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Abstract: Given the unique physiological and pathological characteristics of the lung, the direct, inhalable route is more conducive to 
pulmonary drug delivery and disease control than traditional systemic drug delivery, significantly circumventing drug loss, off-target 
effects, systemic and organ toxicity, etc., and is widely regarded as the preferred regimen for pulmonary drug delivery. However, very 
few lung diseases are currently treated with the preferred inhaled formulations, such as asthma, chronic obstructive pulmonary disease 
and pulmonary hypertension. And there is a lack of appropriate inhaled formulations for other critical lung diseases, such as lung 
cancer and pulmonary fibrosis, due to the fact that the physicochemical properties of the drugs and their pharmacokinetic profiles do 
not match the physiology of the lung, and conventional inhalation devices are unable to deliver them to the specific parts of the lung. 
Phytochemicals of natural origin, due to their wide availability and clear safety profile, hold great promise for the preparation of 
inhalable formulations to improve the current dilemma in the treatment of lung diseases. In particular, the preparation of inhalable 
formulations based on nano- and microparticulate carriers for drug delivery to deep lung tissues, which overcome the shortcomings of 
conventional inhalation therapies while targeting the drug activity directly to a specific part of the lung, may be the best approach to 
change the current dilemma of lung disease treatment. In this review, we discuss recent advances in nano- and micron-carrier-based 
inhalation formulations for the delivery of natural products for the treatment of pulmonary diseases, which may represent an 
opportunity for practical clinical translation of natural products. 
Keywords: inhaled nanoformulations, inhalation therapy, natural products, nanomedicine, pulmonary diseases

Introduction
Globally, pulmonary diseases, represented by acute respiratory infections, chronic obstructive pulmonary disease (COPD), 
bronchial asthma, and lung cancer, are characterized by high morbidity, mortality, disability, and treatment costs.1 With 
changing lifestyles, increasing environmental pollution, unavoidable occupational exposures, the continued prevalence of 
tobacco use, and an aging population, the morbidity, mortality and associated disease burden of pulmonary disease are 
increasing year by year. There is an urgent need to discover new therapeutic approaches applicable to the physiology, 
pathology and anatomy of the lung to transform the current global public health challenge of preventing and treating 
pulmonary disease.1,2

Conventional modes of drug delivery inevitably limit efficacy due to degradation of the active fraction in the gastrointestinal 
tract or first-pass metabolism in the liver, and this systemic mode of drug delivery increases non-specific toxicity due to high drug 
exposure to other organs.3 The lung is an excellent organ for drug absorption. Given its natural advantages, such as its large 
absorptive surface area (100–200 m2), abundant capillaries, very short transit distance, thin alveolar epithelial layer, and slow cell 
surface clearance, inhalation therapy is widely recognized as the preferred regimen for pulmonary drug delivery.4 Pulmonary 
delivery devices, such as dry powder inhalers (DPIs), pressurized metered dose inhalers (PMDIs), nebulizers, etc., are able to 
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deliver medications locally to the lungs, dramatically improving the bioavailability of medications while fully exploiting their 
efficacy.5,6 Currently, inhaled formulations have become the first-line treatment for asthma and COPD, but there are no 
corresponding inhaled formulations for other lung diseases, including lung cancer and pulmonary fibrosis.

Phytochemicals of natural origin hold promise for inhaled formulations to improve the current dilemma of lung 
disease treatment due to their wide availability and clear safety profile.5 Given the low bioavailability of natural products 
and the inability of existing drug dosage forms to be delivered to the lungs in their natural form by inhalation, the use of 
appropriate drug delivery systems to create inhalable formulations that match the physiopathological characteristics of 
the lungs would be a potential solution for a wide range of lung diseases.7 Nano-/micron-sized carriers will undoubtedly 
be the best choice due to their smaller size and superior aerodynamic properties, enabling site-specific release for targeted 
drug delivery and higher retention and lower drug loss after delivery.8,9 In this review, we systematically summarize new 
ideas and approaches for the treatment of lung diseases, with a focus on lung cancer, using inhalation formulations of 
natural products delivered by nano-/microparticle carriers. Our goal is to draw more and more research attention to the 
potential and great value of natural products and inhalation therapies in the treatment of lung diseases, which promises to 
become a focus of translational new drug development and a new trend in clinical applications in the future.

