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Purpose: Studies have shown that neutrophil-mediated formation of neutrophil extracellular traps (NETs) leads to increased 
inflammatory response and cellular tissue damage during myocardial infarction (MI). We aimed to identify and validate possible 
hub genes in the process of NETs-mediated cell damage.
Methods: We performed an immune cell infiltration analysis of the MI transcriptome dataset based on CIBERSORT and ssGSEA 
algorithms. Gene expression profiles of NETs formation (GSE178883) were used to analyze the physiological processes of peripheral 
blood neutrophils after phorbol myristate acetate (PMA) stimulation. Bioinformatics and machine learning algorithms were utilized to 
find candidate hub genes based on NETs-related genes and transcriptome datasets (GSE66360 and GSE179828). We generated the 
receiver operating curve (ROC) to evaluate the diagnostic value of hub genes. Next, the correlation between hub genes and immune 
cells was analyzed using CIBERSORT, ssGSEA and xCell algorithms. Finally, we used quantitative real-time PCR (qRT-PCR) and 
immunohistochemistry to verify gene expression.
Results: Immune cell infiltration analysis revealed that inflammatory cells such as neutrophils were highly expressed in the peripheral 
blood of patients with MI. Functional analysis of differentially expressed genes (DEGs) in GSE178883 indicated that the potential 
pathogenesis lies in immune terms. Using weighted gene co-expression network analysis (WGCNA) and machine learning algorithms, 
we finally identified the seven hub genes (FCAR, IL1B, MMP9, NFIL3, CXCL2, ICAM1, and ZFP36). The qRT-PCR results showed that 
IL-1B, MMP9, and NFIL3 mRNA expression was up-regulated in the MI group compared to the control. Immunohistochemical results 
showed high MMP9, IL-1B, and NFIL3 expression in the infarcted area compared to the non-infarcted area and sham-operated groups.
Conclusion: We identified seven hub genes associated with NETs-mediated cellular damage during MI. Our results may provide 
insights into the mechanisms of neutrophil-mediated cell injury during MI.
Keywords: myocardial infarction, neutrophils, cell damage, neutrophil extracellular traps, bioinformatics, endothelial cells

Introduction
Myocardial infarction (MI), caused by thrombosis or arterial occlusion, is the leading cause of morbidity and mortality 
among all cardiovascular diseases.1 Many studies have shown that immune cells are involved in the inflammatory 
response to MI and heart failure.2–5 For example, myocardial injury triggers an infiltration of neutrophils and macro-
phages into the heart tissue. These immune cells play a crucial role in removing cellular debris, initiating inflammation 
through the secretion of pro-inflammatory cytokines, and attracting other pro-inflammatory cells.2,6

Neutrophils, the most predominant type of leukocyte, arrive at the site of inflammation in a cascade-like manner. This results 
in the activation of specific effector functions such as degranulation, phagocytosis, and the release of reactive oxygen species.7 

In 2004, Brinkmann et al demonstrated that neutrophils stimulation with phorbol myristate acetate (PMA) release granule 
proteins and chromatin that together form extracellular fibers that bind Gram-positive and -negative bacteria.8 Subsequent 
studies by Fuchs et al showed that upon stimulation, the nucleus of neutrophils loses its shape, followed by disintegration of the 
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nuclear envelope and granule membranes, allowing for the mixing of neutrophil extracellular traps (NETs) components, and 
finally, NETs are released with the rupture of the cell membrane.9 Distinct from apoptosis and necrosis, this cell death process is 
dependent on the creation of reactive oxygen species (ROS) by NADPH oxidase.9 This will eventually lead to the release of 
myeloperoxidase (MPO) and neutrophil elastase (NE) from cytoplasmic azurophilic granules.10 Except for degrading virulence 
factors and killing bacteria, there is growing evidence that NETs play a role in a variety of diseases, such as sepsis,11 acute 
respiratory distress syndrome (ARDS),12 chronic obstructive pulmonary disease (COPD),13 systemic lupus erythematosus 
(SLE),14 and atherosclerosis.15 Recently, many studies have shown that NETs play a damaging role in acute myocardial 
infarction (AMI).16 For example, one study found that in addition to providing a scaffold for thrombus formation, NETs 
formation also exacerbates endothelial cell injury, which may be an important contributor to the development of MI.17

Here, we conducted a comprehensive analysis of NETs-related genes in MI, with a particular focus on endothelial cell 
damage by NETs. We comprehensively analyzed the differentially expressed genes (DEGs) in endothelial cells stimu-
lated by NETs and took the intersection of these DEGs with MI-related genes. We expect to discover biomarkers of MI 
associated with NETs formation, especially regarding endothelial cell injury by NETs. Our findings may provide a new 
direction for studying NETs-mediated cell injury, particularly endothelial cells during MI.

