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Abstract: Traditional chemotherapy is one of the main methods of cancer treatment, which is largely limited by severe side effects 
and frequent development of multi-drug resistance by cancer cells. Antimicrobial peptides (AMPs) with high efficiency and low 
toxicity, as one of the most promising new drugs to replace chemoradiotherapy, have become a current research hotspot, attracting the 
attention of worldwide researchers. AMPs are natural-source small peptides from the innate immune system, and certain AMPs can 
selectively kill a broad spectrum of cancer cells while exhibiting less damage to normal cells. Although it involves intracellular 
mechanisms, AMPs exert their anti-cancer effects mainly through membrane destruction effect; thus, AMPs also hold unique 
advantages in fighting drug-resistant cancer cells. However, the poor stability and hemolytic toxicity of peptides limit their clinical 
application. Fortunately, functionalized nanoparticles have many possibilities in overcoming the shortcomings of AMPs, which 
provides a huge prospect for better application of AMPs. In this paper, we briefly introduce the characteristics and different sources 
of AMPs, review and summarize the mechanisms of action and the research status of AMPs used as an anticancer therapy, and finally 
focus on the further use of AMPs nano agents in the anti-cancer direction. 
Keywords: antimicrobial peptides, anticancer mechanisms, drug combination, anticancer application, peptide nano agents

Introduction
Cancer, as one of the most lethal diseases in the world, is still a serious threat to human survival.1 Chemotherapy alone or 
combined with surgery/radiotherapy plays an important role in improving the life expectancy of cancer patients. 
However, due to the lack of specificity of many chemotherapeutic drugs for cancer cells, they can also kill healthy 
cells that are in rapid proliferation phase while killing cancer cells, which may lead to serious side effects.2,3 

Additionally, cancer cells are prone to develop resistance to chemotherapeutic drugs resulting from drug inactivation 
or efflux, target protein alteration, DNA damage repair, and signaling cascade alteration, which greatly limits the efficacy 
of such drugs.4,5 Therefore, it is urgent to find new potent drugs with high tumor selectivity.

In recent years, antimicrobial peptides (AMPs) have attracted the attention of researchers. AMPs are small-molecule 
peptides with positive charges and amphipathic properties.6 They are part of the innate immune defense system of 
organisms with multiple biological activities such as antibacterial activity, antifungal activity, anticancer activity, and 
immune system regulation.7,8 On the one hand, due to their positive charges and amphiphilic nature, AMPs can 
selectively bind to negatively charged cancer cell membranes through electrostatic attraction and form 
a transmembrane channel, destroying the integrity of the cell membrane, thereby killing cancer cells.9,10 Besides, 
AMPs can target various cellular processes within cancer cells, such as DNA and protein synthesis, protein folding, 
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enzymatic activity, and cell wall synthesis.11,12 On the other hand, AMPs can be internalized into cancer cells via 
endocytosis mechanisms, leading to apoptosis and the inhibition of autophagy.13

At the same time, due to their unique membrane mechanism, AMPs do not easily induce drug resistance in tumor 
cells.14 Tumor multidrug resistance (MDR) is the main cause of tumor chemotherapy failure of tumor chemotherapy. The 
overexpression of P-glycoprotein (P-gp) in the tumor cell membrane is one of the main reasons for the formation of 
MDR.15 Fitly, P-gp participates in the formation of cell membranes and increases the negative charges on the surface of 
the tumor cell membrane, which is conducive to the combination of cationic AMPs and drug-resistant tumor cell 
membranes, thereby better exerting anti-cancer activity.16,17 Therefore, AMPs have great prospects for the treatment of 
drug-resistant tumors. In recent years, the use of AMPs alone or in combination with other drugs for cancer treatment has 
attracted extensive attention.18–20

Characteristics and Sources of Antimicrobial Peptides
Antimicrobial peptides (AMPs) are also called host defense peptides or antibiotic peptides. They are a type of 
biologically active peptides that exist widely in the biological world. AMPs are an important part of the innate immune 
defense system of almost every organism including bacteria, plants, insects, fish, amphibians, birds, and mammals.21,22 

Representative AMP sequences from different sources are shown in Table 1.

Graphical Abstract
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AMPs are small peptides that are usually composed of 10–100 amino acid residues, most of which are cationic.49,50 

Therefore, AMPs are often referred to as cationic antimicrobial peptides (CAPs). The primary structure of most AMPs 
shares the following characteristics: N-terminal is rich in lysine, arginine, and other cationic amino acids; C-terminal is 
rich in alanine, valine, glycine, and other hydrophobic amino acids, taking up to 50% of the entire amino acid sequence.51 

In addition, AMPs mainly have the following four secondary structures52,53 (as shown in Figure 1): 1. α-helical structure, 
such as as Melittin,54 Magainin;55 and Cecropins;56 3. Extended helices structure, which usually occurs in a linear 
peptide that is rich in proline and arginine or tryptophan residues, such as bovine-derived AMP (indolicidin)28 and 
Drosophila-derived AMP (drosocin);57 4. Loop structure, with which AMPs often contain an intramolecular disulfide 
bond at the C-terminus to form a loop, while the N-terminus is a linear structure, forming a cyclic chain structure, such as 
bovine neutrophils-derived AMP (bactenecin)58 and frog skin-derived AMP (brevinins).59 Among them, α-helical AMPs 
are the most studied type of AMPs. The α-helical structure is a nearly perfect hydrolipid amphiphilic structure, that is, 
one side of the longitudinal axis of the helix is a positively charged hydrophilic region, and the opposite side is 
a hydrophobic region. This amphiphilic structure is the key to the activity of AMPs.60,61

Although AMPs have the above-mentioned common features, their sequences and activities are different. These 
peptides are produced in large quantities at the infection and/or inflammation sites of the organism, and can rapidly 
and broadly kill Gram-positive and Gram-negative bacteria, fungi, parasites, and certain viruses.62,63 In addition, 

Table 1 AMP Sequences from Different Sources

Sources AMP Name Sequence Refs

Insect Hyalophora cecropia Cecropin A KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK [23,24]
Anopheles gambiae Defensin 1 ATCDLASGFGVGSSLCAAHCIARRYRGGYCNSKAVCVCRN [25]

Mammals Homo sapiens LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES [26,27]

Bos taurus Indolicidin ILPWKWPWWPWRR-NH2 [28,29]
Sus scrofa (Pig) Protegrin 1 RGGRLCYCRRRFCVCVGR-NH2 [30]

Amphibian Xenopus laevis Magainin-2 GIGKFLHSAKKFGKAFVGEIMNS [31,32]

Rana temporaria Temporin L FVQWFSKFLGRIL-NH2 [33,34]
Marine animal Pseudopleuronectes 

americanus
Pleurocidins GWKKWFKKATHVGKHVGKAALDAYL [35–37]

Litopenaeus vannamei Penaeidins YRGGYTGPIPRPPPIGRPPLRLVVCACYRLSVSDARNCCIKFGSCCHLVK [38,39]

Mytilus edulis Myticin B SCASRCKGHCRARRCGYYVSVLYRGRCYCKCLRC [40]

Plant Arabidopsis thaliana (L.) 
Heynh.