Pharmacokinetic Process of Inhaled Formulations
The first process after inhalation is drug deposition, which can occur in the oropharynx, large airways or alveoli, and 
determines the site of drug action. Therefore, a key measure to improve the pulmonary bioavailability of inhaled formulations 
is to increase the pulmonary deposition rate, which depends on their aerodynamic equivalent diameter (Dae), inhalation flow 
rate, inhaler device characteristics and disease-related factors.10 Dae has a significant impact on respiratory deposition and 
subsequent drug absorption: particles with a Dae of 5–10 μm are retained in the upper respiratory tract; particles in the range of 
1–5 μm have excellent pulmonary deposition and distribution properties and can be deposited in the secondary bronchioles 
(small airways and fine bronchioles); and particles in the range of 1–3 μm are suitable for deposition in the distal part of the 
fine bronchioles; smaller particles, about 1 μm, can accumulate in the alveoli; however, particles smaller than 0.5 μm are not 
deposited in the lungs and often diffuse into the bloodstream and are expelled via the respiratory airflow.11,12 After deposition 
in various parts of the lungs, the drug is either cleared, absorbed into the blood or lymphatic circulation, or metabolized.13,14 

There are several clearance mechanisms depending on the site of drug deposition, including mechanical clearance, muco-
ciliary clearance, macrophage degradation, and metabolic clearance. In the upper respiratory tract, mucociliary clearance is the 
primary mode of drug removal. This mechanism is more prevalent and faster for larger particles, which are usually completely 
cleared within 24 hours. In the lower respiratory tract, however, alveolar macrophage uptake plays a more dominant role in 
limiting the efficacy of inhaled preparations. Macrophages can also be targets for the delivery of certain inhaled drugs. For 
example, in the treatment of infectious diseases.14 Drug particles that successfully evade lung clearance mechanisms and 
dissolve in the epithelial lining fluid may subsequently be absorbed into lung tissue, with the rate of absorption depending on 
airway characteristics and drug properties.10 Drugs trapped in the lung tissue are metabolized by metabolic enzymes in the 
lung tissue after they have exerted their effect, and are released from the lung tissue into the blood circulation depending on the 
hyperperfusion of the lung.10

Therefore, given the pharmacokinetic characteristics of drugs in the lungs, inhalation formulations that match the 
anatomical and physiological characteristics of the lungs can achieve the desired therapeutic effect: the first aspect is to 
ensure that the inhaled formulation has excellent aerodynamic properties and is able to evade the lung clearance mechanism to 
reach the lung tissue; the second aspect to consider is the lung exposure time of the inhaled formulation; and then it is to ensure 
that the inhaled formulation is able to reach the target site to exert its effect and reduce the effect on the other sites, ie strike a 
balance between efficacy and safety.15 Considering the current state of medical care, drug delivery systems based on 
nanomaterials may be the optimal solution. Nanomaterials are characterized by their small size, large specific surface area, 
high surface reactivity and high adsorption capacity.16 Nanomaterials as drug carriers can improve drug pharmacokinetics and 
help drugs cross physiological and pathological barriers, thereby increasing bioavailability.17 Through active or passive 
targeting mechanisms, nanomaterials can increase the local concentration of drugs in lung tissue lesions, control drug release, 
prolong drug exposure time, and improve drug efficacy while reducing side effects.18 And through the delicate “camouflage” 
can reduce the body’s immune recognition and reticuloendothelial system clearance, nanomaterials can increase the retention 
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time of the drug in vivo, prolong the half-life of the drug, and enhance the efficacy of the drug.19 Therefore, inhalable 
formulations based on nanomaterials are expected to have great potential in the treatment of lung diseases.

Determinant Characteristics of Inhaled Formulations
Inhaled drug delivery technology based on nano-/microcarriers skillfully combines aerosol technology and nanotechnol-
ogy to prepare drugs into inhalation formulations that match the physiological and pathological characteristics of the 
lungs, and then deliver them directly to the site of action or absorption in the form of aerosols (eg powders, aerosols, 
inhalation mist droplets, etc.) with high speed and high efficiency.20 Therefore, considering the anatomical, physiological 
and pathological characteristics of the lung, the size, shape, surface properties and aerodynamic characteristics of nano-/ 
micron-sized particle carriers determine the deposition and bioavailability of the drug in the lung.

