine groups, enabling it to establish a wide range of interactions with the polymer matrix. These interactions comprise 
both covalent and noncovalent bonding, such as hydrogen bonds, coordination, and π–π stacking.149 Certainly, the 
incorporation of PDA into hydrogels or polyurethane offers a valuable means of enhancing their mechanical properties. 
This is attributed to the intermolecular interactions facilitated by PDA, which aid in effective energy dissipation during 
tensile deformation. As a result, the materials exhibit improved toughness and resistance to mechanical stress. This 
property renders PDA a promising component for various engineering and biomedical applications, where superior 
mechanical performance is essential.150,151

Rao et al successfully combined PDA and CCS to develop a self-healing wound hydrogel.148 The presence of amino 
groups in CCS chains enables them to react with the aldehyde functional groups of other polymers, forming dynamic 
Schiff base bonds that contribute to the material’s self-healing ability.152 The self-healing ability of 0.4 wt% of DA-CCS 
hydrogels was achieved at room temperature within 2 hours, where the hydrogel was cut into two halves and rejoined 
automatically within this time frame.

In another study, Dai et al designed a novel shape memory polyurethane based on PDA and polycaprolactone (PCL) 
prepolymer, which was responsive to NIR light (Figure 6A and B).153 PCL is a widely used synthetic polymer in 
biomedical applications due to its low melting temperature (around 50 °C) and excellent biocompatibility.154 The 
phenolic hydroxyl groups in PDA NPs participated in the chain extension reaction with the isocyanate bonds of PCL 
to obtain higher dispersibility, which prevented any reduction in mechanical properties or conversion efficiency.155 The 
PCL-PDA polyurethanes were softened at 46 °C and shaped into a specific form, which was then fixed in an ice water 
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bath (Figure 6A). Upon exposure to a 46 °C water bath, the material was able to recover its original shape. This novel 
shape memory polyurethane could be controlled using NIR light to transfer heat and regulate temperature to control 
shape (Figure 6B).

PDA Absorbs Some of the Inflammatory Factors at the Site of Injury
PDA as Cell Free DNA Scavenger in Rheumatoid Arthritis
Rheumatoid arthritis (RA) is an autoimmune disease that differs from other bone injuries such as bone fractures, bone defects, 
and bone tumors. Accumulating evidence suggests that cell-free DNA is a major factor in the development of RA,156,157 making 
the scavenging of cell-free DNA a promising approach for treating this disease. However, the use of cationic nanoparticles for 
this purpose has been limited by their high cytotoxicity.158 PDA has been shown to be an effective gene binding nanocarrier with 
low toxicity.159 Chen et al have developed an injectable PDA-based nanoparticle system for scavenging cell-free DNA in joints 
(Figure 7A). The abundant catechol and imine groups of the NPs were first activated by 1,1’-carbonyldiimidazole and then 
modified with dimethylamino groups (DP-M or DP-B) with varying charge density, by reacting with amino groups of 
3-dimethylamino-1-propylamine (M) or 3,3-iminobis(N,N-dimethylaminopropyl) (B), to bind negatively charged cell-free 

Figure 6 (A) PCL–PDA 1 was wound on a round rod at 60 °C and then submerged in an ice water bath for 5 min to obtain a spiral shape. At last, the sample was placed in 
a 60 °C water bath, and it recovered its permanent shape.153 (B) Digital photos of NIR light-triggered shape memory behavior of PCL–PDA 1 polyurethane in vitro and 
in vivo.153 Reproduced with permission from Dai S, Yue S, Ning Z, Jiang N, Gan Z. Polydopamine Nanoparticle-Reinforced Near-Infrared Light-Triggered Shape Memory 
Polycaprolactone-Polydopamine Polyurethane for Biomedical Implant Applications. ACS Appl Mater Interfaces. 2022;14(12):14668–14676.153 Copyright © 2022 American 
Chemical Society.
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DNA. Cytotoxicity tests showed that the PDA NPs exhibited almost no cytotoxicity, and at concentrations below 100 μg/mL, 
they showed protective effects against LPS-induced cells by preventing inflammation. The concentration of cell-free DNA in the 
serum of healthy individuals was found to be only 9 μg/mL, whereas it increased sharply to 52 μg/mL in the RA model group. 
However, after treatment with PDA NPs, the concentration of cell-free DNA remained high (33 μg/mL), but it was almost close 
to normal levels in the RA+DP-B group (13 μg/mL).160 This suggests that PDA-based NPs can scavenge cell-free DNA and thus 
have potential as a therapeutic modality for RA.