Thionin-2.1 KICCPSNQARNGYSVCRIRFSKGRCMQVSGCQNSDTCPRGWVN [41,42]

Solanum tuberosum L. Snakin-2 

(StSN2)

IQTDQVTSNAISEAA [43,44]

Microorganism Bacillus brevis Gramicidin S Cyclo-(L-Val-Orn-L-Leu-D-Phe-L-Pro)2 [45,46]

Streptococcus lactis Lantibiotic 

Nisin-A

ITSISLCTPGCKTGALMGCNMKTATCHCSIHVSK [47,48]

Figure 1 Four secondary structures of antimicrobial peptides.
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AMPs also play an important role in the inflammatory response, immune activation, and wound healing.64,65 It is 
worth noting that increased studies have shown that many AMPs have significant selective anti-cancer activity66–68 

and such AMPs can also be called anti-cancer peptides (ACPs). Table 269 gives examples of AMPs with different 
activities.

Anticancer Mechanisms of AMPs
The anti-cancer mechanism of AMPs can be divided into two types:84 selective membrane disruption action and 
non-membranolytic actions.85,86 The selective membrane disruption action is similar to its bactericidal action: the 
cationic AMPs directly interact with the cancer cell membrane through electrostatic attraction to form transient 
pores and destroy the integrity of the cell membrane and finally cause cell death.87 Besides, non-membranolytic 
actions of AMPs include the destruction of the cytoskeleton in cancer cells, inhibition of DNA and protein synthesis, 
inhibition of tumor angiogenesis, regulation of immunity, and induction of tumor cell apoptosis or necrosis. Each 
mechanism is not entirely separate, AMPs may show a complex anti-tumor mechanism. AMPs may first interact 
with the tumor cell membrane, enter into the cells and then act on the intracellular targets, or induce cell apoptosis or 
necrosis.88,89

Basis for Anticancer Action of AMPs: The Particularities of Cancer Cell Membranes
Similar to its antibacterial mechanism, almost all the AMPs can initially interact with the negatively charged cancer 
cell membranes, and the disruption of cancer cell membranes is considered to be the primary mechanism for the 
anticancer effect of AMPs, which determines the broad-spectrum anticancer effect of AMPs.90 Compared to normal 
cell membranes, the structural characteristics of tumor cell membranes are more conducive to AMPs to exert their 
anticancer effects. First of all, cancer cells, unlike healthy eukaryotic cells that contain zwitterionic phosphatidylcho-
line and sphingomyelin in their membranes and therefore overall neutrally charged,91 carry a net negative charge due 
to the elevated expression of anionic molecules such as phosphatidylserine (PS) and O-glycosylated mucins in their 
outer membrane leaflet,92,93 which results in a greatly enhanced capacity for electrostatic interactions with AMPs. The 
binding affinity of some AMPs to tumor cell membranes is 10 times higher than that of normal cells, showing selective 
tumor cytotoxicity.94,95 Furthermore, tumor cells have more abundant microvilli on their cell surface in comparison 
with normal cells, and the increased overall surface area of tumor cells allows a greater number of AMP molecules to 
interact with the surface of cancer cells, thereby promoting AMP-mediated cytotoxicity.96,97 Collectively, the afore-
mentioned characteristics account for the ability of some AMPs to selectively kill tumor cells without damaging 
healthy cells.

In addition, many AMPs exhibit strong cytotoxicity on MDR tumor cell lines. Also, certain AMPs can reverse the 
drug-resistance of tumor cells, thereby increasing tumor sensitivity to chemotherapeutic drugs. One of the main reasons 
causing tumor MDR is the over-expression of P-gp. The over-expressed P-gp could increase the negative charge on the 
MDR tumor cell membrane, thus enhancing AMP binding by electrostatic attraction.98,99 Then, the hydrophobic 
C-terminal of AMP may insert into the hydrophobic region of the cell membrane, which may change the conformation 

Table 2 Representative Antimicrobial Peptides with Different Activities

Antimicrobial Peptide Name Main Activity Refs

Defensins, indolicidin, dermaseptins Broad-spectrum antimicrobial/anticancer activity [70–72]
Indolicidin, histatins, protegrin Antifungal activity [73–75]

LL-37 Anti-endotoxin/anticancer activity [76]

Indolicidin, defensins, protegrin Antiviral activity [77–79]
Indolicidin, defensins Antiparasitic activity [80]

Indolicidin, defensins, dermaseptins, cecropins Anticancer activity [81]

Defensins, PR39 Wound healing activity [82,83]
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of the cell membrane and reduce the activity of P-gp by inhibiting the efflux of chemotherapy drugs, increasing the 
intracellular drug concentration, and reversing drug resistance of MDR tumor cells.100

Recognized Models of Selective Membrane-Disrupting Mechanism
At present, scholars have proposed several models to explain the interaction between AMPs and tumor cell membranes 
from different perspectives (as shown in Figure 2) including “Barrel-stave” model, “Carpet” model, “Toroidal-pore” 
model, and “Aggregate” model. These models are not completely independent, that is, AMPs under different concentra-
tions and different conditions may function through complex mechanisms.

“Barrel-Stave” Model
In the “Barrel-stave” model (Figure 2A), the monomers of α-helix cationic AMPs (such as cecropin B101 and bee venom 
peptide102) first bind to the tumor cell membrane by electrostatic attraction. Then, the conformation of AMPs changes, that 
is, AMPs perpendicularly insert their hydrophobic region into the hydrophobic core of the cell membrane and form 
a position like “staves” in a barrel. Thereafter, the AMP monomers will self-aggregate into the α-helix polymer with their 
hydrophilic side constituting the barrel-like hollow channel and insert into the hydrophobic membrane cores more deeply, 
forming transient transmembrane pores which may disrupt the ion gradients and transmembrane potential and eventually 
lead to cell death.103 It is worth noting that the “barrel-stave” model cannot explain the membrane disruption effect of 
AMPs with fewer than 23 amino acids as AMPs need to be long enough to pass through the cell membrane in this model.104

“Carpet” Model
In the carpet model (Figure 2B), the AMPs initially interact with the tumor cell membrane through electrostatic attraction 
and arrange parallel to the cell surface in a “carpet”-like manner, which interfered with the accumulation of phospho-
lipids. Subsequently, the local membrane is destabilized due to the change in curvature stress and internal osmotic 

Figure 2 Schematic diagram of four widely recognized models of the membrane disruption mechanisms of antimicrobial peptides.(A)“Barrel-stave” model, 
(B)”Carpet”model, (C)”Tororial-pore” model, (D)”Aggregate” model.
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pressure. Finally, a circular gap will be formed, and the cell membrane will be disintegrated. During this process, the 
AMPs insert into the hydrophobic core of the lipid bilayer.91 Studies suggested that the AMP magainin worked through 
the “carpet” model at low concentrations, while worked through a “barrel plate” model at high concentrations.105,106

“Toroidal-Pore” Model
In the “Toroidal-pore” model (Figure 2C), AMPs also originally bind to the cell membrane through electrostatic 
attraction and then induce continuous bending of the lipid monolayer with the hydrophilic group of AMPs interacting 
with the hydrophilic head of the cell membrane and then spiral insertion into the cell membrane, forming transmembrane 
pores.107 Different from the “barrel-stave” model, the hydrophilic parts of AMPs and hydrophilic heads of the upper and 
lower lipids always together face to the center of the pores and the AMPs are unnecessary to pass through the whole 
phospholipid bilayer; thus, this model can explain the effect of some short AMPs.104 Studies have shown that AMPs such 
as melittin103,108 and protegrin-1109 work through the “Toroidal-pore” model.