Particle size is an important physical characteristic of inhaled formulations because it determines the properties of the 
aerosol as well as the site of particle action, and is classified as geometric diameter (physical diameter) and Dae (diameter 
of a spherical particle per unit density that settles in air at the same rate as a given particle).21 Nanomaterials can cross the 
mucosal barrier due to their small size, but the choice of specific size varies. In general, for pulmonary diseases such as 
asthma, COPD or pulmonary infections, carriers around 200–500 nm are appropriate, as they allow rapid delivery to 
deeper regions of the lung and thus to target cells such as alveolar macrophages for effective intracellular delivery. Sizes 
smaller than 200 nm or larger than 6 μm can avoid clearance by alveolar macrophages and are more suitable for non- 
obstructive lung diseases such as lung cancer.22

Particle morphology, ie the surface roughness and external shape of particles and the internal structure of porous 
particles, is another important factor affecting the performance of inhalation formulations. Large shape factor and low 
density reduce the Dae of particles, and in general, elongated particles have a larger shape factor, resulting in a smaller 
Dae than spherical particles of the same volume.21 Surface roughness or porous particles reduce interparticle cohesion, 
contact area and give the particles high dispersibility. In addition, the pollen-shaped particles exhibit better flowability, 
higher emitted dose, and higher fine particle fraction (FPF) than spherical, needle-like, plate-like, etc. particles due to 
their lower packing density as well as conical protrusions that increase the distance between particles, thereby minimiz-
ing interparticle forces and aggregation tendency.23

The surface properties of the particles are also a key determinant of the bioavailability of inhaled formulations. 
Nanoparticles with a high cationic surface charge have excellent stability and ability to penetrate the lung, but at the same 
time can cause toxic effects. Therefore, the toxicity of nanoparticles is generally avoided by using neutral or negative 
surface charges. Accordingly, materials such as chitosan can be used to surface modify nanoparticles to improve their 
ability to penetrate mucus and reduce lung clearance.24 Conversely, for infectious diseases such as tuberculosis or 
pneumonia, it is recommended that nanoparticles be modified with positively charged compounds to enhance macro-
phage uptake. In addition, particles can be modified with pulmonary surfactants, proteins or peptides to improve 
biocompatibility and efficiency of drug delivery to the lungs, particularly to target specific cells such as cancer cells.25,26

Natural Product Components in Inhaled Formulations
Pulmonary drug delivery has become a modality of administration that has received much attention, and a large number 
of clinical trials are attempting to convert existing orally or intravenously administered chemicals into inhaled formula-
tions (Table 1). Although many diseases can be treated with the advantages of pulmonary drug delivery, currently only 
asthma and COPD can be treated with preferred inhaled formulations, such as inhaled glucocorticoids and bronchodi-
lators. However, other critical lung diseases such as lung cancer, pulmonary fibrosis, tuberculosis and pneumoconiosis 
still lack appropriate inhaled formulations due to the fact that the physicochemical properties of conventional drug 
dosage forms and their pharmacokinetic profiles do not match the physiology of the lung and conventional inhalation 
devices are unable to deliver them to the specific parts of the lung. Therefore, there is a need to develop formulations 
specifically for inhalation, combining optimal inhaled drugs with well-designed inhalation devices to achieve efficient 
and safe lung-specific therapies.27 The use of nano- and microparticulate carriers to deliver drugs to their targets, 
especially in cancer, has gained unprecedented benefits over the past decades.20,28 Therefore, the development of inhaled 
formulations based on nano- and microparticulate carriers to deliver drugs to deep lung tissues, which overcome the 
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Table 1 Clinical Trials of Inhaled Chemical Formulations for Pulmonary Diseases

Diseases Drugs Inhaled Formulations Dose Effects Registration Number Refs

COVID-19 N-acetylcysteine N-acetylcysteine inhalation 

spray (@sinadarou.co)