Materials and Methods
Data Source
All gene expression data (microarray data, RNA-seq data) were downloaded from the Gene Expression Omnibus (GEO) 
database. The datasets GSE48060 and GSE66360 were annotated by platforms of GPL57, the dataset GSE62646 was 
annotated by platforms of GPL6244, GSE178883 and GSE179828 were annotated by platforms of GPL2467. In addition, 
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we used an online web server (https://tabula-muris.ds.czbiohub.org/) to analyze gene expression in single-cell RNA-Seq 
data from a set of healthy mouse hearts.18

Identification and Enrichment Analyses of DEGs
GEO2R is a tool for differential analysis of expression profiling microarrays in the GEO database, with which we can 
compare two or more datasets of samples from the GEO database to obtain the DEGs. DEGs of GSE178883 and 
GSE179828 were respectively identified using GEO2R. The volcano diagram of DEGs was drawn using the “ggplot2” 
package. Based on the DAVID database (https://david.ncifcrf.gov/), the functional and molecular biological properties of 
the overlap were analyzed by GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) annotations.

Protein-Protein Interaction (PPI) Network Construction and Gene Set Enrichment 
Analysis (GSEA)
Based on the STRING database (http://string-db.org), the PPI network of overlap DEGs was created and visualized using 
Cytoscape software (version 3.9.1). GSEA was performed using the GSEA software (version 4.3.2). GSEA is 
a threshold-free method that examines all genes on the basis of their differential expression rank or other score, without 
first filtering the genes based on a predetermined set of criteria.

Evaluation of Immune Cell Infiltration
CIBERSORT, is a method for characterizing the cell composition of complex tissues from their gene expression 
profiles.19 The correlation analysis of 22 infiltrating immune cell types was evaluated using the “corrplot” package in 
the R software. ssGSEA is an extension of the GSEA method that allows for the definition of enrichment scores that 
represent the absolute enrichment of genomes in each sample in a given dataset.20 xCell, based on the ssGSEA method, 
performed cell type analysis using gene expression data from 64 immune and stromal cells.21

Weighted Gene Co-Expression Network Analysis (WGCNA)
WGCNA is a computational approach in systems biology that designed to characterize the patterns of correlation 
between genes across several microarray datasets.22 WGCNA can be used to identify modules of highly correlated 
genes, to summarize these modules using the module eigengene or an intramodular hub gene, and to calculate module 
membership measures. In this study, the gene expression matrices were subjected to hierarchical cluster analysis in order 
to identify and remove any outliers. Subsequently, a correlation heatmap was generated to visualize the relationship 
between modules and traits, with the inclusion of P-values within the respective boxes. The relationship between gene 
expression and AMI was determined by evaluating gene significance and module membership.

Machine Learning
To find potential hub genes, three different machine learning algorithms were utilized. The Lasso regression analysis 
technique, performed through the “glmnet” R package, utilizes regularization to minimize prediction error. Support 
vector machine (SVM) is a supervised classification algorithm based on statistical learning theory. The random forest 
(RF) algorithm, implemented using the “randomForest” R package, was employed to identify a subset of candidate 
genes. This algorithm leverages ensemble learning by integrating numerous trees to enhance predictive accuracy. The 
overlapping genes identified by the Lasso model, SVM-RFE and random forest were defined as hub genes for subsequent 
research and validation.

Animals Experimental Model
All experimental animal procedures were approved by the Animal Care and Use Committee of Renmin Hospital of Wuhan 
University, and were also in accordance with the Guidelines for the Care and Use of Laboratory Animals published by the US 
National Institutes of Health. The mice were placed on the heating operation pad in the right lateral decubitus position, near the 
left axilla, the mouse skin and the third fourth rib were cut, the heart and left anterior descending artery (LAD) were fully 
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exposed, the blood vessels were ligated with 7–0 stitched sutures at approximately 2 mm from the lower margin of the left atrial 
appendage under a stereomicroscope, and the distal area of the ligature was whitish due to ischemia, which was indicated by 
successful surgery. Mice in the sham group took the same operation but without suture ligation to ligate the blood vessels, and 
then the muscle and skin at the incision were sutured by layer.

Echocardiography and Speckle-Tracking Analysis
The day before mice were sacrificed, they were anesthetized with isoflurane (1.5–2%) and underwent transthoracic 
echocardiography to assess cardiac function. Echocardiographic parameters, such as left ventricular internal dimension 
diastolic (LVIDd), left ventricular internal dimension systolic (LVIDs), left ventricular ejection fraction (LVEF), heart 
rate (HR) and fractional shortening (FS), were measured using M-mode tracings. These measurements were obtained by 
averaging data from a minimum of five consecutive cardiac cycles. To evaluate the impact of myocardial remodeling 
following MI injury on cardiac dynamics at both global and regional levels, high-frequency echocardiography was 
performed using the speckle-tracking algorithm. To assess radial and longitudinal strain, strain rate, displacement, and 
velocity, cardiac cycles were acquired from the parasternal long-axis view.