“Aggregate” Model
Similar to the “Toroidal-pore” model, in the “Aggregate” model (Figure 2D), the AMPs are first electrostatically attracted 
to the tumor cell membrane. Then, the AMPs combine with lipids to form micelle complexes, and the aggregates will 
insert into the cell membrane, forming dynamic transmembrane pores. The difference with the “Toroidal-pore” model is 
that the AMPs working through the “Aggregate” model have no specific orientation and there is usually only one AMP 
located in the center of the aggregate.110,111

Non-Membrane Disrupting Mechanisms of AMPs
Although the electrostatic interaction with tumor cell membrane and further disrupting action is the key of AMPs to kill 
the tumor cells, certain AMPs are accompanied by other mechanisms, such as inhibiting tumor DNA synthesis, 
destroying tumor cytoskeleton, inhibiting tumor angiogenesis, destroying tumor mitochondria, inducing tumor cell 
apoptosis or necrosis, and regulating immunity, as shown in Figure 3.

Inhibition and Destruction of Chromosomes and DNA in Cancer Cells
Some AMPs may accumulate in the nucleus area of cancer cells and kill cancer cells by breaking the tumor DNA, thus 
playing an anti-cancer role.112 For example, the AMP named Cecropin-XJ isolated from Xinjiang silkworm was found to 
have the ability to combine with the groove of tumor cell DNA and then insert into the DNA sequence, resulting in the 
disordered arrangement of base pairs and looseness of DNA double helix structure, leading to DNA damage and cell 
death.113 In addition, using a single-cell gel electrophoresis technique, Wang et al114 found that the CM4-component of 
the AMP from Bombyx mori could selectively break the DNA of K562 cancer cells and kill cells without affecting the 
nuclear chromatin DNA of normal human leukocytes.

Damage to Cytoskeleton in Cancer Cells
The cell cytoskeleton is a fine network structure that can not only maintain cell morphology and maintain the order of 
cell internal structure but also participate in important life activities such as cell movement, material transportation, 
information transmission, cell division, and gene expression. There is a highly developed cytoskeleton system in 
eukaryotic cells with microfilaments and microtubules as important components of the cytoskeleton. However, the 
cytoskeleton of cancer cells is underdeveloped with a reduced number of microfilaments and microtubules.115 Tubulin is 
the target of many anti-cancer drugs, and the cytoskeleton damage induced by AMPs can occur in both cancer cells and 
normal cells. Normal cells can self-heal due to their complete cytoskeleton system after being treated by AMPs, while 
tumor cells cytoskeleton is incomplete and cannot be repaired in time after the action of AMPs, resulting in cell death. 
Studies have shown that the AMP, cecropins B3, can disintegrate microtubules, disrupt the normal function of micro-
tubules, and affect the integrity of the tumor cytoskeleton, thereby killing tumor cells.116

Inhibition of Tumor Angiogenesis
Certain AMPs have been found to inhibit tumor cell growth by inhibiting tumor angiogenesis. For example, the AMP 
called K6L9 can kill tumor cells through anti-angiogenesis and metastasis inhibition.117 Another example is that the 
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AMPs, human α-defensins, can specifically bind to fibronectin (FN) to block the adhesion and transfer of integrin α5β1 
mediating endothelial cells to fibronectin, and block the proliferation and apoptosis of endothelial cells mediated by 
vascular endothelial growth factor (VEGF), that is, human α-defensins inhibit tumor angiogenesis in many ways, thereby 
exerting its anti-cancer effect.118

Attack the Mitochondria Leading to Cancer Cell Apoptosis or Necrosis
Many AMPs can also induce apoptosis or necrosis of tumor cells in a variety of ways. It was found that pardaxin, 
a marine antimicrobial peptide, can act on the mitochondrial membrane, reduce the potential of mitochondrial membrane, 
release cytochrome c (cyt c) in the cytoplasm, and release a large amount of reactive oxygen species (ROS). Finally, the 
pardaxin activates the apoptosis proteins caspases 3 and 7, and induces apoptosis in the mitochondrial pathway, resulting 
in cell death.97 In addition, buforin II B, an AMP derived from histone H2A, can pass through the tumor cell membrane 
without damage, act on mitochondria, release cytochrome c, and activate the apoptosis protein caspase-9, and induce 
tumor cell apoptosis in the mitochondrial pathway.119

Regulation of Immunity
Antimicrobial peptides are a part of the body’s immune system, so many antimicrobial peptides can play their anti-tumor 
effects through immunomodulation. Some AMPs can chemoattract monocytes, dendritic cells (DC), T cells and 
neutrophils, etc, promoting the uptake and presentation of tumor cells by antigen-presenting cells and enhancing the 
immunogenicity of tumors.120,121 As an example, the AMP LL-37 can inhibit tumor growth by improving the phagocytic 
capacity of DC cells, increasing the expression and strengthening the function of phagocytic receptors, enhancing the 

Figure 3 Schematic diagram of the intracellular mechanisms of AMPs on cancer cells. Although interacting with the negatively charged cancer cell membranes is the key to 
the anti-cancer effects of AMPs, many AMPs can also act on the intracellular structures or molecules, including inhibiting tumor DNA synthesis (Cecropins B3); destroying 
Cytoskeleton (Cecropin-XJ and CM4); inhibiting tumor angiogenesis (K6L9 and α-defensin); destroying tumor mitochondria and inducing tumor cell apoptosis or necrosis 
(Pardaxin and buforin IIb); regulating the body immunity (LL-37).
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expression of co-stimulatory molecules, promoting the immune response of Th1 cells, and increasing the secretion of 
various cytokines.122 Another example is Cecropin XJ. Cecropin XJ can induce hepatocellular carcinoma cell apoptosis 
by activating caspase-3 and poly(ADP-ribose) polymerase, downregulating the expression of B-cell lymphoma 2 (Bcl-2), 
and upregulating the expression of Bcl-2-associated death promoter and Bcl-2-associated X protein.123

Potential Clinical Application of AMPs as Antitumor Agents
Although the research on AMPs mainly focuses on their antimicrobial properties, more and more studies have shown that 
many AMPs possess outstanding antitumor activities in vitro and in vivo, especially in breast cancer, cervical cancer, 
lung cancer, etc. AMPs are natural drugs with exciting potential as a new kind of anticancer drugs, and AMPs with 
excellent antitumor effects are often called anticancer peptides (ACP).124 Traditional chemotherapeutics have short-
comings such as lack of tumor cell selectivity, which can easily cause serious side effects, and they also easily induce 
tumor cell resistance. In contrast, AMPs have significant advantages in anti-tumor as they offer a wide range of 
antimicrobial and anticancer spectrum, high selectivity to cancer cells, harmlessness to normal cells and important 
organs, and low propensity to develop drug resistance. Furthermore, AMPs also have the ability to quickly kill tumor 
cells and destroy and prevent primary tumor metastasis. As AMPs can act directly on tumor cell membranes, they also 
have significant anti-proliferation effects on drug-resistant tumors.125 Therefore, AMPs have great application prospects 
in cancer treatment with the following potential anti-tumor strategies:126,127 (1) AMPs used alone as anticancer agents; 
(2) AMPs combined with other drugs; (3) AMPs combined with nanotechnology.