One puff (200 μg per puff) every 12 h 

for 7 days

↓The mortality rate, inflammatory 

parameters, and the development of 

severe respiratory failure

An open-label randomized 

controlled clinical trial 

(IRCT20080901001165N55)

[30]

Pulmonary 

hypertension

Treprostinil Treprostinil 0.6 mg·mL−1 via an ultrasonic 

pulsed-delivery nebuliser at 6 µg per 
breath for 108 weeks

↑Exercise capacity and FVC An open-label extension study 

(NCT02633293)

[31]

Idiopathic 
pulmonary 

fibrosis

Pirfenidone Inhaled pirfenidone solution 50 mg once per day: n=46, 100 mg 
two times per day: n=45 for 72 

weeks

↓Side effects of pirfenidone A phase 1b, randomised, open-label, 
dose-response trial 

(ACTRN12618001838202)

[32]

Ventilator- 

associated 

pneumonia

Colistin Conventional jet nebuliser 

continuously nebulizes 

colistimethate sodium

500 000 U colistin, thrice daily, for 

the first 10 ICU days or until 

extubation.

↑ICU survival rate A single-centre, two-arm, 

randomised, open-label, controlled 

trial (NTC01025921)

[33]

Cystic fibrosis Mannitol Inhaled dry-powder mannitol (10×40 mg) twice daily for 12 

consecutive days.

↑Peripheral airway function A double-blind, randomised, 

placebo-controlled pilot study 
(ACTRN 12612001167853)

[34]

Non-cystic 
fibrosis 

bronchiectasis

Ciprofloxacin Ciprofloxacin dry powder for 
inhalation

32.5 mg, twice daily for 28 days ↓The total bacterial A Phase II, randomised, double- 
blind, multicentre study 

(NCT00930982)

[35]

Notes: ↑, increase or promote; ↓, decrease or inhibit.
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shortcomings of traditional inhalation therapies while targeting drug activity directly to specific parts of the lung, may be 
the best way to change the current dilemma of lung disease treatment.29

Frustratingly, in today’s era of drug discovery, a large number of chemically synthesized molecules are approved and 
marketed by regulatory agencies that have good therapeutic value, but resistance, side effects, etc., remain unavoidable 
problems and are not always suitable for preparation into inhaled formulations. Unlike oral administration, inhaled 
formulations should have low oral bioavailability and high systemic clearance to maximize airway selectivity and 
minimize toxicity associated with systemic exposure after drug inhalation.36 Phytochemicals of natural origin may 
help to address these issues. Plants have been an important source for drug development and translational medicine since 
ancient times due to their abundance, high safety profile, and multiple mechanisms of action.37 However, the clinical 
applicability of phytochemicals is often hampered by their low bioavailability, which may be associated with their low 
solubility and/or susceptibility to degradation in aqueous media. For example, the bioavailability of quercetin in humans 
after oral administration was as low as 1%, which was attributed to poor aqueous solubility (2.84 mg/mL).38 In addition, 
the insoluble flavonoid silibinin is characterized by limited oral absorption (<50%), resulting in weak clinical efficacy.39 

Therefore, the properties of natural products such as low oral bioavailability and high safety profile are the advantages for 
their preparation into inhaled formulations. Nano-delivery systems containing natural phytochemicals have no first-pass 
effect, rapid onset of action, high bioavailability, high local drug concentration at low dosage, enhanced pharmacological 
activity and higher safety margins (Figure 1). Consequently, pulmonary natural product delivery systems based on 
inhalable nano/micron carriers such as liposomes, nanoparticles, microparticles, nanocomposites, and nanoaggregates 
and (Figure 2) would be an attractive method of pulmonary drug delivery.

