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Abstract: Hypertrophic scars and keloids are common fibroproliferative diseases following injury. Patients with pathologic scars 
suffer from impaired quality of life and psychological health due to appearance disfiguration, itch, pain, and movement disorders. 
Recently, the advancement of hydrogels in biomedical fields has brought a variety of novel materials, methods and therapeutic targets 
for treating hypertrophic scars and keloids, which exhibit broad prospects. This review has summarized current research on hydrogels 
and loaded components used in preventing and treating hypertrophic scars and keloids. These hydrogels attenuate keloid and 
hypertrophic scar formation and progression by loading organic chemicals, drugs, or bioactive molecules (such as growth factors, 
genes, proteins/peptides, and stem cells/exosomes). Among them, smart hydrogels (a very promising method for loading many types 
of bioactive components) are currently favoured by researchers. In addition, combining hydrogels and current therapy (such as laser or 
radiation therapy, etc.) could improve the treatment of hypertrophic scars and keloids. Then, the difficulties and limitations of the 
current research and possible suggestions for improvement are listed. Moreover, we also propose novel strategies for facilitating the 
construction of target multifunctional hydrogels in the future.
Keywords: hydrogel, wound healing, hypertrophic scar, keloid

Introduction
Brief introduction of Keloid and Hypertrophic Scar
Hypertrophic scars and keloids are both benign fibrous growth diseases usually caused by skin injury. Hypertrophic scars 
are soft, with normal skin color, do not extend beyond the boundary of the injury, may regress over time, and 
histologically display well-organized type III collagen bundles. Keloids are clinically manifested as hard-raised and 
pigmented scars that grow beyond the original wound area, have high recurrence rates and histologically display 
disorganized, large thick, collagen type I and III bundles.1 Giant hypertrophic scars and keloids can cause disfiguration 
and movement disorders, accompanied by functional symptoms of pruritus and pain, which severely damage their quality 
of life and psychological health.2

In addition to injury, ethnicity, age, skin tension, and genetic inheritance were also closely associated with the 
occurrence and progression of keloids.3 Hispanic and African populations are more prone to keloids, with an estimated 
incidence of 5–16%, than white populations.4 Keloids in young individuals tend to progress faster than those in old 
individuals.3 The most vulnerable sites are the shoulders, backs, chests, and earlobes with high tension.5–7 Current 
treatments for hypertrophic scars and keloids include surgical excision, glucocorticoid injection, radiation therapy, and 
mesenchymal stem cells.8 Meta-analysis revealed that surgery combined with radiotherapy had a lower recurrence rate 
than radiotherapy (22% vs 37%) in keloids.9 However, there is no optimal treatment that can completely prevent the 
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formation, progression, and recurrence of pathologic scars; thus, more efforts need to be dedicated to developing novel 
therapeutic agents for hypertrophic scars and keloids.

Pathological Scar Formation in the Wound Healing Process
Pathologic scarring is caused by abnormal wound healing (Figure 1). To improve the treatment of hypertrophic scars and 
keloids, we must understand the wound healing process. Wound healing is now considered a complicated process 
consisting of four interrelated stages: hemostasis. Inflammatory, proliferative, and remodelling, involving a variety of 
cells secreting different cytokines and other biomolecules.10,11

Wound Healing Phases
Hemostasis usually lasts 2–3 hours, forming fibrin plugs and triggering the release of inflammatory mediators by 
platelets. Immune cells such as neutrophils and macrophages are recruited by cytokines, initiating the inflammatory 
phase.12 The inflammatory stage initiates immediately after skin injury and typically lasts from hours to two or three 
days, forming platelet plugs and the extracellular matrix to prevent blood loss, close the wound, and guide cell 
migration.13 The proliferation stage may last several weeks and is marked by angiogenesis, new extracellular matrix 
(ECM) formation, and epithelization. Endothelial cell proliferation and migration promote angiogenesis and the con-
struction of new vessels and capillaries to deliver oxygen and nutrients essential for other cells.13 Fibroblasts activated by 
transforming growth factor β facilitate the construction of new ECM and immune cells, such as macrophages, and the 
degradation of the old matrix by secreting proteases, such as matrix metalloproteinases (MMPs).14 In addition, 
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epithelialization is initiated by the migration of keratinocytes from the edge.15 The final phase, remodelling, can last for 
months to years and mainly leads to hypertrophic and keloid scar formation. A variety of proteases and their inhibitors 
participate in the remodelling phase. Type III collagen is converted to type I collagen to increase matrix density and 
stability.16 Excessive fibroblast proliferation and differentiation into myofibroblasts, as well as the imbalance between 
ECM disposition and degradation, is mainly responsible for pathologic scar formation.