Anti-Cancer Application of AMPs Alone
Antimicrobial Peptides Used Alone to Kill Common Tumors
AMPs with anticancer activities (anticancer peptides, ACP) are mainly α-helix and β-sheet peptides. The ACPs mainly 
include the following four antimicrobial peptide families:67 Defensins, Lactoferrins, Cecropins, and Magainins. Also, 
there are many types of ACPs,84 including Melitins, Cathelicidins, Dermaseptins, Temporins, Tachyplesin, etc.

ACPs usually have broad-spectrum and excellent in vitro antitumor activities, and many of them also have anti-tumor 
activity in vivo. For example, magainin 2 was found to have selective cytotoxicity to tumor cells, which can kill a variety 
of tumor cells at a peptide concentration of 5–10 times lower than the peptide concentration required to kill normal 
cells.128 In vivo studies have shown that administration of magainin 2 and its derivatives (MSI-136 and MSI-238) could 
reduce the invasion of tumor cells into soft tissue and increase the survival rate of leukemia cells in P388 mice.129 

Another example is Cecropin A and B. They can lyse a variety of tumor cells at a concentration that is non-toxic to 
normal eukaryotic cells, and Cecropin B possesses an antitumor effect on mice bearing ascites colon adenocarcinoma 
cells.130,131 Table 3 summarizes the antitumor activity of AMPs from different AMP families and their antitumor 
mechanism.

Antimicrobial Peptides Used Alone to Kill Drug-Resistant Tumors
The chemotherapy resistance of cancer cells is one of the main reasons that limits the efficacy of chemotherapy drugs, 
and it seriously affects the prognosis of advanced cancer patients and the prognosis of patients with advanced cancer. 
Traditional anti-tumor drugs need to enter the cells to take effect, and if the uptake of drugs in the tumor tissue decreases 
or the drug efflux increases, the emergence of drug resistance in the tumor will occur. In contrast, many AMPs are less 
active in cells but act directly on tumor cell membranes, making them more effective in drug-resistant tumor cells. The 
most researched mechanism for the generation of MDR of tumor cells is the overexpression of the cell membrane 
transporter P-gp. P-gp participates in the formation of tumor cell membranes and can increase the net negative charge of 
the cell surface, so it is helpful for AMPs that possess positive charges to combine with the drug-resistant tumor cell 
membrane under electrostatic attraction.17 As a result, it is difficult for drug-resistant tumor cells to resist the action of 
AMPs. In recent years, a large number of studies have shown that many AMPs can kill a variety of drug-resistant tumors, 
and certain AMPs are more effective on drug-resistant tumor cells than normal tumor cells,162 which means that AMPs 
are of great value for the treatment of advanced and refractory cancers.
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Table 3 Targeted Tumors and Relevant Antitumor Mechanism of Different AMPs

Peptide Name Secondary Structure/Sequence Targeted Tumors Mechanisms Refs

Defensins β-sheet
HNP-1 ACYCRIPACIAGERRYGTCIYQGRLWAFCC Blood system tumors and solid 

tumors, such as colon cancer, 
pancreatic cancer

Membrane disruption - Cell cycle arrest - Cell apoptosis 

induction - Inhibition of cell invasion and migration

[132–135]

hBD-1 DHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCK A variety of hematologic tumors and 

solid tumors, such as melanoma, 
breast cancer

Membrane disruption - Antitumor angiogenesis - Cell 

apoptosis induction

[136–138]

Lactoferricin β-sheet
LfcinB FKCRRWQWRMKKLGAPSITCVRRAF A variety of mouse and human tumor 

cell lines, including breast cancer, 

colorectal cancer, neuroblastoma, and 

melanoma

Selective destruction of cytoplasmic and mitochondrial 
membranes in cancer cells - Antitumor angiogenesis - 

Inhibition of tumor cell proliferation and metastasis -Cell 

apoptosis induction

[139–141]

Cecropins α-helix
Cecropin A KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK A variety of human cancer cell lines, 

including leukemia and lymphoma, 
bladder cancer, liver cancer, etc

Membrane disruption - Cell cycle arrest - Cell apoptosis 

induction - Production of reactive oxygen species - Immunity 
regulation

[142,143]

Cecropin B KWKVFKKIEKMGRNIRNGIVKAGPAIAVLGEAKAL

Magainin α-helix
Magainin 2 GIGKFLHSAKKFGKAFVGEIMNS A variety of blood system tumors and 

solid tumors, including lung cancer, 

breast cancer, glioma, etc

Membrane disruption - Cell apoptosis induction [144,145]

Magainin G AIGLPLHSALLPALAPVAGIMAS Various human tumors, such as 
cervical cancer, lung cancer, etc

Membrane disruption - Cell apoptosis induction [146,147]

Melittins α-helix
Melittin GIGAVLKVLTTGLPALISWIKRKRQQ Leukemia cells, melanoma cells, etc Membrane disruption [148,149]
Cathelicidins α-helix
BMAP-28 GGLRSLGRKILRAWKKYGPIIVPIIRI A variety of human tumor cells, 

including leukemia cells and 
lymphoma

Membrane disruption - Cell apoptosis induction [150,151]

LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES Various human tumors, such as colon 

cancer, lung cancer, breast cancer, etc

Membrane disruption - Cell apoptosis and autophagy induction 

- Immunity regulation

[122,152–154]

Dermaseptins α-helix
Dermaseptin-B2 GLWSKIKEVGKEAAKAAAKAAGKAALGAVSEAV A variety of human cancers, including 

prostate cancer, breast cancer, etc

Membrane disruption - Inhibition of tumor cell proliferation [155]

(Continued)
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Table 3 (Continued). 

Peptide Name Secondary Structure/Sequence Targeted Tumors Mechanisms Refs

Dermaseptin-PP ALWKDMLKGIGKLAGKAALGAVKTLV Various human cancers, such as 

breast cancer, lung cancer, prostate 
cancer, glioma cells

Membrane disruption - Inhibition of tumor cell proliferation - 

Cell apoptosis induction

[156]

Temporins α-helix
Temporin-1CEa FVDLKKIANIINSIFGK-NH2 A variety of human cancers, including 

melanoma, breast cancer, etc
Membrane disruption - Inhibition of tumor cell proliferation / 

invasion and/or metastasis - Antitumor angiogenesis - 

Production of reactive oxygen species

[157–159]