Inhaled Nanoformulations Based on Natural Products
Lipid-Based Inhaled Nanoformulations
Lipids are important components in living organisms, including fats, phospholipids, and sterols, of which phospholipids 
and sterols are the major components of biological membranes.40 Compared with other nanoformulations, it uses 
biocompatible lipid materials (eg, triglycerides and fatty acids) as carriers to dissolve or encapsulate the drug in the lipid 
core or adsorb it on the surface of the nanoparticles, including liposomes, solid lipid nanoparticles (SLNs), nanostructured 
lipid carriers (NLCs), etc., and it has good biocompatibility, complete biodegradability as well as low carrier toxicity and 
immunogenicity.41 Lipid-based nanomedicines are the forerunners in the clinical translation of nanomedicines, and most of 
the currently marketed nanomedicines are lipid-based nano-delivery systems represented by liposomes, which are widely 
used in the fields of cancer therapy, viral or fungal infections, analgesia, gene delivery, etc.42,43 Inhalable lipid nanoformu-
lations based on natural products also show excellent potential in the treatment of pulmonary diseases (Table 2).

Figure 1 Benefits of natural product-based inhaled nanoformulations in the treatment of pulmonary diseases.
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Liposomes
Liposomes are the earliest and most successful inhalable lipid nanocarriers, and liposomal formulations can be delivered 
to the lungs either by nebulizer atomization or as a dry powder via DPI.12 Liposomes are spherical vesicles (usually in 
the range of 20 nm to 20 μm) consisting of an aqueous core surrounded by one or more phospholipid bilayers of natural 
or synthetic origin, capable of encapsulating and carrying both hydrophilic (aqueous core) and lipophilic (lipophilic 
bilayers) drugs to achieve precise drug release at the site of the lesion.77 Enhanced pulmonary drug delivery through 
improved pharmacokinetics and pharmacodynamics, liposomes increase drug therapeutic index, improve patient com-
pliance, reduce respiratory side effects and decrease drug toxicity.15 Liu78 et al demonstrated that liposomes promote 
rapid pulmonary distribution and cytoplasmic release of cyclic guanosine monophosphate-adenosine monophosphate, 
stimulate STING signaling and type I interferon production in pulmonary antigen-presenting cells, and induce systemic 
anticancer immunity and long-term inhibition of lung metastasis. A 2015 clinical study also found that cystic fibrosis 
patients who received a formulation of nebulized DNA plasmid-liposome complexes encoding the CFTR gene every 28 
days for 12 months improved lung function with a 3.7% increase in forced expiratory volume in 1 s (0.07%-7.25%).79 In 
studies of inhaled formulations for the treatment of lung diseases, natural products have shown low side effects, stable 
anti-inflammatory and antifibrotic therapeutic effects, and no significant drug dependence due to their natural properties, 
making them promising therapeutic alternatives to inhaled therapies.5

Increasing respiratory infections and hard-to-beat pathogens (eg, multidrug-resistant strains) have become a challenge 
in clinical practice, and conventional antibiotic therapies are increasingly ineffective due to limitations in tissue 
penetration, toxicity, or drug resistance.77 In a mouse model of Staphylococcus aureus-induced pneumonia, DPI 

Figure 2 Drug delivery nano/micron carriers for natural products.
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Table 2 Natural Products-Based Lipid Inhaled Nanoformulations for the Treatment of Pulmonary Diseases

Nanocarrier Natural Products Nanoformulation Diseases Size (nm) Aerodynamic 
Diameter 
(μm)

Zeta 
Potential 
(mV)

Polydispersity 
Index (PDI)

Mechanism Refs

Liposomes Andrographolide Liposomal andrographolide dry 
powder inhalers

Pneumonia 77.91±22.91 4.87 −56.13 ± 3.33 0.22 ± 0.04 ↓Inflammation and regulated the 
immune reaction

[44]

Oxymatrine Chitosan-coated liposome loaded 
with oxymatrine

Pneumonia 246.16±3.03 – −14.54±3.04 0.208 ± 0.018 ↓Viral replication [45]

Carboxymethyl Chitosan Modified 
Oxymatrine Liposomes

Emphysema 228.82 ± 4.53 – 7.65 ± 1.09 < 0.3 ↑Anti-inflammatory and 
antioxidative effects

[46]

Naringin Endogenous surfactant-based 
liposomal delivery system of naringin

Pulmonary fibrosis 171.4 ± 5.8 2.35 ± 1.02 −15.5 ± 1.3 0.2 ±0.012 ↓Lactate dehydrogenase activity, 
total protein content, and 
inflammatory cell infiltration

[47]

Cholesterol Liposomal dry powder inhaler 
formulation loaded with oxymatrine 
cholesterol and budesonide