Mechanical Forces Contributes to Abnormal Scar Formation
Notably, increasing evidence suggests that mechanical forces play a key role in abnormal scar formation. As stated 
above, keloids are prone to occur at sites with high skin tension. High skin tension can elongate or expand the ECM and 
cells, increasing ECM accumulation, the cell cytoskeleton, and membrane forces, leading to an increase in whole tissue 
stiffness.17,18 In the inflammatory phase, mechanical forces can promote macrophage proliferation and M1 macrophage 
polarization, aggravating the inflammatory response.19,20 In the proliferative phase, mechanical forces can facilitate the 
abnormal growth of fibroblasts and their transformation to myoblasts via mechanical transduction pathways, such as 
FAK/ERK and YAP/TAZ, which produce excessive ECM and contribute to the formation of hypertrophic scars and 
keloids.21,22 In the remodelling phase, excessive ECM accumulation leads to increased ECM stiffness, inhibiting the 
apoptosis of myoblasts, which continuously generate new ECM.19,23,24

Keloid and Hypertrophic Scar Pathogenesis
Hypertrophic scars and keloids possess common pathological processes to varying degrees, involving proliferation, 
apoptosis inhibition, ECM deposition, angiogenesis, inflammatory response, metabolic reprogramming, epithelial- 
mesenchymal transition (EMT), and stem cells (Figure 2).

Figure 1 Four stages of wound healing. 
Note: (A) Hemostais stage, (B) inflammatory stage, (C) proliferation stage, (D) remodelling stage.
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Proliferation and Apoptosis Inhibition
Excessive fibroblast proliferation and apoptosis inhibition are crucial to keloid and hypertrophic scar formation and 
progression. Continuous activation of the TGFβ/SMAD pathway promotes fibroblast proliferation, which is necessary for 
collagen synthesis in hypertrophic scars and keloids. β-Catenin, Wnt5A, and Wnt10A might contribute to fibroblast 
growth by regulating the Wnt/β-catenin signaling pathway.25–27 High levels of cMYC and Bcl-2 (anti-apoptotic proteins), 
transcription factors c-Jun and c-Fos, which facilitate continuous fibroblast growth signals, and decreased levels of TP53 
(anti-apoptotic protein) were observed in keloids.28–30

Deposition of ECM
Histologically, Hypertrophic scars exhibit well-organized type III collagen bundles, while Keloids manifest disorganized, large 
thick, collagen type I and III bundles. Excessive collagen deposition, or fibrosis, was observed in hypertrophic scars and keloids. 
Cytokines (TGF-β1, IL-6, and IL-8) can facilitate the production of collagen, fibronectin, and fibrotic proteins (SPARC and 
tenascin) in hypertrophic scar fibroblasts.31 Meanwhile, it was reported that TGF-β1 induces collagen type I, type III, and 
fibronectin accumulation in keloids.32 In addition, matrix metalloproteinases (MMPs) play a complex role in abnormal scar 
formation and progression. On the one hand, MMP was activated by IWR-1, an inhibitor of the Wnt/β-catenin pathway, to 
attenuate the production of collagen in keloids and normal fibroblasts.33 On the other hand, the level of MMP-2 was elevated in 
collagen bundle regions, which might collagen bundle remodelling and invasion of keloid fibroblasts by degrading ECM.34

Angiogenesis
As stated above, in the proliferative phase, angiogenesis could deliver oxygen and nutrients essential for other cells. It was 
suggested that hypertrophic scar myoblasts contribute to the construction of microvessels, resulting in excessive vascularization of 
hypertrophic scars. Hypertrophic scar myoblasts can release microvesicles to facilitate endothelial cell proliferation, migration, 
and assembly, leading to excessive vascularization of hypertrophic scars.35 Angiogenesis factors and their receptors vascular 
endothelial growth factor (VEGF) and VEGF/KDR complex, and platelet-derived growth factor (PDGF) and its receptor-PDGFR 

Figure 2 Pathogenesis of hypertrophic scars and keloids.
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-α were all expressed in keloid-derived fibroblasts, phagocytes, endothelial cells, adventitial cells, epidermal cells, sustaining the 
vascularization for nutrient delivery and metabolism by enhancing the growth, migration and assembly of endothelial cells.36