Immunohistochemistry (IHC)
Isolated mouse hearts were immediately placed in 10% KCl solution and fixed in 10% formalin for 12 hours, followed by 
gradient alcohol dehydration, xylene hyalinization and paraffin embedding, and made into sections (4–5 μm). The paraffin 
sections were fully immersed in xylene solution, and after the immersion was completed, they were removed and dehydrated in 
a gradient alcohol solution. Paraffin sections were heated for antigen recovery using the pressure cooker method, and the sections 
were blocked for 1 h and then incubated overnight in a refrigerator at 4°C with antibodies against IL-1β (Abmart, TA5103), 
MMP9 (ABclonal, A11521), and the NFIL3 (Proteintech, 11773-1-AP) receptor, followed by incubation of the anti-rabbit 
/mouse EnVisionTM +/horseradish peroxidase reagent at a temperature of 37 °C for an additional 1 h, and then detected using 
a DAB staining kit. Images were quantified with ImageJ software.

RNA Isolation and Quantitative Real-Time PCR
Total RNA was extracted from the left ventricular tissue samples by grinding and lysis with TRIzol lysis solution, 
extracted by trichloromethane, precipitated by isopropanol and rinsed by 75% ethanol. The purity as well as the 
concentration of the proposed RNA was determined by NanoDrop One/Onec (Thermo Scientific), and the dilution 
volume was calculated and reverse transcription was performed. Light Cycler 480 SYBR Green 1 Master Mix was used 
to perform qRT-PCR. The data was analyzed using the 2^-(∆∆Ct) method and normalized to GAPDH. The details about 
all primer sequences are listed in Table S1.

Statistical Analysis
Statistical analyses were performed with GraphPad Prism software (version 9.0) or R software. The experimental data is in the 
form of mean ± SD. Two independent sample t-tests are used for sample comparison between two groups, and one-way ANOVA 
is used for sample comparison between multiple groups. A P value less than 0.05 was considered statistically significant.

Results
Immune Cell Infiltration Analysis
The research flowchart is presented in Figure 1. Cardiac healing following MI involves the mobilization and activation of 
immune cells.23 For example, monocytes circulate the vasculature at a steady state and are recruited to sites of 
inflammation and engage in the development of cardiovascular disease.24 Therefore, we performed an immune infiltra-
tion analysis of the gene expression dataset GSE48060 using two algorithms, “CIBERSORT” and “ssGSEA” to 
determine whether activated neutrophils are linked to the different disease states. The correlations between the infiltrating 
immune cells of “CIBERSORT” are shown in Figure 2A. The immune cell composition of samples from the AMI and 
control groups was compared (Figure 2B). Boxplot was generated to visualize the differences in immune infiltrating cell 
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types of “CIBERSORT” between the AMI and control groups (Figure 2C). The boxplot analysis of the differential in 
immune cell infiltration demonstrated that patients with AMI exhibited a significantly elevated amounts of neutrophils 
compared to the control group. We also used the ssGSEA algorithm to analyze the immune cell infiltration in GSE48060 
(Figure 2D and E). This algorithm compares the expression of 28 immune cell subtypes between the AMI and control 
groups. Similar to the results of the CIBERSORT analysis, there were significant differences in neutrophil expression 
levels between the two groups.

Figure 1 Flowchart of the study design. 
Abbreviations: AMI, acute myocardial infarction; PMA, phorbol myristate acetate; NETs, neutrophil extracellular traps; NRGs, NETs-related genes; DEGs, differentially 
expressed genes; HUVECs, human umbilical vein endothelial cells.
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Functional Annotation of PMA-Stimulated Neutrophils
NETs are reticular structures released by neutrophil activation and are closely related to the subsequent damage after MI.17 NETs 
are involved in the inflammatory pathophysiology of a variety of illnesses, such as cardiovascular and infectious diseases.25 PMA 
can induce neutrophil aggregation and subsequent NETs release. Therefore, we analyzed differential gene expression after PMA 
stimulation of neutrophils. We selected human circulating neutrophils stimulated with 100 nM PMA or treatment with a control 
medium in GSE178883. Volcano plot showing the expression of differential genes between the two groups (Figure 3A). Figure 3B 
shows the top GO items under biological process (BP), molecular function (MF), and cellular component (CC). Next, functional 
enrichment analysis was performed based on the DEGs. The KEGG pathway enrichment analysis showed that the up-DEGs were 
mainly enriched in antigen processing and presentation, Th17 cell differentiation and Th1 and Th2 cell differentiation (Figure 3C). 