Pulmonary fibrosis <100 4.68 ± 0.26 −36.9 ± 0.6 – ↑Drug retention (more than 24 h) 
↓systemic exposure

[48]

Paclitaxel Dilauroylphosphatidylcholine 
liposomal formulations

Pulmonary 
metastases in 
murine renal 
carcinoma model

– – – – ↓Lung weights and number of 
visible tumor foci

[49]

Paclitaxel-in-liposome-in-bacteria Lung cancer 64.3 ± 2.4 – −9.96 ± 0.48 0.35 ± 0.08 ↓VEGF and HIF-1α; 
↑The expressions of immune 
markers and immune cells

[50]

Docetaxel Docetaxel-loaded folic acid- 
conjugated liposomes

Lung cancer 100.1 ± 1.0 – −28.6 ± 2.6 0.229 ↑Cellular uptake and higher drug 
exposure

[51]

Hydroxycamptothecin Cationic liposomal 
hydroxycamptothecin

Lung cancer 67.57 ± 14.22 – 10.10 ± 0.40 0.34 ± 0.03 ↑Apoptosis and the production 
of reactive oxygen species

[52]

Vincristine Spray-dried powders 
containing vincristine-liposomes

Lung cancer 112.6 ± 3.7 – −21.56 ± 2.53 0.266 ± 0.017 ↑The bioavailability of vincristine [53]

Camptothecin Dilauroylphosphatidylcholine 
liposome aerosols containing  
9-nitrocamptothecin

Lung cancer – – – – ↑Drug deposition in the lungs [54]

Lung cancer About 100 1.2–1.6 – – ↑Drug deposition in the lungs [55]

Lung cancer – – – – ↓Visible and microscopic disease 
(P < 0.02), the total number of 
tumor foci in the lungs

[56]

Lung cancer – – – – ↓Tumor metastases in the lungs. [57]

(Continued)
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Table 2 (Continued). 

Nanocarrier Natural Products Nanoformulation Diseases Size (nm) Aerodynamic 
Diameter 
(μm)

Zeta 
Potential 
(mV)

Polydispersity 
Index (PDI)

Mechanism Refs

Proliposomes Curcumin Spray-Dried Proliposomes for the 
delivery of curcumin

Lung cancer 164.15 ± 6.86 2.10 ± 0.26 34.95 ± 3.18 0.40 ± 0.04 ↑The ability to reach deep lung 
tissues

[58]

Liposomes Curcumin Liposomal curcumin dry powder 
inhalers

Lung cancer 94.65±22.01 5.81 – 0.26±0.01 ↑Anti-oxidative and anti- 
inflammatory effects, and 
apoptosis

[59]

Liposomes co-loaded with amphiphilic 
TAT-PEG-SN38 and curcumin

Lung cancer 171.21 ± 1.10 – −5.96 ± 0.32 0.124 ± 0.03 ↑Antiproliferative effect, 
apoptosis, and cell cycle arrest

[60]

Dihydroartemisinin Biomineralized liposome co-loaded 
with dihydroartemisinin and pH- 
responsive calcium phosphate

Lung cancer 146.27±1.86 – −17.9 ± 0.3 0.236± 0.009 ↑Ferroptosis [61]

Quercetin Transferrin receptors targeting 
peptide surface-functionalized 
liposomes

Lung cancer 84–114 – – 0.097–0.22 ↑Cytotoxicity, apoptosis, and 
S-phase cell-cycle arrest.

[62]

Triptolide Carbonic anhydrase IX surface- 
functionalized liposomes

Lung cancer 160.1 ± 0.9 – – 0.175 ± 0.010 ↑The cellular uptake efficiency [63]

Solid lipid 
nanoparticles

Paclitaxel Solid lipid nanoparticles with modified 
new folate-grafted chitosan derivative

Lung cancer 249 ± 36 – +32 ± 1 0.31 ± 0.02 ↑Pulmonary exposure 
↓Half-maximum inhibitory 
concentrations

[64]

Myricetin Inhalable microparticles comprising 
MYR solid lipid nanoparticles

Lung cancer 75.98 2.39 −22.5 1.84 ↑Cellular uptake and antitumor 
activity

[65]