Metabolic Reprogramming
Sparse, occluded, and flattened microvessels suggested a hypoxic microenvironment in the keloid centers. The hypoxic zone 
exhibited an elevated level of hypoxia-inducible factor 1 α (HIF-1α).37 Similar to tumors, keloids display metabolic reprogram-
ming, including enhanced anaerobic glycolysis and weakened oxidative phosphorylation under hypoxia. Compared with normal 
skin, lactic acid levels were higher in keloids. HIF-1α may regulate glucose metabolic reprogramming via the PI3K/AKT 
pathway.38 Enhanced anaerobic glycolysis facilitates tumor progression by providing energy and materials for macromolecule 
synthesis. Likewise, under hypoxia, the proliferation of keloid fibroblasts increases, while the apoptosis of cells decreases.38,39

EMT
EMT is a biological process in which epithelial cells adjust to the mesenchymal phenotype with enhanced invasiveness.40,41 

EMT plays a key role in the progression of hypertrophic scars and keloids. Mesenchymal markers such as vimentin and 
N-cadherin are significantly increased in hypertrophic scar tissue.42 Hypertrophic scar fibroblast-derived exosomes upregu-
lated the EMT markers of keratinocytes.43 Moreover, increased WNT5A promotes interleukin-6-dependent EMT in keloid 
keratinocytes by regulating the JAK/STAT pathway.44 It was reported that pirfenidone, an antifibrotic drug, could reduce the 
EMT-like phenotype in keloid keratinocytes.45 Hypoxia also contributes to EMT alteration in keratinocytes. Keloid kerati-
nocytes acquire an EMT phenotype and exhibit elevated invasiveness under hypoxia.46

Stem Cell
Keloid fibroblasts display high self-renewal capability and drug resistance and maintain themselves by asymmetric 
division, producing new cells to replace cells killed by medicines, laser or radiation therapy, resulting in expansion 
outwards from the boundary of keloids and recurrence.47,48 Haematopoietic and mesenchymal-like stem cells were 
identified in keloid lesions.47,48 Meanwhile, embryonic stem cell markers (OCT4, SOX2, pSTAT3, and NANOG) were 
positive in keloid-associated lymphoid tissue,49 while Axin2 was overexpressed in patients with pathologic scars.50 In 
addition, hypertrophic scar fibroblasts highly express mesenchymal stem cell markers (CD73, CD105, CD44, CD90, and 
OCT4), which might contribute to the multilineage differentiation potential of hypertrophic scars.51 These findings 
suggested the existence of stem cells in hypertrophic scars and keloids.

Hydrogel
Brief History
Hydrogels are hydrophilic polymers that chemically or physically crosslink together to form a three-dimensional (3D) 
network. It can absorb water without dissolving and swell while maintaining a 3D structure. The concept of proto- 
hydrogels was first proposed in 1894,52 and the properties of biocompatibility and high water affinity were defined in 
1960.53 Near-exponential growth of hydrogel research started in the 1990s due to the versatility of hydrogels. It was 
suggested that hydrogels develop through three stages: the first stage, a simple polymer with physical properties; 
the second stage, a more complicated material responsive to stimuli such as temperature and pH; and the third stage, 
a smart hydrogel with a variety of variable properties and applications such as small interfering RNA (siRNA) delivery.54

Classification
Hydrogels can be classified according to their source, polymerization method, crosslinking method, electrophoretic mobility, 
degradability, and responsiveness (Figure 3).55 According to the source, hydrogels are classified into natural hydrogels, generally 
consisting of polysaccharide chains, such as hyaluronic acid, sodium alginate, and collagen; synthetic hydrogels composed of 
polymers, such as polyethylene glycol (PEG), poly-acrylamide (PAM) and polyvinyl pyrrolidone (PVP); and hybrid hydrogels, 
consisting of both natural and synthetic polymers.56–59 As for the polymerization method, hydrogels can be made up of 
homopolymers, copolymers, semi-interpenetrating networks (semi-IPNs), or IPNs (Figure 4).60 When it comes to the crosslinking 
method, hydrogels are divided into physical hydrogels and chemical hydrogels. Physical hydrogels are transient, and polymers 
interact with hydrogen bonds and van der Waals forces, while chemical hydrogels are permanent, and polymers crosslink with 
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chemical bonds. Four categories of hydrogels exist based on electrophoretic mobility: nonionic hydrogels and ionic hydrogels, 
including cationic, anionic, and amphiphilic hydrogels. Degradable and nondegradable hydrogels were classified according to 
degradability: unresponsive hydrogels and responsive hydrogels, such as thermosensitive and pressure-sensitive hydrogels, in 
regard to responsiveness to stimuli.61 This review mainly focuses on the classification of hydrogels based on their source (Table 1).