Figure 2 Immune cell infiltration analysis. (A) Correlation matrix of 20 immune cell subtype compositions. Blue represents positive correlation, Orange represents negative 
correlation, and the number in the square represents correlation. (B) Proportion of 20 subtypes of immune cells in different samples from AMI and control groups. (C) The 
proportion of the 20 immune cell subtypes in the AMI group and the control group is visualized in a barplot. (D) Heatmap of immune cell subtypes expression in AMI and 
control groups. (E) The barplot compares 28 immune cell subtypes proportion between AMI and control groups based on ssGSEA algorithm. *P < 0.05; **P < 0.01; ***P < 0.001.
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The down-DEGs were mainly enriched in neutrophil extracellular trap formation, Fc gamma R−mediated phagocytosis and 
cytokine−cytokine receptor interaction (Figure 3C). The results of GSEA analysis showed that HALLMARK_ 
MYC_TARGETS_V2, HALLMARK_TNFA_SIGNALING_VIA_NFKB and HALLMARK_MYC_TARGETS_V1 were the 
most enriched gene sets in PMA group (Figure 3D). This confirmed that activation of inflammation-related pathways is an 
important feature of PMA-stimulated neutrophils.

Significant Module Genes Identification in AMI via WGCNA
The WGCNA method was used to identify gene-gene modules associated with AMI and controls. We first eliminate the 
abnormal samples by setting a threshold (Figure 4A). A scale-free co-expression network was then established with the 
soft thresholding power to 14 (Figure 4B). A total of five modules were identified for future analysis. The primed 
modules were eventually displayed under the clustering tree (Figure 4C). We made a map of the connections between the 
identified modules, and the brown module showed a strong correlation with AMI (Figure 4D). The correlation between 
the module mean and gene significance (GS) for the brown module was found to be highly significant, providing further 
evidence suggesting that genes inside the brown module may possess functional significance related to AMI (Figure 4E). 

Figure 3 Functional annotation of PMA-stimulated neutrophils. (A) Volcano plot of the DEGs in GSE178883. (B) GO enrichment analysis of DEGs. (C) KEGG functional 
enrichment analysis of up- and down-regulated genes in GSE178883. (D) GSEA comparing PMA treatment with vehicle control. Enrichment plots of key pathways in PMA 
treatment neutrophils. 
Abbreviations: PMA, phorbol myristate acetate. NES, Normalized Enrichment Score.
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Figure 4F shows the heatmap of the selected gene. A total of 311 genes within the brown module were included in the 
subsequent study (Table S2).

Identification of Hub Genes Associated with AMI and NRGs Through Machine 
Learning
We next obtained NETs-related genes (NRGs) from the previous literature.26 After taking the intersection of NRGs and 
MI-related genes from the brown module, we finally obtained 28 Intersecting genes (AMI-NRGs) (Figure 5A). The 
KEGG pathway enrichment analysis showed that IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor 

Figure 4 Significant module genes identification in AMI via WGCNA. (A) Sample clustering to detect outliers (B) Mean connectivity analysis and scale-free index analysis for 
different soft-threshold power. (C) A dendrogram illustrating the clustering of genes, with distinct modules represented by different colors. (D) Heatmap of the correlation 
between module characteristic genes and AMI (E) A scatter plot was generated to show the association between GS and module membership (MM) within the brown 
module. (F) Network heatmap plot of genes.
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Figure 5 Identification of hub genes associated with AMI and NRGs through machine learning. (A) The 28 overlay genes between WGCNA analysis and NETs-related genes 
were presented by Venn diagram. (B) The most enriched KEGG pathways were presented by the Sankey diagram. (C) GO enrichment analysis of the AMI-NRGs. (D) PPI 
network of AMI-NRGs, isolated nodes were removed. (E and F) Visualization of Lasso regression. (G) The column shows that the random forest algorithm was used to 
order genes according to their importance score. (H) The hub genes were screened by the SVM-RFE algorithm. (I) The Venn diagram displays four common genes identified 
by Lasso, random forest and SVM-RFE algorithms, which were identified as the hub genes in AMI-NRGs.
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signaling pathway and NF-kappa B signaling pathway were significantly enriched (Figure 5B). The results of GO 
functional enrichment indicated that the AMI-NRGs were mainly enriched in “inflammatory response”, “positive 
regulation of inflammatory response”, “neutrophil chemotaxis” regarding BP; “extracellular region”, “extracellular 
space”, “specific granule membrane” regarding CC; “identical protein binding”, “chemokine activity”, “RAGE receptor 
binding” regarding MF (Figure 5C). We then imported the AMI-NRGs into the STRING database and built a PPI 
network via Cytoscape (Figure 5D). Subsequently, three machine learning algorithms, including SVM-RFE, random 
forest, and Lasso regression, were employed to identify and select potential hub genes (Figure 5E–H), and we finally got 
four hub genes (FCAR, IL1B, MMP9 and NFIL3) (Figure 5I).