PDA as ROS Scavenger
Uncontrolled inflammatory responses triggered by pathogens can lead to excessive production of ROS, which in turn can 
result in chronic or non-healing wounds. Thankfully, antioxidants can effectively inhibit alveolar bone resorption by 
attenuating the excessive production of ROS.162,163 Traditional natural enzymes often function as ROS scavengers, but 
their poor stability and potential high-dose toxicity pose significant obstacles in preventing ROS-related diseases. As an 
alternative, PDA has emerged as a promising antioxidant for various therapeutic applications, such as periodontal 

Figure 7 (A) Schematic illustration of in vivo RA therapy effect of dimethylamino group (3- dimethylamino- 1- propylamine (M) or 3, 3- iminobis (N, N- dimethylamino-
propyl) (B)) modified polydopamine (DPs). The DPs were intra articular (IA) injected into the knee joint of CIA rat and strongly bound with cfDNA to lower the expression 
of inflammatory factors: MMP-13, TNF-α, IL-6 and IL-1β for RA therapy. Reproduced from Chen Y, Wang Y, Jiang X, et al. Dimethylamino group modified polydopamine 
nanoparticles with positive charges to scavenge cell-free DNA for rheumatoid arthritis therapy. Bioact Mater. 2022;18:409–420. 160 Copyright © 2022 KeAi, open access. (B) 
Schematic illustration of PDA@MF NPs treatment for ROS-related kidney diseases.161 (C) Bio-distribution of PDA NPs and PDA@MF NPs was examined via in vivo imaging 
instruments.161 (D) H&E analysis of kidneys in different groups.161 Adapted from Zheng B, Deng G, Zheng J, et al. Self-polymerized polydopamine-based nanoparticles for 
acute kidney injury treatment through inhibiting oxidative damages and inflammatory. Int J Biochem Cell Biol. 2022;143:106141. 161 Copyright © 2022, with permission from 
Elsevier.
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disease, skin lesions, and ischemic stroke. Its use addresses the limitations associated with traditional enzymes, making it 
a potential solution for ROS-related conditions.19,164,165

Li et al design a high efficiency ROS eliminate system.166 The elimination of ROS is accomplished by the catechol 
groups present in PDA, which are converted to quinone groups. Additionally, PDA-reduced GO facilitates electron 
transfer to the quinone groups, leading to the reduction of quinone groups back to catechol groups. This process enables 
PDA to continuously remove ROS generated by wound tissue.

Pharmacological inhibitors or siRNA targeting mTOR have been demonstrated to effectively reduce ROS formation and 
mitigate proinflammatory processes.167 Shi et al loaded rapamycin (Rapa) which is an inhibitor of mTOR and PDA into PDA 
to construct mPDA@Rapa for the treatment of Spinal cord injury (SCI).168 Both the mPDA group and mPDA@Rapa group 
exhibited significantly reduced ROS levels, which can be attributed to the ROS scavenging ability of mPDA. Additionally, in 
the Rapa and mPDA@Rapa treated groups, the expression of mTOR protein decreased. Consequently, the ROS level in the 
Rapa group also showed a slight reduction due to the inhibition of mTOR by Rapa. Therefore, PDA not only possesses strong 
ROS scavenging ability by itself, but also can be combined with other drugs to obtain stronger anti-ROS effect.

PDA Related Biomaterial for Internal Organ Repairment
Acute kidney injury (AKI) is a sudden episode of kidney failure or kidney damage, which triggers a series of biological events 
including excessive production of ROS and hypoxia.161 To address this, Zheng et al developed PDA NPs for scavenging 
excessive ROS and producing oxygen in AKI (Figure 7B). They used biocompatible manganese ferrite (MF) NPs as treatment 
agents to continuously generate oxygen in the inflammatory area. Although it is challenging to apply biomaterials to internal 
organs, PDA-related biomaterials have shown great ROS scavenging properties in acute peritonitis and acute lung injury, 
suggesting their potential for use in other internal organs (Figure 7C). The MF NPs were verified to be 5 nm in size and were 
dispersed into DA hydrochloride solution to construct PDA-encapsulated MF nanocomposites (PDA@MF). The PDA@MF 
NPs were monodispersed and had an average diameter of 140 nm. The researchers evaluated the kidney function of an AKI 
mouse model after PDA@MF NPs treatment and found that both plasma creatinine and blood urea nitrogen levels were 
significantly decreased compared with the control group. The pathological situation was greatly alleviated with the addition of 
PDA@MF NPs, suggesting PDA@MF NPs contributed to the maintaining of renal tissue integrity (Figure 7D). Additionally, 
PDA@MF NPs were mainly accumulated in the lung, liver, and kidney but negligible in other organs (such as the heart and 
spleen), suggesting the potential of PDA in the treatment of lung and liver diseases as well.161 These results show that PDA 
also has the potential to play roles in lung and liver diseases.