Natural Hydrogels
As natural components of the ECM, natural hydrogels display the best biocompatibility. Matrigel™ is a basement membrane 
derived from Engelbrecht–Holm–Swarm mouse sarcoma cells, which are composed of hyaluronic acid, laminin, fibrin and 
collagen and are rich in growth factors and MMPs.62 Alginate is a polysaccharide extracted from brown algae or bacteria that is 
widely used in food, medicine, and engineering fields due to its stability, safety, adhesiveness, and liquid-absorbing quality.63 

Chitosan is the only canonic polysaccharide;64 hyaluronic acid is also a natural polysaccharide. Hyaluronic acid-based hydrogels 
are widely applied in wound healing and tumor inhibition through their ability to be adjusted by chemical modification, physical 
blending, and nanocomposites.65 Besides, gelatin is extracted from the hydrolysis of animal-origin collagen and gelatin-based 
hydrogels were also extensively used in biomedical fields.66 However, natural hydrogels have relatively poor mechanical 
properties and a high degree of swelling, limiting their use in different areas. Meanwhile, it is difficult to control the differences 
between batches when extracting these natural products. In addition, the tumour-derived natural restricts the clinical application of 
natural hydrogels.75 For instance, Matrigel TM could facilitate tumor progression by promoting cell migration and invasion.76

Synthetic Hydrogels
Synthetic hydrogels are composed of engineered polymers, which are polymerized by a monomer, such as PEG, 
polyethylene oxide (PEO), and PAM.67–69 Synthetic hydrogels are reproducible, possess tunable chemical or mechanical 

Figure 3 Classification of hydrogels based on different methods.
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properties and can be standard controlled between different batches.77 For instance, PEG hydrogels are stable, highly 
stretchable, self-healing and injectable, exhibiting anti-infection properties.67 Besides, synthetic PVP hydrogels were 
widely used in drug delivery of cancer.70 Polyvinyl alcohol (PVA) hydrogels display excellent mechanical properties, 
dictating its applications in medical fields, and can be blended with PVP to improve their properties.71,78 Synthetic 
hydrogels are not as biocompatible as natural hydrogels due to their sources, but their biodegradability and biocompat-
ibility can be improved by modifying functional group or incorporating with natural polymers.60

Figure 4 Simple diagram of homopolymer hydrogels, copolymer hydrogels, semi-IPNs, and IPNs. 
Note: Reproduced from Ho T-C, Chang C-C, Chan H-P, et al. Hydrogels: Properties and Applications in Biomedicine. Molecules. 2022;27(9):2902, https://creativecommons. 
org/licenses/by/4.0/.60

Table 1 Classification of Hydrogels According to Source

Source Example Advantage Disadvantage

Natural Matrigel62 

Alginate63 

Chitosan64 

Hyaluronic acid65 Gelatin66

Most biocompatible 
Most bioactive

Poor mechanical properties 
High degree of swelling 

Batch difference 

Tumor-related risk (tumor-origin hydrogel)
Synthetic PEG67 

PEO68 

PAM69 

PVP70 

PVA71

Tuneable 

Reproducible

Least biocompatible

Hybrid GelMA72 

PEG-fibrin73 

PEG-collagen74

Multi-tuneable 
Biocompatible 

Bioactive

Complicated 
Expensive
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Hybrid Hydrogels
Hybrid hydrogels are chemically modified natural polymers or a combination of natural and synthetic materials to gain 
the advantages of these two types.79 A widely used hybrid hydrogel is methacryloyl-modified gelatin (GelMA), which is 
a chemically modified natural material,72 while PEG crosslinked fibrinogen, or collagen, is a combination of natural and 
synthetic matrices.73,74 Hybrid hydrogels can not only possess the multi-tuneable mechanical properties of synthetic 
hydrogels by adjusting chemical parameters but also preserve the biocompatibility and bioactivity of natural hydrogels.80

Properties
Hydrogel is extensively applied in biomedical files, such as tissue engineering scaffolds, bone generation, wound 
dressing, and drug delivery, due to its multifunctional properties. The properties of hydrogels mainly include swelling, 
self-healing, injectable and degradable capability, adhesiveness and responsiveness.81 In this review, we mainly focus on 
the injectability, self-healing, adhesiveness, and responsiveness of hydrogels (Figure 5).