Screening of DEGs from GSE179828
Neutrophil-mediated endothelial cell activation and injury play important roles in multiple disease states.27 The release of 
NETs in blood vessels may trap red blood cells (RBCs), activate platelets, and damage the endothelium thereby 
promoting coagulation, vascular occlusion, and thrombosis.27 Therefore, we analyzed the RNA-sequencing data of 
NETs-stimulated endothelial cells. We finally identified a set of 985 genes that were differentially expressed in human 
umbilical vein endothelial cells (HUVECs), 623 genes are upregulated, and 362 genes are downregulated (Figure 6A). 
The KEGG pathway enrichment analysis showed that TNF signaling pathway, NF-kappa B signaling pathway and 
Osteoclast differentiation were significantly enriched (Figure 6B). The GO analysis showed that the differential genes 
were most significantly enriched in the regulation of transcription from RNA polymerase II promoter in BP, nucleus in 
CC, and protein binding in MF (Figure 6C–E, Table S3).

Identification of Hub Genes Associated with AMI and NETs Stimulated Endothelial 
Cells
We next take the intersection of the endothelial cells-related genes acquired from GSE179828 with AMI-related genes 
from the brown module and finally obtained 59 intersecting genes (AMI-ECRGs) (Figure 7A). Functional enrichment 

Figure 6 Screening of DEGs from GSE179828. (A) Volcano plot of GSE179828. (B) The KEGG enrichment barplot of the DEGs. (C–E) The top 20 GO items under BP, 
CC, and MF.
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Figure 7 Identification of hub genes associated with AMI and NETs stimulated endothelial cells. (A) The 59 overlay genes between WGCNA analysis and the differentially 
expressed gene of GSE179828 were presented by Venn diagram. (B) The most enriched KEGG pathways were presented by the Sankey diagram. (C) GO enrichment 
analysis of the AMI-ECRGs. (D) PPI network of AMI-ECRGs, isolated nodes were removed. (E) The intersection of the first 15 genes from each of the four algorithms 
(Degree, Stress, Radiality and Betweenness) in the cytoHubba plugin resulted in the identification of eleven hub genes. (F and G) Visualization of Lasso regression. (H) The 
column shows that the random forest algorithm was used to order genes according to their importance score. (I) The hub genes were screened by the SVM-RFE algorithm. 
(J) The Venn diagram displaying three common genes identified by Lasso, random forest and SVM-RFE algorithms, which were identified as the hub genes in AMI-ECRGs.
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analysis was performed based on the AMI-ECRGs (Figure 7B and C). The enrichment results are similar to the analysis 
outcome of AMI-NRGs, TNF signaling pathway, NF-kappa B signaling pathway and IL-17 signaling pathway are the top 
three enriched pathways (Figure 7B). We then imported the AMI-ECRGs into the STRING database and built a PPI 
network via Cytoscape (Figure 7D). The CytoHubba plugin’s four algorithms (Degree, Stress, Betweenness, and 
Radiality) were then utilized to identify common genes (Figure 7E). Finally, we screen out potential hub genes using 
three machine learning algorithms (random forest, Lasso regression, and SVM-RFE) (Figure 7F–I). CXCL2, ICAM1, 
and ZFP36 were identified as the intersection of common genes from SVM-RFE, random forest, and Lasso. (Figure 7J).

Expression Profiles of Hub Genes in Different Cell Types of the Heart
The network of hub genes and their co-expression genes was created using the GeneMANIA platform, as shown in 
Figure 8A and B. Next, we used a publicly available single-cell RNA-Seq and FACS database of healthy mouse hearts to 
verify hub gene expression (Figure 8C and D). Because FCAR is not expressed in mice, we selected the remaining six hub 
genes for analysis. As shown in Figure 8D, Il1b, Cxcl2 and Mmp9 were primarily expressed in leukocytes and icam1 was 
mainly expressed in endothelial cells. Nfil3 is mainly expressed in fibroblasts and cardiomyocytes, whereas Zfp36 is 
ubiquitously expressed in a wide range of cells including endothelial cells, fibroblasts, and leukocytes. The dataset 
GSE95755 serves as a comprehensive transcription resource that encompasses diverse cardiac cell types throughout the 
processes of heart development, repair, and regeneration.28 We selected cells isolated from infarcted and non-infarcted areas of 
adult mouse hearts for our subsequent validation. Figure 8E shows the expression levels of hub genes in the four cell types 
(cardiomyocyte, fibroblast, endothelial cell and leukocyte) between the MI and sham groups. The expression levels of Il1b, 
Mmp9, Cxcl2 and Zfp36 were elevated in all four cell types after the MI operation compared to the sham group (Figure 8F–I).