Naringenin Naringenin-loaded solid lipid 
nanoparticles

– 98±0.61 – −31.4±0.98 0.258±0.058 ↓The bioavailability [66]

Nanostructured 
lipid carriers

Paclitaxel Cremophor EL loaded nano-lipid 
carriers containing paclitaxel and 
doxorubicin

Lung cancer 394.1 ± 5.6 1.60–2.21 _18.17 ± 2. 0.180 ± 0.02 ↑Retention and drug 
accumulation; 
↓The toxic consequences in 
non-target tissues

[67]

Luteinizing hormone-releasing 
hormone- nanostructured lipid 
carriers-siRNAs- paclitaxel 
nanoparticles

Lung cancer 111.3 ± 20 – +45 – ↓Tumor growth and adverse 
side effects

[68]

Luteinizing hormone-releasing 
hormone- nanostructured lipid 
carriers-siRNAs- paclitaxel 
nanoparticles

Lung cancer 110 ±20 – +45.5 0.4 ↓Tumor growth and adverse 
side effects

[69]
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Nanoemulsion Tea tree oil Tea tree oil nanoemulsion Bacterial and fungal 
pneumonia

12.5±0.5 – −20.7±7.3 0.47±0.03 ↓Lung injury, leukocyte 
recruitment, and pro- 
inflammatory mediators

[70]

Tanshinone IIA Tanshinone IIA -nanoemulsion 
formulation based on rhamnolipid 
biosurfactant and tea-tree oil

Acute lung injury 105.7 ± 0.9 – −29.5 ± 1.8 0.31 ± 0.02 [71]

Quercetin Oil-in-water (O/W) nanoemulsion 
system

Lung cancer 131.4 ± 0.72 3.09 ± 0.05 −51.1 ± 0.28 0.257 ± 0.00 ↑Cytotoxicity and stability [72]

Docetaxel Docetaxel -loaded nanoemulsion 
formulation

Lung cancer 94.35 ± 0.77 3.02 ± 0.26 − 38.64 ± 1.43 – ↑Cytotoxicity and stability [73]

Naringin Naringin- and celecoxib-Loaded 
nanoemulsion

Lung cancer 75–106 4.88 ± 0.11 −3.42 to 
−4.86

0.46–0.55 ↑Stability profiles and 
cytotoxicity

[74]

Curcumin Docetaxel- and curcumin-Loaded 
nanoemulsions

Lung cancer 95.80/ 96.94 3.19 ± 0.15/ 
3.08 ± 0.15

−36.23/ 
−33.40

0.25/ 0.22 ↑Favorable physicochemical and 
aerodynamic pulmonary delivery 
properties

[75]

Docetaxel- and curcumin-Loaded 
nanoemulsions

Lung cancer 104.70/ 101.23 4.6–5.5 −38.10/ 
−36.83

0.26/ 0.18 ↑Favorable physicochemical and 
aerodynamic pulmonary delivery 
properties

[76]

Notes: ↑, increase or promote; ↓, decrease or inhibit.
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delivered andrographolide liposomes to the lungs, which inhibited lung inflammation, immune responses, and tissue 
damage by downregulating the NF-κB pathway and the release of pro-inflammatory cytokines such as TNF-α and IL-1. 
Moreover, andrographolide liposomes delivered to the lungs showed stronger antibacterial effects against pneumonia 
compared to tenfold doses of andrographolide or penicillin.44 Similarly, oxymatrine (OMT) derived from Sophora 
flavescens Ait has excellent anti-inflammatory, antioxidant, and antiviral activity. However, OMT is a hydrophilic natural 
phytochemical that tends to diffuse in the mucus layer and penetrate the air-blood barrier to rapidly enter the circulation, 
limiting its efficacy.45,46 Chitosan, which is highly biocompatible and biodegradable, and its encapsulated liposomes 
deliver OMT directly to the lungs, enhancing its distribution and retention in lung tissue without mucus restriction, 
thereby inhibiting the biosynthesis and penetration of human respiratory syncytial virus to exert its antiviral effects.45 