Injection and Self-Healing Capability
Injectable hydrogels could flow through a medical needle and aggregate into a whole bulk hydrogel at the targeted site. Injectable 
hydrogels are composed of precursor and self-healable hydrogels. Precursor hydrogels are referred to as hydrogels, which 
gelatinize under physical or chemical conditions such as light, temperature or pH.82,83 Self-healing hydrogels could automatically 
reconnect their network via chemical or physical bonds after being broken.84 Notably, injectable hydrogels are characterized by 
high flowability, given the dynamic variation of cross-linking bonds and motion of polymer chains.85 Therefore, hydrogels can be 
easily injected and then recover to their original structure or mechanical properties at the targeted area.

Figure 5 Properties of hydrogels: injectable, self-healing, adhesiveness and responsiveness.

https://doi.org/10.2147/IJN.S448667                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2024:19 890

Zhong et al                                                                                                                                                           Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Adhesiveness to Tissue
Recently, increasing research has focused on developing different types of adhesive mechanisms of hydrogels, such as 
mussel-inspired hydrogels, Schiff base-bond hydrogels and bioactive proteins.86 The adhesiveness of mussel-inspired 
hydrogels lies in the pyrocatechol of mussel foot proteins, which form chemical interactions with and cross links with 
different matrices.87 The amino group of surfaces of tissue could bind with the aldehyde group of hydrogels, which is 
called the Schiff-base bond, contributing to the tissue adhesiveness of hydrogels.88 Bioactive proteins such as silk fibroin 
and elastin can form hydrogen bonds or electrostatic interactions, leading to adhesion to cells and tissues.89,90 Moreover, 
adhesive hydrogels applied in wound healing could reduce the boundary tension.91 These studies revealed that adhesive 
hydrogels show great potential in wound closure following different types of injury.

Responsiveness
Responsive hydrogels, also referred to as smart hydrogels, can respond to physical stimuli, such as light, electricity, temperature, 
and pressure, or chemical stimuli, such as pH and reactive oxygen species (ROS). Responsive hydrogels could undergo changes in 
phase, volume, or other physicochemical characteristics under different stimuli. Compared with traditional hydrogels, smart 
hydrogels display multifunctional variables and tunable characteristics and are thus more widely used in biomedical fields, 
especially in wound healing.81 It was reported that a pH/ROS dual-responsive injectable hydrogel displayed antibacterial and 
antioxidant effects in the wound healing process.92 Li et al designed a pressure-sensitive antibacterial hydrogel to monitor wound 
pressure and facilitate skin healing in bedridden patients.93 More importantly, skin tension is closely associated with the formation, 
progression, and recurrence of pathologic scars;17 thus, smart hydrogels, which also display promising potential in reducing skin 
tension in wound healing,94 might be novel therapies for preventing hypertrophic scar and keloid occurrence and recurrence.

Loaded Components of Hydrogels
Given their three-dimensional and porous structure, hydrogels can carry drugs, biomolecules such as exosomes, 
cytokines, and proteins, or nanomaterials. More importantly, sustained and prolonged release of drugs and biomolecules 
can be achieved by slow diffusion and degradation of hydrogels or by their responses to stimuli, such as temperature or 
pressure. This review focuses on five categories of loaded components in composite hydrogel dressings for therapeutic 
use in hypertrophic scars and keloids: organic chemicals, mesenchymal stem cells and their conditioned medium, drugs, 
nucleic acids, and proteins (Table 2). More importantly, this review also proposes a variety of components that have not 
been explored but possess promising therapeutic potential to be delivered by hydrogels.

Table 2 Loaded Components of Hydrogels in Hypertrophic Scars and Keloids

Classification Components Hydrogel Source Disease

Polysaccharides/Organic chemicals Genipin 
Dextran 
Polysaccharides 
Collagen-glycosaminoglycan

Polyurethane 
Carboxymethyl chitosan 
Gelatin 
PAM 
PVA

Hypertrophic scar95 

Hypertrophic scar96 

Keloid97 

Hypertrophic scar98 

Hypertrophic scar99

Drug 5-fluorouracil, dexamethasone 
Gallic acid, quercetin 
Betamethasone 
Imiquimod 
Caffeine 
Salicylic acid 
Triptolide/liposome 
Menthol and methyl salicylate 
Hydrophobic/hydrophilic drug

Thermosensitive hydroxybutyl chitosan 
Gelatin 
GelMA/PEGDA 
(2-(2-methoxyethoxy) ethyl Methacrylate) 
Hyaluronic acid/PEG 
Avogel 
Thermosensitive RGD-modified PEG 
Guar-gum 
Silk fibre