The Diagnostic Value of Hub Genes
We evaluated the predictive accuracy of the hub genes (AMI-NRGs and AMI-ECRGs) in distinguishing normal individuals an 
AMI. Receiver operating curve (ROC) were used to assess the diagnostic value of each candidate hub gene. The normal 
individuals and MI patients in the dataset of GSE66360 could be accurately distinguished (Figure 9A–D and K–N). The AMI- 
NRGs and AMI-ECRGs also demonstrated significant accuracy in distinguishing AMI from normal individuals in GSE66360, 
with an AUC of 0.938 (95% CI 0.8911 to 0.9848) and an AUC of 0.909 (95% CI 0.8547to 0.9633) (Figure 9E and N). We also 
evaluated our hub genes in another dataset GSE62646 (Figure 9F–J and O–R) and the AMI-ECRGs got good results 
(Figure 9R). Additionally, we use several datasets including GSE66360, GSE62646 and GSE48060 to validate hub gene 
expression (Figure 9S). The relative expression levels of CXCL2, FCAR, ICAM1, MMP9, and NFIL3 were significantly 
higher in AMI than in the control groups in GSE66360 and GSE48060.

Correlation Analysis Between Hub Genes and Infiltrating Immune Cell Types
To conduct a more comprehensive evaluation of the differences in immune cell infiltration and signature gene sets 
between AMI and control samples, the CIBERSORT, ssGSEA and xCell algorithms were employed. Based on the 
correlation study conducted using CIBERSORT, it was found that, except CXCL2, the remaining six hub genes exhibited 
a significant positive correlation with the infiltration of neutrophils and macrophages M0 (Figure 10A). Consistent with 
the results of the analysis using CIBERSORT, the ssGSEA results showed that except CXCL2 the other six hub genes 
were positively correlated with activated dendritic cell, eosinophil, macrophage, mast cell, neutrophil and plasmacytoid 
dendritic cell (Figure 10B). In the test dataset GSE62646, our analysis also showed that neutrophils and monocytes were 
positively correlated with hub genes (Figure 10C and D). Next, we analyzed the dataset using the xCell algorithm. The 
results showed a high positive correlation of genes with monocytes, NKT and neutrophils (Figure 10E and F).

Establishing a Model of MI
To verify the expression level of hub genes, we established a MI model using C57BL/6J mice. Echocardiography was 
conducted to evaluate the functional alterations of the mice in each experimental group. Figure 11A shows the 
representative B- and M-mode echocardiographic imaging of the heart. Mice after MI surgery exhibited significantly 
decreased LVEF and FS but exhibited significantly increased LVIDs and LVIDd compared with the sham controls 
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Figure 8 Expression profiles of hub genes in different cell types of the heart. (A) Hub genes include AMI-NRGs (FCAR, IL1B, MMP9 and NFIL3) and AMI-ECRGs (CXCL2, 
ICAM1 and ZFP36). (B) Hub genes and their co-expression genes were analyzed by GeneMANIA. (C and D) Expression of hub genes in different cell types of the healthy 
mouse heart. Measured by FACS in the Tabula Muris publically-available dataset. (E) Expression levels of hub genes in different cell types between MI and sham groups. (F–I) 
Expression levels of hub genes in (F) cardiomyocyte, (G) fibroblast, (H) leukocyte and (I) endothelial cells between MI and sham groups.
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(Figure 11B–F). Strain analysis and 2-dimensional speckle-tracking echocardiography were used to further evaluate the 
detrimental cardiac remodeling that occurs in mice following an MI. As shown in Figure 11G–J, an evaluation of the 
function of the left ventricular using longitudinal and radial strain analysis showed a notable decrease in global 
longitudinal strain (GLS) and lower radial strain in the anterior segments in post-MI hearts of mice compared to mice 
in the sham group.