Tachyplesins β-sheet
Tachyplesin I KWCFRVCYRGICYRRCR A variety of cancer cells, including 

liver cancer, melanoma, and prostate 

cancer

Interaction with hyaluronan overexpressed in tumor cells and 

activation of complement component (C1q) - Inhibition of 

tumor cell proliferation - Antitumor angiogenesis - Induction 
of tumor cell differentiation - Increase the expression of the 

tumor suppressor gene

[84,86,160,161]
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Gaegurins, a family of AMPs containing 6 AMPs, were isolated from Glandirana emeljanovi, which can be divided 
into two sub-families, Gaegurin I and Gaegurin II, according to their length and sequence. Studies have found that the 
derivatives of the antimicrobial peptide GN6 of the Gaegurin II sub-family can induce tumor cell cycle arrest and 
apoptosis in multidrug-resistant cancer cells, showing the potential to treat refractory malignant tumors.163 Besides, 
Temporin-1CEa, a natural AMP, was isolated and purified from the skin secretions of Rana chensinensis. Temporin-1CEa 
could selectively inhibit the cell proliferation of Adriamycin-resistant breast cancer MCF-7/Adr cells because the 
negative charges on the membrane surface of the drug-resistant breast cancer cell line MCF-7/Adr are higher than that 
of the ordinary MCF-7 tumor cells. At the same time, Temporin-1CEa can increase the sensitivity of MCF-7/Adr cells to 
the chemotherapy drug adriamycin. After 24 hours of combined administration with Temporin-1CEa, the IC50 of 
adriamycin decreased by 4.52 times.164 It was proved that Temporin-1CEa could co-localize with P-gP on the surface 
of drug-resistant cell membranes, so the anticancer mechanism of Temporin-1CEa may be acting on P-gP and affecting 
its efflux function, thereby reversing multidrug resistance in tumor cells.157,164

Besides, LL37, an AMP of the human-derived cathelicidin AMP family, and its derivative peptides (LL17-32 and 
LL13-37) have been found to increase the accumulation of mitoxantrone in ABCG2 overexpression-resistant tumor cells 
but does not affect normal tumor cells without ABCG2 overexpression. Similar to P-gp, ABCG2 is a drug-resistant semi- 
transporter on the tumor cell membrane, which also acts as a “drug pump” and is closely related to the accumulation of 
drugs in cancer cells. Both LL17-32 and LL13-37 could directly interact with ABCG2 in a non-competitive manner and 
inhibit its transport activity. Also, LL17-32 and LL13-37 could indirectly down-regulate ABCG2 protein expression in 
drug-resistant cells through the lysosomal degradation pathway, thus reversing multidrug resistance of tumor cells and 
making the drug-resistant cancer cells sensitive to chemotherapies.165

In another example, Wang et al100 gave the cationic AMP Polybia-MPI to the multi-drug resistant leukemia cell line 
K562/ADM that was 201 times resistant to doxorubicin and 14.7 times resistant to actinomycin. Polybia-MPI signifi-
cantly inhibited the proliferation of K562/ADM cells and showed a killing effect that is similar to its effect on ordinary 
cells, indicating that the drug-resistant cells are sensitive to AMPs. Moreover, Banković et al17 found that NK-lysin- 
derived cationic peptide NK-2 could selectively inhibit the proliferation of P-gp overexpression multidrug-resistant cells, 
including multidrug-resistant non-small cell lung cancer cells (NCI-H460/R) and multidrug-resistant Colorectal cancer 
cells (DLD1-TxR). At the same time, NK-2 could also increase the sensitivity of drug-resistant cells to adriamycin by 
reducing the expression of P-gp on the cell surface. Additionally, NRC-03 and NRC-07, two AMPs from the pleurocidins 
AMP family, exhibited equal killing effect at a concentration of 50μM on normal MCF7 cells and on paclitaxel-resistant 
breast cancer cell line MCF7-TX400 that possess 2.6 times of P-gp expression more than the normal MCF7 cells, 
achieving about 60% of cell killing rate.162

In addition, many antimicrobial peptides have also been found to inhibit drug-resistant tumors and even reverse the 
drug resistance of tumor cells. For example, AMPs extracted from Musca domestica larva can selectively inhibit the 
proliferation of multi-drug resistant human hepatocellular carcinoma cell line Bel-7402/ADM. The IC50 value of these 
AMPs against Bel-7402/ADM cells was even lower than that of AMPs against normal Bel-7402 cells. Also, these AMPs 
could reverse the multi-drug resistance of tumor cells by inhibiting the relative expression of multidrug resistance gene 1 
(MDR1).166 Another AMP named BMAP-28 was reported to inhibit the proliferation of multidrug-resistant CEM-VLB 
lymphocytic leukemia cells.84 Besides, the AMP Cecropin Bcould also have in vitro cytotoxic activity against multi-drug 
resistant human breast and ovarian cancer cell lines.131

The above-mentioned studies provide experimental support for AMPs to replace chemotherapeutic drugs for tumor 
treatment or to help solve the problem of tumor cell chemotherapy resistance, suggesting that AMPs hold great 
application potential in the treatment of drug-resistant tumors.

Anti-Cancer Application of AMPs Combined with Other Drugs
Traditional anti-tumor drugs need to enter cells to function effectively, but their drug utilization is low with rapid 
metabolism in the body and short half-life. Therefore, high-frequency administration is needed, usually leading to serious 
side effects. In order to achieve clinical tumor treatment, combined medication can be considered. The AMP-mediated 
destruction of tumor cell membranes can help chemotherapeutics better enter tumor cells, so the combined use of 
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chemotherapeutics and AMPs may help reduce the effective dose of chemotherapeutics, thereby reducing dose-related 
side effects, and achieving the effect of increased efficiency and reduced toxicity. Thus, the combined use of AMPs and 
antitumor drugs has potential clinical application prospects.

AMPs Combined with Chemotherapy Drugs for Cancer Treatment
In 1992, Ohsaki et al146 discovered for the first time that the antimicrobial peptide Magainin analogs combined with 
chemotherapy drugs such as adriamycin and cisplatin showed an additive inhibitory effect on tumor cells. Since then, 
more and more studies have shown that AMPs can be used in combination with anti-tumor drugs to fight tumors. For 
example, cecropins can significantly enhance the killing effect of S-fluorouracil and Cytarabine on acute lymphoblastic 
leukemia cells.147 Cecropin A combined with a variety of chemotherapeutics, such as 5-fluorouracil, cytarabine, etc, 
showed synergistic anti-tumor activity in CCRF-SB lymphoid leukemia cells and squamous skin cancer cells.167,168

In addition, Xia’s group169 administered a Xinjiang silkworm AMP named cecropin-XJ in combination with the 
chemotherapy drugs such as adriamycin (ADM), cisplatin (DDP), cyclophosphamide (CTX), and carboplatin (CBP) on 
esophageal cancer Eca109 cells, and results showed that the cell proliferation inhibition rate and the apoptosis rate of the 
combined drug group were significantly higher than those of the same concentration chemotherapeutic drug group. For 
another example, magainin 2, an antimicrobial peptide from Xenopus skin, has been proven to penetrate the cancer cell 
membrane and act as an ion channel, which leads to the dissolution of cancer cells, thus significantly enhancing the 
cytotoxicity of chemotherapy drugs in tumor cells.170 Magainin 2 derivatives, magainin A (MAG A) and magainin 
G (MAG G), have also been found to exert synergistic antitumor activity after combined use with chemotherapeutics 
such as cisplatin (DDP), doxorubicin (DOX), and etoposide (VP-16).146

Another example is the scorpion venom peptide APBMV extracted from Buthus martensii, which has also been found 
to show a synergistic anti-tumor effect with a variety of chemotherapeutic drugs. After the combined use of a low 
concentration of APBMV (20 mg/L, cell inhibition rate is only 15.5%) and chemotherapeutic drugs such as mitomycin 
(MMC), DDP, fluorouracil (5-FU), and VP-16, the sensitivity of colorectal cancer LoVo cells to chemotherapeutic drugs 
increased and the cell inhibition rate even Increased to about 2 times that of those drugs used alone.171,172 Additionally, 
studies on NRC-03 and NRC-07 (two AMPs from the pleurocidin AMP family) showed that the 50% effective 
concentration (EC50) of cisplatin on tumor cells could be significantly reduced when used in combination with NRC- 
03 or NRC-07, that is, the cytotoxicity of cisplatin was increased.162

The above-mentioned studies have proven the feasibility of anti-tumor use in combination with antimicrobial peptides 
and chemotherapeutics and indicated that antimicrobial peptides have potential application prospects for enhancing 
efficacy and reducing the toxicity of chemotherapeutics.