Keloid100 

Keloid101 

Hypertrophic scar102 

Keloid103 

Hypertrophic scar104 

Hypertrophic scar105 

Keloid106 

Hypertrophic scar l107 

Hypertrophic scar108

Stem cell BMSC 
ADSC 
ADSC-conditioned medium 
Xeno-fibroblasts

RGD-modified hydroxybutyl chitosan 
Hyaluronic acid 
Polysaccharide 
Collagen-glycosaminoglycan

Keloid109 

Hypertrophic scar110 

Hypertrophic scar111 

Hypertrophic scar99

Nucleic acid 
Protein

SiRNA-TGFβ1-337 
Papain 
Silk fibroin

PVP/PVA 
Glutamic acid/chitosan 
PEG

Hypertrophic scar112 

Hypertrophic scar113 

Hypertrophic scar114

Nanomaterials Silver 
Silver

Alginate 
Silicone

Hypertrophic scar115 

Hypertrophic scar116
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Polysaccharides/Organic Chemicals
Hydrogels are 3D hydrophilic polymer networks. The polymer, which directly composes the hydrogel, exhibits therapeutic effects 
through its inherent properties. Below, we discuss polymers alone that inhibit hypertrophic scar and keloid formation, progression, 
and recurrence. It was reported that biocompatible polyurethane-based hydrogels could ease pain and prevent skin maceration and 
hypertrophic scar formation. However, this study did not establish a control group, and the selection criteria are confusing and 
should be improved to further confirm the efficacy of hydrogels in burn patients.95 In addition to hypertrophic scar formation, 
Zhang et al utilized carboxymethyl chitosan hydrogels chemically crosslinked with genipin to attenuate hypertrophic scar 
progression by inhibiting a-SMA and facilitating MMP-1 generation, showing the potential use of chitosan-based wound 
dressings in hypertrophic scar treatment.96 A polyvinyl alcohol-collagen-glycosaminoglycan-based semisynthetic hydrogel 
decreased the thickness, ECM deposition, and vessel-like structure of hypertrophic scars in a rabbit ear model.99 Keloids have 
a higher recurrence rate than hypertrophic scars. Berman et al found that injecting gelatin-dextran hydrogels could effectively 
reduce the symptoms and recurrence of keloid scar postsurgical excision. Dextran could modulate the immune response, prevent 
infection, and facilitate wound healing, which might contribute to the anti-keloid recurrence effect.97 Additionally, pregnancy 
might be associated with the progression of hypertrophic or keloidal scarring. A clinical trial was conducted to evaluate the 
erythema fading of hypertrophic scars that progressed in 45 Caucasian pregnant women. Polysaccharides and polyacrylamide 
hydrogel combined with laser therapy decreased the redness of the scar by cooling the skin. However, this study lacks 
a corresponding control and has a limited number of samples, which needs further investigation.98

Medicine/Drug
Research suggests that hydrogels are a promising and ideal vehicle to deliver drugs in hypertrophic scars and keloids due to their 
biocompatibility and prolonged release of drugs. Ma et al utilized caffeine embedded in hydrogel to treat hypertrophic scar tissue 
on rabbit ears, and the results showed that caffeine hydrogel significantly downregulated the expression of Type 1 collagen by 
inhibiting TGFβ.104 Chen et al developed a GelMA/polyethylene glycol diacrylate (PEGDA) hydrogel containing betamethasone 
as a microneedle patch, which significantly reduced the scar elevation index, collagen I/III, and TGF-β1 expression.102 Imiquimod 
was proven to be useful in keloids but had few effects, including erythema, pain, pruritus, and slight hyperpigmentation. To better 
control the release of imiquimod, Lin et al developed a hydrogel delivering imiquimod for the treatment of keloids, which 
significantly decreased the growth of keloid fibroblasts.103 In addition to imiquimod, triptolide was extracted from Tripterygium, 
displaying anti-inflammatory and antifibrotic effects. As a triptolide derivative, LA67 possesses the original activity of triptolide 
and improved antitumour effects, with less toxicity compared to triptolide. Wan et al used a thermosensitive hydrogel to deliver 
liposome-encapsulated LA67, which significantly prevents keloid progression by downregulating collagen and αSMA 
expression.106