Figure 9 The diagnostic value of hub genes. (A–D and F–I) The ROC curve of FCAR, IL1B, MMP9 and NFIL3 in (A–D) GSE66360 and (F–I) GSE62646. (E and J) The ROC curve 
of AMI-NRG in (E) GSE66360 and (J) GSE62646. (K–M and O–Q) The ROC curve of CXCL2, ICAM1 and ZFP36 in (K–M) GSE66360 and (O–Q) GSE62646. (N and R) The ROC 
curve of AMI-ECRG in (N) GSE66360 and (R) GSE62646. (S) The expression of hub genes in GSE66360, GSE62646 and GSE48060. The comparison between the AMI and control 
groups used the mean t-test. P < 0.05 was considered to be statistically significant. *P < 0.05, **P < 0.01, ***P < 0.001.
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Validation of Gene Expression
To further demonstrate the expression pattern of hub genes, qRT-PCR verification was performed in the left ventricular tissue 
samples of the sham and MI groups. The results indicated that IL-1β, MMP9 and NFIL3 were highly expressed in MI samples 
(Figure 12A and B). However, the expression levels of ICAM, ZFP36, and CXCL2 were not significantly different between 
the two groups, which may be due to our insufficient sample size and single time point validation after MI. Next, we used 
immunohistochemistry to further verify the gene expression, in parallel, IL-1β, MMP9 and NFIL3 showed substantial 
upregulation in the infarcted areas (Figure 12C). Statistical analysis showed a significant increase in positive areas in the 
infarcted area, but no significant difference between the non-infarcted area and the sham groups (Figure 12D-F).

Figure 10 Correlation analysis between hub genes and infiltrating immune cell types. (A, B) Correlation heatmap showing the relationship between seven hub genes and 
the infiltrated immune cells based on CIBERSORT and ssGSEA algorithms in GSE48060. (C, D) Correlation heatmap showing the relationship between seven hub genes and 
the infiltrated immune cells based on CIBERSORT and ssGSEA algorithms in GSE62646. (E, F) Correlation heatmap showing the association between seven hub genes and 
the infiltrated immune cells based on the xCell algorithm. *P < 0.05, **P < 0.01, ***P < 0.001.
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Discussion
There is increasing evidence that supports the significant involvement of neutrophils in the progression of coronary artery 
disease (CAD), particularly in the subsequent problems that arise, such as acute coronary syndrome and heart failure.29 

For example, activated lesional smooth muscle cells (SMCs) attract neutrophils, triggering the ejection of neutrophil 

Figure 11 Establishing a model of myocardial infarction. (A) Representative B- and M-mode echocardiographic images of sham and MI mice. (B–F) Echocardiographic 
quantification of LVEF, FS, HR, LVIDd and LVIDs in the indicated groups (n=6). (G) Representative speckle-tracking echocardiography-based analysis of left ventricular 
function in sham and MI mice at day 7 post-MI. (H) Average radial strain was measured by spot tracking technology (n=5). (I) Representative long-axis radial myocardial 
strain maps deconvoluting infarction-induced regional myocardial wall deformation in sham and MI mice at day 7 post-MI. (J) GLS was measured by spot tracking technology 
(n=5). ***P < 0.001, ****P < 0.0001.
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NETs.30 Among them, the nuclear protein histone H4 binds to and lyses SMCs, this process can ultimately lead to the 
destabilization of plaques.30 Therefore, neutrophils may be an independent predictor for risk stratification in patients with 
ACS and/or cardiac revascularization when analyzed concomitantly with other markers of inflammation.31

In the present study, we first analyzed the immune infiltration of MI based on the CIBERSORT and ssGSEA 
algorithms. Similar to the results of previous studies,32 we found that neutrophils were higher in the AMI group. In 
a subsequent enrichment pathway analysis of the DEGs in GSE178883, we found that in addition to the formation of 
NETs, the down-regulated DEGs were also enriched in Fc gamma R−mediated phagocytosis and Cytokine−cytokine 
receptor interaction. This may reflect neutrophils as one of the major players during acute inflammation.33 We also 
observed that up-regulated DEGs were enriched in Th17 cell differentiation and Th1 and Th2 cell differentiation. This 
finding suggests that, apart from their inherent function in resisting infections and responding to injuries, neutrophils are 
increasingly recognized as crucial regulators of the adaptive immune system.34

Using three machine learning algorithms, we finally filtered out four hub genes in the AMI-NRGs (FCAR, IL1B, 
MMP9 and NFIL3). The FCAR gene has been identified as a member of the immunoglobulin gene superfamily and is 
responsible for encoding a receptor that specifically binds to the Fc region of immunoglobulin A (IgA). FcαRI/CD89 is 
unique in that it is neither expressed in mice nor is there any homolog in mice.35 The previous studies have shown that 
neutrophils possess natural anti-tumor properties and can induce potent tumor cell killing via targeting the 