AMPs Combined with Chemotherapy Drugs Against Drug-Resistant Tumor Cells
Importantly, the combination of AMPs and chemotherapeutic drugs has obvious advantages in the treatment of drug- 
resistant tumor cells. Overexpression of drug efflux protein in drug-resistant tumor cells sharply decreases the concen-
tration of drug uptake by tumor cells, which greatly limits the effect of chemotherapeutic drugs. Unlike traditional 
chemotherapy drugs, the action of AMPs is not affected by the overexpression of tumor multidrug resistance genes due to 
their special membrane disruption mechanism. Even, certain AMPs can destroy the function of drug efflux proteins such 
as P-GP, allowing multidrug-resistant tumor cells to regain chemical drug sensitivity.84,173

Studies have shown that the combination of chemotherapeutic drugs (such as ADM and DDP) and the antimicrobial 
peptide θ-defensin can improve the sensitivity of multidrug-resistant breast cancer MDA-MB-231 cells to the chemother-
apeutic drugs and effectively enhance the cytotoxic effect of such chemotherapeutic drugs.135 Besides, Johnstone et al174 

found that the combined use of the chemotherapeutic drug ADM and multiple mammalian and plant-derived AMPs 
significantly increased the sensitivity of drug-resistant cells to ADM, thus improving the anti-tumor activity of ADM. 
The mechanism may relate to the membrane destruction effect of the AMPs. Another research found that NRC-03 and 
NRC-07, the two AMPs from the pleurocidin AMP family, can also reverse the sensitivity of multidrug-resistant breast 
cancer MDA-MB-231 cells to some chemotherapeutic drugs. The experimental process was to pre-treat MDA-MB-231 
cells for 20 min with a low concentration (10 μM) of NRC-03 or NRC-07 20 minutes and then added a gradient 
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concentration of cisplatin. After 72 h or 96 hours of incubation, the EC50 of cisplatin in the NRC-03 pretreatment group 
decreased by 5.5 times at both 72 h and 96 h, while it decreased by 1.6 times after 72 h and 1.7 times after 96 h in NRC- 
07 pretreatment group, respectively. Meanwhile, NRC-03 could also enhance the cytotoxicity of docetaxel (DTX) on 
MDA-MB-231 cells.162

The above studies indicate that AMPs can also be used as chemotherapeutic drug sensitizers, and the combination of 
AMPs and chemotherapeutic drugs has broad application prospects in the treatment of multidrug-resistant tumors.

AMPs-Based Cancer Gene Therapy
In addition to targeting common and drug-resistant tumors, AMPs in combination with other drugs also have many 
applications in gene therapy. It has been proven that good therapeutic effects can be obtained by transferring or 
intratumorally injecting AMPs or their precursor genes into tumor cells. For example, David Winder et al175 introduced 
an expression vector containing cecropin A gene into EJ human bladder cancer cells, which can significantly inhibit or 
slow down the growth of tumors in immunodeficient mice. Besides, cancer gene therapy based on melittin has also been 
reported. After adenovirus-mediated transfer of melittin gene to BEL-7402 human liver cancer cells under the control of 
α-fetoprotein promoter could significantly inhibit the proliferation of liver cancer cells in vivo and in vitro.176 For another 
example, Xu et al177 co-transfected L1210 mouse leukemia model with murine β-defensin 2 (β-defensin 2) gene and IL- 
18 gene. The co-transfection group produced a stronger anti-tumor immune response than a single transfection of β- 
defensin 2 gene or IL-18 gene that improved the survival rate of mice. The survival rate of mice in the co-transfection 
group was as high as 80%, which was higher than that of the two single transfection groups, and it showed long-term 
protective immunity to the surviving mice. Therefore, gene therapy of AMPs alone or in combination with other drugs 
may be used for the treatment of human cancer.

Modified AMPs for Cancer Treatment
In addition to the combination with chemotherapeutics, AMPs could also be modified by tumor-targeting peptides or cell- 
penetrating peptides to enhance the tumor-targeting and anti-tumor activities of the AMPs. Tumor-targeting peptides such 
as NGR, RGD, and CREKA can specifically bind to specific ligands overexpressed on the surface of tumor cell 
membranes, so they have high tumor cell selectivity and can be used as tumor-targeting vectors.178–180 As an example, 
Tachyplesin, an AMP derived from the horseshoe crab, was modified with RGD peptide, which significantly increased 
the enrichment of Tachyplesin in tumor blood vessels and tumor tissues. Results proved that the anti-tumor effects of 
RGD-Tachyplesin both in vivo and in vitro were better than those of Tachyplesin used alone. This method could enhance 
the effectiveness and meanwhile reduce the toxicity of AMPs.161 In another research, Ma et al181 coupled an AMP, 
D(KLAKLAK)2, with a tumor-targeting peptide, TMTP1, and found that the new fusion peptide effectively inhibited the 
growth and metastasis of prostate cancer and gastric cancer transplanted in nude mice, which was expected to become 
a new effective anti-tumor agent. For another example, when the AMP, MP, and the cell-penetrating peptide, Antp, were 
used alone, they only showed weak cytotoxicity with no obvious tumor cell killing effect. However, their fusion peptide, 
MPGA, exerted strong tumor cell killing activity by destroying the cell membranes.182

Anti-Cancer Application of AMPs Related Nanoparticles
Although AMPs have good prospects for tumor treatment due to their broad-spectrum anti-cancer activity and low 
possibilities to induce drug resistance in tumor cells, some limitations in their practical applications have emerged with 
the increasing research. The main problem is that AMPs are easily hydrolyzed by proteases and they have certain 
hemolytic toxicity in vivo. Secondly, the quantity of natural AMPs is limited, but the production cost is high. Therefore, 
how to rationally design and optimize AMPs to maintain their tumor cell selectivity as well as their stable anti-cancer 
activities is of great significance.183,184 The development of nanotechnology has inspired researchers. In the past few 
decades, nanotechnology has been widely used, especially in the medical field. At present, nanoparticles in medical 
research are generally between 1–500nm in diameter, which has unique physical, chemical, and biological properties, 
such as size effect, long circulation in vivo, controlled release of drugs, and prevention of drug degradation.185,186 