In addition to a single drug, a dual-drug delivery hydrogel might be more effective in the treatment of hypertrophic scars and 
keloids. Bao et al loaded 5-fluorouracil and dexamethasone in a thermosensitive hydroxybutyl chitosan hydrogel, which prevents 
keloid fibroblast growth and VEGF expression in keloid tissues. It was revealed that the codelivery of 5-fluorouracil and 
dexamethasone in hydrogels exhibited promising potential in keloid therapy.100 In addition, Chen et al fabricated a dual drug- 
gelatin hydrogel carrying gallic acid and quercetin, which inhibited the growth and mRNA level of type I and III collagen in keloid 
fibroblasts and the production of reactive oxygen species and might be effective in keloid formation and progression.101 Patients 
with pathologic scars often suffer from itch and pain, which might be associated with the inflammatory response. A case study 
showed that a 2% salicylic acid-based hydrogel could significantly reduce redness, itch, and burning pain in hypertrophic scar 
patients, which might be due to the anti-inflammatory effects of salicylic acid, such as preventing prostaglandin production and 
NF-κB generation.105 Wu et al developed a guar gum-based hydrogel to deliver menthol and methyl salicylate, which was proven 
to effectively alleviate the pruritus of burn-induced hypertrophic scars in a multicenter, controlled trial.107 More importantly, 
combined therapy could increase the transdermal delivery of drugs in hypertrophic scars. CO2 fractional laser therapy combined 
with a silk nanofiber hydrogel could enhance the skin penetration of hydrophilic and hydrophobic substances into rabbit ear 
hypertrophic scar tissue.108
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Stem Cells and Conditioned Medium
Hydrogels are considered ideal scaffolds for stem cells and their secretome due to their 3D dimensional properties and superior 
biocompatibility (Figure 6). Qu et al first used a thermosensitive Arg-Gly-Asp (RGD)-modified hydroxybutyl chitosan hydrogel 
to deliver bone marrow-derived mesenchymal stem cells (BMSCs) in treating keloids, and HE staining showed that ex vivo keloid 
tissue in the BMSC/Hydrogel group histologically displayed thin, loose nodule collagen fibres and small collagen bundles.109 

Adipose-derived stem cells encapsulated in hyaluronic acid hydrogel inhibited hypertrophic scar formation by decreasing the 
collagen type I/collagen type I ratio and α-SMA expression in fibroblasts. It was reported that hyaluronic acid gel containing 
mesenchymal stem cells could effectively limit excessive fibroblasts and collagen together with chronic inflammation and correct 
the imbalance of ECM transformation by reducing fibronectin and tenascin-C expression.110 More importantly, clinical studies are 
crucial to confirm the therapeutic use of transdermal MSC hydrogels in hypertrophic scars. A random, controlled clinical trial was 
registered to test the effectiveness of transdermal MSC hydrogels in treating cesarean section skin scars, but the results have not 
been published thus far.117 Conditioned medium is referred to as the medium of MSCs and contains a variety of growth factors, 
cytokines, chemokines, and extracellular vesicles, such as ectosomes and exosomes.118 A polysaccharide hydrogel containing 
lyophilized adipose-derived stem cell conditioned medium was fabricated to inhibit hypertrophic scarring of rabbit ears by 
decreasing fibroblast proliferation and collagen disposition.111 It was reported that hybrid hydrogels containing xenofibroblasts 
reduced ECM accumulation and vessel-like structures in hypertrophic scars.99 In addition to stem cells and conditioned medium, 
exosomes perform therapeutic roles in hypertrophic scars and keloids.119–121 Thus, the role of exosome-based hydrogels in 
pathologic scars is worth exploring in the future.

Figure 6 Stem cell and conditioned medium-loaded hydrogels.
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Nucleic Acids and Proteins
Given the increasing understanding of the molecular mechanisms underlying hypertrophic scars and keloids, researchers found 
that siRNA, which directly targets genes, and several protein products were effective in attenuating pathologic scars. It was 
reported that siRNA-TGFβ1-337 embedded in a pressure-sensitive adhesive hydrogel was developed for hypertrophic scar 
treatment, which resulted in TGFβ1 and collagen type I inhibition and regularly arranged fibroblasts in a hypertrophic scar nude 
mouse model.112 The poly (γ-glutamic acid)/chitosan/papain hydrogel promoted cell migration and significantly attenuated 
abnormal growth of fibroblasts, collagen deposition, and hyperplastic scar formation. Papain might inhibit fibroblast proliferation 
and degrade ECM, contributing to the prevention of the development of hypertrophic scars.113 As an elastic and firm protein, silk 
fibroin has attracted attention due to its wound healing-facilitating effects, but its antihypertrophic scar effects remain elusive. 
Thus, Li et al designed silk fibroin-based PEG hydrogels, which exhibited excellent biocompatibility and decreased the density of 
hypertrophic scar tissue and collagen expression.114 These results suggest that silk fibroin or silk fibre-based hydrogels are 
promising treatments for hypertrophic scars. Further studies are needed to compare the therapeutic efficacy and loading efficiency 
to keloid and hypertrophic scar tissues, fostering the application of silk-based hydrogels in pathologic scars.