Conclusion and Prospect
In conclusion, PDA is a versatile material with a wide range of functions and immense potential in wound and tissue 
regeneration. Its diverse properties and abilities offer promising avenues for designing more sophisticated and intelligent 
tissue repair materials.

Powerful Bonding and Adhesion Allow for a Wide Range of PDA Applications
In recent years, PDA has been frequently utilized as an auxiliary material to complement the properties of the primary 
materials in tissue repair designs. Its strong bonding capabilities enable seamless integration with various types of 
materials without compromising their individual performance. PDA’s exceptional binding and adhesion properties make 
it a versatile component, facilitating its combination with a diverse range of materials in various tissue repair applica-
tions. Despite the array of materials available for tissue repair, PDA stands out for its ability to modify these materials 
and fulfill its role by simply integrating with them.

First and foremost, PDA can serve as a surface modifier for other non-biologically active materials, such as PEEK 
and metal. Through PDA modification, the surfaces of these materials can be improved, enhancing their surface 
properties.169,170 Secondly, the incorporation of PDA also opens up opportunities to develop drug release systems. By 
utilizing PDA as a carrier or modifier, controlled drug release can be achieved, enhancing the therapeutic efficacy of 
wound repair materials. Thirdly, the versatility of PDA allows it to be combined with various materials, enabling the 
creation of multi-layered structures and the design of more intricate wound repair materials. Fourthly, materials combined 
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with PDA demonstrate robust self-healing capabilities, making them better suited to withstand the challenges of complex 
wound environments. Incorporating PDA in the design of new materials holds the promise of harnessing its beneficial 
properties for tissue repair applications.

PDA Can Be Used for the Design of Drug-Controlled Release Systems
Silver ions are a powerful antimicrobial material, but they also have some cytotoxicity. Controlling their release is 
currently the key to balancing the antimicrobial activity and toxicity of silver-based materials. The combination of 
materials such as PDA and MXene can provide more design ideas for controlling silver ion release systems.171 The 
strategy of combining PDA and metal ion materials is also applied to the disinfection of water bodies.172,173 The 
design ideas of materials in different fields may bring new inspiration to the design of wound antimicrobial 
materials.

The PTT capability of PDA enables the design of light-controlled drug release materials. By converting near-infrared 
(NIR) light energy into heat energy, PDA enhances drug release capacity and provides control over the drug release 
process. Moreover, PDA can be combined with temperature-responsive materials, like hot-melt materials, which melt at 
elevated temperatures, facilitating drug release concurrently. Additionally, PDA’s pH responsiveness enables it to control 
drug release in response to changes in pH levels. These versatile strategies offer promising avenues for designing 
intelligent and precise drug release systems for tissue repair applications.

PDA Can Be Used for in vivo Organ Repair
The application of drugs to open injuries in organs is relatively straightforward, but using repair materials on visceral 
tissues has posed challenges. PDA, with its potential for intravenous administration, can accumulate in organs such as the 
lung, liver, and kidney. Thus, PDA holds promise for addressing tissue damage in these organs. Additionally, local 
injection of PDA shows potential for treating neurological disorders like SCI. However, the safety of PDA for repairing 
visceral organ damage needs further validation. Questions regarding the degradation of PDA, potential embolism 
formation, and the possibility of new complications arising from its presence in the body remain to be addressed through 
comprehensive studies.

Prospect
It has been few decades that mussel-inspired materials come into scientists’ sight. While a few mussel-inspired materials, 
like mussel adhesive protein, have found their way into daily skin care and superficial clinical applications, their 
widespread adoption is hindered by production limitations and material complexity. Extracting MAP from natural 
sources or producing it through biological fermentation yields relatively low quantities, making it impractical for large- 
scale applications. Additionally, the intricate nature of mussel-inspired biomaterials for tissue repair and regeneration 
poses challenges for manufacturing and real-world clinical use. PDA, on the other hand, emerges as a promising 
alternative due to its ease of production and low cost. Its potential extends beyond that of natural mussel-inspired 
materials, making it a viable replacement in certain areas. Scientific research often explores the realm of possibilities, 
while medical products must prioritize practicality, production feasibility, and extensive clinical trials. With hundreds of 
published studies on PDA, there is ample reason to believe that with sufficient time and investment, PDA could 
revolutionize clinical treatments for a wide range of patients.
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Carboxymethyl chitosan; BML, BML-284; PPy, Polypyrrole; PLLA, Poly(l-lactide); PCL, Polycaprolactone; RA, 
Rheumatoid arthritis; Rapa, Rapamycin; SCI, Spinal cord injury; AKI, Acute kidney injury; MF, Manganese ferrite.
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