Functionalized nanoparticles have many possibilities in overcoming the shortcomings of AMPs, which provides a huge 
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prospect for better application of AMPs. Antimicrobial peptide nano-preparations used in anti-cancer research mainly 
include two aspects: (1) AMPs are used as drugs and nanomaterials are used as a drug delivery system. AMPs can be 
loaded onto nanocarriers for targeted delivery of the antimicrobial peptides to tumor sites. The purpose is to reduce the 
in vivo hemolytic toxicity and immunogenicity of exogenous AMPs, while retaining their anti-cancer activity, aiming to 
reduce the peptide dose required for treatment while ensuring safety;27,187 (2) Antimicrobial peptide modified nano- 
formulations are used as drug carriers. Many AMPs have similar properties to cell-penetrating peptides, for example, 
they are usually positively charged and the peptide sequence contains both multiple basic amino acids and hydrophobic 
amino acids, which help them to effectively interact with tumor cell membranes. Thus, AMPs can be used as cell- 
penetrating peptides to modify the surface of the nano-preparations so as to transfer anti-cancer chemicals to the tumor 
sites and finally achieve an enhanced anti-cancer effect.188–190

AMPs Worked as Effective Component
At present, there are many reports on antimicrobial peptide nano preparations. The AMP, called CA, was isolated from 
Plutella xylostella and was found to have good anti-liver tumor activity. Liu et al191 prepared CA-loaded nanoparticles 
based on poly(lactic-co-glycolic acid) (CA-PLGA-NPs), showing good activity against liver cancer HepG2 cells. As 
a carrier of the peptide CA, PLGA can not only improve the stability of CA in vitro but also prolong the action time of 
CA in the body. As a result, these nanoparticles showed good sustained-release effect, no obvious sudden-release 
phenomenon, and long platform release period, which could effectively reduce the dosage of peptide administrations, 
thereby supplementing the pharmaceutics basis for the delivery of the peptide CA. Another study incorporated Melittin, 
a typical AMP, into monolayer perfluorocarbon nanoparticles, which was verified to enhance the retention time of 
Melittin in vivo, prevent the peptide from being hydrolyzed by serum proteases, and significantly reduce the hemolytic 
toxicity of Melittin in vivo. More importantly, this nano-preparation retained the therapeutic effect of Melittin on 
melanoma models and pre-cancerous skin damage.192 In addition, Gamal’s group loaded the black snake 
(Walterinnesia aegyptia)-derived AMP onto silica nanoparticles. This preparation could significantly enhance the 
immune activity of normal lymphocytes,193 and it could induce cell cycle arrest or apoptosis in human prostate cancer 
cells194 and in a mouse model bearing human multiple myeloma.195 For another example, lycosin-I is an AMP isolated 
from the venom of Lycosa singorensis, which can interact with cell membranes and then kill tumor cells by destroying 
tumor cell membranes. Combining the tumor cell membrane selectivity of lycosin-I with the advantages of nano- 
preparation, Tan et al196 modified 60 nm gold particles with lycosin-I, which can significantly improve the transfer 
efficiency of the gold nanoparticles in tumor cells. At the same time, the lycosin-I-gold nanoparticles had low sensitivity 
to non-tumor cells and could selectively accumulate at tumor sites through blood circulation in tumor-bearing mice 
model, but were non-toxic to normal mice. Therefore, this nano-drug delivery system can be used as a new targeted drug 
delivery system in tumor treatment. With the help of the photothermal effect of gold nanorods, Tan’s research group also 
constructed lycosin-I modified gold nanorods. The modified gold nanorods maintained tumor selectivity of lycosin-I, and 
could generate heat under near-infrared (NIR) light irradiation to kill tumor cells. The results revealed the potential value 
of gold nanorods in tumor diagnosis and tumor photothermal treatment.

Liposome drug delivery system has been extensively studied among many different nano-preparations. At present, 
there are also some reports on the research of liposomes based on AMPs. For example, Temporin-1CEa, an AMP 
extracted from the skin secretions of Rana chensinensis, was found to have good in vitro antitumor activity.158 To solve 
the poor stability of Temporin-1CEa in vivo, prevent it from being hydrolyzed, and increase its tumor cell uptake rate, 
Wu et al197 constructed polyethylene glycol (PEG)-modified liposomes containing Temporin-1CEa (Temporin-1 CEa- 
liposomes) by using the reverse-phase evaporation method. PEG-modified Temporin-1 CEa liposomes showed better 
serum stability and higher cell uptake rate on the basis of retaining the anti-cancer effect of Temporin-1 CEa. In addition, 
L-K6, an AMP modified based on the AMP Temporin-1 CEb from Rana chensinensis, was proved to have good anti- 
cancer activity in vitro and was non-toxic to normal human cells. Besides, L-K6 was less likely to cause cancer cell 
resistance compared with other anticancer drugs.198 Chen et al199 used L-K6 as a drug to prepare L-K6 liposomes in 
order to maintain the activity of L-K6 while improving its biological stability. The L-K6 liposome drug delivery system 
better retained the selective anti-cancer activity of L-K6, and exhibited a similar inhibitory effect on the proliferation of 
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human breast cancer MCF-7 cells as L-K6 while showing no obvious toxicity to human immortalized epidermal HaCaT 
cells. To further improve the biological stability of L-K6 liposomes, the author also prepared PEG-modified L-K6 
liposomes. The results showed that the particle size of PEG-modified L-K6 liposomes was reduced, the liposome 
appearance was more thorough, and the serum stability was improved, which was more conducive to the accumulation 
of the drug to the tumor site and play a more potent anti-cancer effect. In addition, Huang et al200 designed a hybrid 
cytolytic peptide, α-melittin, by linking the N-terminus of melittin to the C-terminus of an amphipathic α-helical peptide 
via a GSG linker. α-Melittin could interact with phospholipids and self-assemble into lipid nanoparticles, which 
significantly enhanced the anti-cancer activity of melittin. At the same time, this α-melittin-based lipid nanoparticle 
efficiently shielded the positive charge of melittin within the phospholipid monolayer, resulting in the reduced cytotoxi-
city and a widened safe dosage range, at the same time. In addition, Yamada et al201 prepared transferrin modified 
liposomes combined with a pH-sensitive fusion peptide and encapsulated the wasp-derived peptide mastoparan. The 
liposomes could target mastoparan to the mitochondrial site of the human chronic myelogenous leukemia K562 cells, 
destroying the mitochondrial membrane and inducing the release of cytochrome c, thereby causing cell death.

The above studies indicate that the nano-drug delivery system is a good delivery system for peptide anti-cancer 
drugs, which can improve the tumor targeting of peptide anti-cancer drugs, effectively improve the stability of peptide 
anti-cancer drugs, and reduce their cytotoxicity, which is of great help to promote the clinical application of peptide 
drugs.