Nanomaterials (Metal Ions/Carbon Materials)
Nanomaterials are referred to as materials with diameters of 1–100 nm that possess unique physical-chemical properties due to 
their structure. To further improve therapeutic efficacy, nanomaterials combined with hydrogels could form a hybrid biomaterial 
system for their controlled and prolonged release.122 Nanomaterials applied in hypertrophic scars and keloids mainly include 
nanoparticles, liposomes, carbon nanomaterials, and metallic nanoparticles. Liposomes and exosomes were described 
above;106,121 thus, in this section, we mainly discuss metal ions and carbon nanomaterials in pathologic scars. Silver ions are 
widely used in skin dressings and facilitate wound healing, given their antimicrobial effects. It was revealed that silver ion dressing 
could prevent pathologic scar formation in postburn patients.116 Jia et al found that silicone-derived silver hydrogel significantly 
decreased the scar elevation index.115 In addition, cuprous oxide nanoparticles in glucose solution were also proven effective in 
treating hypertrophic scars by inhibiting fibroblast growth and promoting cell apoptosis.123 In addition to metal ions, carbon 
nanomaterials were also effective in inhibiting hypertrophic scars. Weng et al demonstrated that carbon nanotubes directed 
hypertrophic scar fibroblast growth and decreased excessive proliferation and collagen expression in fibroblasts by suppressing 
TGF β.124 Carbonate apatite nanoparticle-loaded siTIMP1 significantly suppressed hypertrophic scar formation and collagen 
expression and density and attenuated the thickness and disorganization of collagen bundles.125

Current Limitations and Future Prospects
To date, researchers are facing some challenges that restrict the fabrication and applications of hydrogels in hypertrophic scars and 
keloids. We herein propose the main challenges and potential possibilities as follows to shed light on the future direction of 
hydrogel-based studies in keloids and hypertrophic scars.

1. The mechanism underlying these hydrogel components remains unclear, while high-throughput sequencing, such as 
transcriptome, spatial and single-cell transcriptome analysis, as well as proteomics, has been carried out to elucidate the 
molecular mechanism.126–128 Therefore, when designing hydrogels, researchers should look deeper into the mechanism 
and develop more specific therapies targeting abnormal cells, genes, and proteins.

2. The clinical application of hydrogels in hypertrophic scars and keloids is mainly confronted with three pitfalls: lack 
of animal model of keloid; lack of standard random clinical trials; and high manufacturing cost. It is believed that 
developing animal models of keloids, carrying out clinical trials and optimizing materials will accelerate the clinical use 
of hydrogels in hypertrophic scars and keloids.

3. Current research in hypertrophic scars and keloids only explores a limited number of drugs, stem cells, nucleic 
acids, and proteins. Nanomaterials such as metal ions and carbon nanomaterials exhibit multifunctional roles in medical 
fields;129,130 thus, these nanomaterials are worth investigating in keloid treatment.

4. Furthermore, traditional therapy, such as surgery, X-ray, laser and cryotherapy, could be combined with hydrogels 
to enhance therapeutic efficacy and even exert synergistic effects for the treatment of keloids and hypertrophic scars.
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5. Although various types of hydrogels have been designed, their function is mainly restricted to one effect, such as 
anti-inflammatory, antiangiogenic or antifibrotic effects. Therefore, developing multifunctional hydrogels by loading 
different materials or tuning the physical and chemical properties of hydrogels will definitely promote their therapeutic 
efficacy in the future.

Conclusion
Hydrogels have been gaining increasing attention in hypertrophic scars and keloids due to its biocompatibility and effectiveness. 
In this review, the pathogenesis of pathologic scars and the classification and properties of hydrogels, as well as their loaded 
components, are discussed and highlighted, followed by the advances in nanomaterials in the area of hydrogels for biomedical 
applications. And smart hydrogel, which could respond to different stimuli is a future trend of hydrogels in biomedical fields. 
However, challenges still exist, such as tumor-related risks of tumor-derived natural hydrogels and elusive mechanism of 
pathologic scars. Associating hypertrophic scar and keloid pathogenesis with hydrogels as well as loaded components will 
shed light on further exploration and clinical applications. Thus, it is crucial to elucidate pathologic scar pathogenesis and improve 
efficacy and biocompatibility of hydrogels, in order to guide the therapeutic use of hydrogels in hypertrophic scars and keloids.
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