Figure 12 Validating gene expression. (A) The mRNA expression of AMI-NRGs (IL-1β, MMP9, NFIL3) was identified via qRT-PCR (n = 5–6). (B) The mRNA expression of 
AMI-ECRGs (ICAM1, ZFP36, CXCL2) were identified via qRT-PCR (n = 5–6). (C) Representative images of IHC staining of hearts from MI and sham groups mice. (D-F) 
Statistical analysis of IHC staining (n =3). Scale bar, 100μm. *P < 0.05, **P < 0.01, ***P < 0.001.
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immunoglobulin A Fc receptor.36 Here, our study suggests that neutrophils may mediate cellular injury during MI 
through the immunoglobulin A Fc receptor. Similar to FCAR, IL-1β, recognized as a member of a much larger IL-1 
family of cytokines, is expressed primarily in myeloid cells.37 Large numbers of neutrophils can quickly accumulate at 
infection or tissue damage sites, and become the predominant local source of IL-1.38 IL-1β can be converted from an 
inactive precursor to a biologically active cytokine through inflammasome activation of the intracellular cysteine protease 
caspase-1 and caspase-1 independent cleavage mediated by serine proteases derived from neutrophils.39 Many studies 
have demonstrated the important role of IL-1 in MI.40 Thus, inhibition of IL-1β may reduce inflammatory injury in the 
acute phase of MI by inducing an anti-inflammatory effect.

In neutrophils, preformed MMP-9 is mainly stored in gelatinase granules and subsequently released in response to 
stimulation by inflammation or tissue injury.41 In the early stages after MI, MMP9 is mainly derived from neutrophils.42 

Serum exosome MMP9 expression is elevated in patients with MI, and can be an effective biomarker for diagnosis of 
AMI.43 Nishiguchi et al demonstrated that local MMP-9 level could determine the early clinical presentation in patients 
with acute MI.44 Our experiments also confirmed that MMP9 is highly expressed in MI tissues. NFIL3, also known as 
Adenovirus E4 promoter-binding protein (E4BP4), is one of the mammalian basic leucine zipper transcription factors. 
Research has revealed that NFIL3 is linked to numerous physiological and biochemical processes.45 For example, NFIL3 
has been found to be related to immune-mediated diseases, like SLE, arthritis and Crohn’s disease.46 In addition, some 
studies have demonstrated that NFIL3 may regulate the pathological process of heart failure through calcium signaling 
mechanisms, autocrine signaling, and insulin-like growth factor II receptor.47 Our experiments confirm that NFIL3 is 
highly expressed in ischemic myocardial tissue and may be involved in neutrophil-mediated cell damage. Next, further 
studies are needed to determine the specific mechanism of NFIL3 in NETs-mediated cell injury.

To investigate possible targets of NETs-mediated endothelial cell injury during MI, we took the intersection of the 
brown module with the DEGs of GSE179828, and finally get three hub genes (CXCL2, ICAM1 and ZFP36). Although our 
experimental validation did not reveal significant differences in the expression levels of these genes in the control and MI 
groups, previous studies have shown the importance of these genes in the development of many cardiovascular diseases. 
For example, several studies found that CXCL2 has an important role in cardiovascular disease, especially in the 
development of atherosclerosis. The study conducted by Chang et al provided evidence supporting the notion that the 
absence of Sirt4 contributes to the progression of atherosclerosis through the activation of the NF-κB/IκB/CXCL2/3 
signaling pathway.48 Another study reveals that the joint suppression of TNFα, CXCL2, and CCL2 inhibits the ability of 
aged visceral fat transplants to promote the development of atherosclerosis.49 The expression of ICAM-1 is increased in the 
milieu of atherosclerotic plaques, where it is observed to be expressed by endothelial cells, macrophages, and smooth 
muscle cells. Gross et al demonstrate that soluble intercellular adhesion molecule 1 (sICAM-1) concentration may be an 
early biomarker that indicates changes in the artery wall that accompany atherosclerosis.50 ZFP36 is a small group of 
mRNA binding and destabilizing proteins expressed in almost all eukaryotes.51 A previous bioinformatics analysis study 
suggests that ZFP36 may be an endothelial cell senescence-related gene in patients with MI.52 Li et al also found 
significantly elevated ZFP36 protein levels in ischemic human heart tissue and knockdown of ZFP36 in HCMECs using 
siRNA significantly inhibited cell proliferation.53 Our analysis suggests that ZFP36 may be one of the targets of endothelial 
cell injury by NETs during MI and may be a promising novel target for the treatment of ischemic heart disease.

Our study has several limitations. First, we did not integrate more datasets to screen for the DEGs, and more 
advanced bioinformatics and machine learning methods may screen for hub genes more accurately. Second, clinical 
samples and data are needed to further validate gene expression levels and their diagnostic value. Finally, further in vivo 
and in vitro loss-and-gain-of-function experiments are necessary to investigate the mechanisms of hub genes in NETs- 
mediated cellular damage.

Conclusions
In conclusion, our study identified seven candidate diagnostic hub genes, including three genes associated with NETs- 
related endothelial cell injury. These hub genes are likely to serve as important markers for the diagnosis of MI. 
Furthermore, analyzing these hub genes and immune cells may provide new insights into potential therapeutic 
approaches for NETs-related cell injury during MI.
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