AMPs Modified as Functional Ligands
In addition to being used as anticancer drugs in nanoparticles, AMPs can also be modified on the surface of the drug- 
loaded nano-preparations as functional ligands. Currently, a large number of studies have been conducted to improve the 
cellular uptake of nanoparticles by covalently combining cationic or amphiphilic cell-penetrating peptides to the surface 
of nanoparticles. Tat is one of the most studied and applied cell-penetrating peptides. Tseng et al202 modified the surface 
of Adriamycin-loaded liposomes with Tat, which increased the uptake of Adriamycin in cancer cells by nearly 12 times, 
thus significantly enhancing the antitumor activity of Adriamycin. Similarly, Sharma’s group203 used the penetratin, 
a Drosophila-derived cell-penetrating peptide, to modify the Adriamycin-loaded liposomes, thus significantly improving 
the transfer efficiency of the liposomes in brain tumor cells. Similar to cell-penetrating peptides, most AMPs are also 
cationic or amphipathic, therefore, some researchers believe that cell-penetrating peptides and AMPs are both “mem-
brane-active peptides”. The cell penetration effect of certain AMPs has also been widely reported, and many peptides 
have been used both as antimicrobial peptides and cell-penetrating peptides, such as insect-derived peptide Pyrrhocoricin, 
bovine-derived peptide Lactoferricin, Drosophila-derived peptide penetratin and so on.190,204 Therefore, it is feasible to 
use AMPs as the ligands to modify the surface of drug-loaded nano preparations in order to improve the cell penetration 
ability, tumor-targeting ability, and the tumor cell uptake rate the nanoparticles, thus promoting drug action. In summary, 
the AMP-based nano preparations are also a potential delivery model of anti-cancer drugs.

Challenges and Ways Forward
Although there are many basic studies on AMPs, the potential anti-cancer mechanisms of some AMPs are still difficult to 
clarify. Also, there are very few in vivo and clinical experiments of AMPs, and there is a lack of effective correlation 
between the in vitro sensitivity tests and the animal models.124 Therefore, strengthening the research on the pharmaco-
kinetics and pharmacodynamics of AMPs, and establishing the analysis of the correlation between in vitro stability and 
bioavailability in animal models may solve this problem.

Besides, the most serious barrier to the clinical use of anti-cancer AMPs remains the enzymatic degradation and 
inactivation of these cytotoxic peptides through interactions with negatively charged serum proteins. The hemolytic 
toxicity and easy hydrolysis of AMPs are also prominent problems that restrict the clinical application of AMPs. Thus, 
how to maintain the stable anti-cancer activity of AMPs and at the same time reduce its hemolytic toxicity as well as 
rational design and optimization of AMP drugs is of great significance. To solve the above problems, two ideas can be 
considered. One is to optimize the structure of AMPs as the structure–activity relationship is also crucial to improve the 
anti-cancer effects of AMPs. The methods of peptides design and modification to improve the stability, half-life time, and 
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specificity of AMPs include amino acid substitution, cyclization, hybridization, fragmentation, modification of C- and 
N-terminal of a peptide by polymer or targeting molecules,205,206 etc. Amino acid substitution is the most basic 
modification method. Many structure–activity studies on small linear AMPs indicated that the net positive charges, 
hydrophobicity, amphiphilicity, and helicity were the most important factors that affect their activities.207 As we know, 
most AMPs are membrane activity peptides, and that the enhanced positive charges of AMPs usually lead to higher 
activity, likely because the enhanced positive charges of AMPs result in increased affinity to the negatively charged 
cancer cell membranes.208 However, higher positive charges do not always lead to better activity, and a high anti-
microbial activity could be achieved within an optimal hydrophobicity window.209 Excessive hydrophobicity may lead to 
strong hemolytic toxicity, which may be caused by the self-binding of the peptides that may impede the peptides pass 
through prokaryotic cell membranes without hindering their passage through eukaryotic cell membranes.210 In summary, 
it is better to keep a balance between the overall positive charges, the hydrophobicity, and other factors when modifying 
the structures of AMPs.

Another strategy is to design a new AMP drug delivery system so as to protect AMPs from being enzymatically 
degraded and reduce their hemolytic toxicity. Due to the special physicochemical properties of AMPs, the development 
of a specific delivery system to protect AMPs can increase the therapeutic index of AMPs while also improving their 
feasibility of intestinal absorption and oral administration. Combining AMPs with modern nanotechnology is one of the 
options for developing new antimicrobial peptide delivery systems, which is of great significance to promote the clinical 
application of new anti-cancer drugs of AMPs. Nano-drug delivery systems can well maintain the anti-cancer activity of 
AMPs while avoiding their enzymatic hydrolysis and reducing their hemolytic toxicity. Alternatively, a specific ligand 
can be used to achieve direct tumor targeting of antimicrobial peptide nanoparticles, and the targeted delivery of AMPs to 
the tumor sites can reduce the amount of peptide needed to achieve a therapeutic effect, thus avoiding severe side effects. 
Furthermore, in order to achieve the rapid release of drugs, smart stimuli-responsive nano-drug carriers have received 
extensive attention for anti-cancer drug delivery. Smart nano-drug carriers mainly include tumor microenvironment- 
respond nano-drug carriers and external stimulus-respond nano-drug carriers. Smart Stimuli-Responsive nanocarriers can 
be stably transported in the body, and after reaching the tumor site, by sensing the chemical environment of the tumor site 
or receiving external stimuli, the loaded AMPs can be released at the necessary time and a specific site. As a result, the 
peptide concentration in the tumor site can be increased, the anti-cancer efficiency of the AMPs can be enhanced, and the 
toxic side effects on normal tissues can be reduced.

Future Prospective
Due to the severe side effects of chemotherapy drugs and the emergence of tumor cell resistance, the clinical efficacy of 
chemotherapy drugs is greatly reduced. Better than chemotherapy drugs, most AMPs can specifically inhibit the growth 
of most tumor cells, but are harmless to normal cells. Many AMPs can also promote the proliferation of white blood cells 
and fight tumors through the regulation of the body’s immunity.211 Due to the unique structural properties and unique 
anti-cancer mechanisms of AMPs, as well as its advantages in cell selectivity and resistance to drug-resistant tumors, 
AMPs bring new hope for the development of anti-cancer drugs. There are different perspectives of antimicrobial 
peptides in anti-cancer application. On the one hand, AMPs with obvious killing effect on tumors can be directly used as 
anti-cancer drugs. On the other hand, some AMPs can be used as adjuvant drugs for tumor treatment. Therefore, in the 
past few years, such AMPs have been extensively studied as auxiliary drugs for anti-cancer drugs.177,212 Additionally, 
some AMPs are too cytotoxic and may have a killing effect on normal cells, but when such AMPs at low-dose are 
combined with chemotherapy drugs, the cytotoxicity of those AMPs can be restrained and at the same time, the anti- 
cancer effect of chemotherapy drugs can be significantly enhanced.169,171

Besides, there are many other difficulties that need to be overcome in the process of AMPs, from basic research to 
clinical applications. First of all, the resources of natural AMPs are limited, and the chemical synthesis of AMPs needs 
high cost.213 Although genetic engineering is currently a relatively economical and practical method for large-scale 
production of AMPs, there are still many limitations.214 For example, the antibacterial and antiviral capabilities of AMPs 
make it difficult to use the commonly used bacteria and viruses as expression systems. Besides, with small molecular 
weight, the separation and purification of AMPs are difficult, and the gene expression yield is still insufficient. Therefore, 
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how to reduce the production cost of AMPs is one of the problems that must be solved in the practical application of 
AMPs.

With the in-depth research on AMPs, the optimization of AMPs structure and the design of new nano-delivery 
systems for AMPs will be easier to achieve, and the application of AMPs in the clinical treatment of tumors is just 
around the corner.
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