Moreover, liposomes further enhanced the anti-inflammatory and antioxidant effects of OMT by down-regulating 
inflammatory cytokines and modulating the rebalancing antioxidant/oxidant Nrf2/HO-1 and NF-κB/IκB-α signaling 
pathways, which alleviated alveolar dilatation and destruction in emphysema model mice.46

Pulmonary fibrosis (PF) is a common, progressive, irreversible, and fatal chronic lung disease characterized by excessive 
structural remodeling of lung tissue due to myofibroblast proliferation and extracellular matrix deposition that impairs alveolar 
elasticity and lung function, ultimately leading to severe functional failure and even death.80 Kotta et al47 designed a liposomal 
naringin based on endogenous surfactant (phosphatidylcholine) to deliver naringin as an aerosol to the deep alveoli to 
attenuate inflammatory cell infiltration, oxidative stress, and collagen deposition to reduce alveolar surface tension thereby 
maintaining airway patency. In addition, the combination regimen may have a better antifibrotic effect. Co-loading of inhaled 
corticosteroid (budesonide) and antifibrotic natural product (colchicine) in liposomes and delivery to deep lung tissues as a dry 
powder using DPI, which can achieve site-specific delivery, reduce systemic exposure and prolong drug residence time in the 
lung (more than 24 hours), thus synergistically improving fibrotic lesions.48

Although conventional therapies have shown clear benefits in the treatment of cancer, a number of factors, including 
chemotherapy-induced toxicity and adverse effects, lack of target specificity, and most importantly, drug resistance 
during cancer progression, limit the clinical efficacy in lung cancer.81 Pulmonary delivery of natural products based on 
inhalable nanoformulations reduces drug dosage, decreases systemic toxicity and increases the actual local concentration 
of the drug in the lungs, ultimately resulting in better anti-tumor efficacy. Currently, marketed plant-derived chemother-
apeutic agents such as paclitaxel,49,50 docetaxel,51 camptothecin,52,54–56 and vincristine53 have been prepared in their 
inhalable liposome nanoformulations for deep drug delivery and pulmonary therapy.

Paclitaxel is the most successfully developed plant-based chemotherapeutic agent, but its high lipophilicity limits its solubility 
in aqueous media, which in turn affects the efficacy of oral and intravenous administration. Liposomes can overcome this 
challenge by improving pharmacological properties and reducing toxicity.82 Paclitaxel was encapsulated in a liposomal formula-
tion of dilauroylphosphatidylcholine, and pharmacokinetic studies showed that the area under the curve for inhalation adminis-
tration was 26 times greater than that for intravenous tail vein administration. In an established mouse model of lung metastasis 
from renal cell carcinoma, inhalation of a liposomal formulation of paclitaxel via a nebulizer significantly reduced lung weight and 
the number of tumor foci in mice, while also demonstrating improved long-term survival.49 Interestingly, Zhang et al50 used live 
carrier bacteria for targeted delivery of paclitaxel. Liposomal paclitaxel was efficiently internalized into bacteria (Escherichia coli 
or Lactobacillus casei) by electroporation without affecting the growth of these bacteria. After intratracheal administration, the 
distribution of drug-carrying bacteria was much higher in the lung than in other organs, resulting in faster delivery of the carrier to 
lung cancer cells, which in turn downregulated vascular endothelial growth factor and HIF-1α and induced apoptosis. In addition, 
drug-carrying bacteria significantly increased the expression of immune markers (TNF-α, IL-4, and IFN-γ) and immune cells 
(leukocytes and neutrophils), resulting in superior anticancer activity.50

It has been found that aerosolized inhalation can disrupt the structure of liposomes and affect the final efficacy, which 
can be modified by preparing them as stable dry powder formulations by spray-drying, spray-freeze-drying and freeze- 
drying.12 Docetaxel is a natural antitumor compound similar in structure and efficacy to paclitaxel. Zhu et al51 first 
prepared folic acid-conjugated liposomes loaded with docetaxel, followed immediately by an inhalable dry powder using 
spray drying technique, which showed higher cellular uptake, cytotoxicity, tumor targeting properties and drug exposure 
accompanied by low drug exposure in other organs. Similarly, the use of spray-drying technology to produce liposomes 
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of vincristine that can be administered via DPI to increase its exposure in the lungs and reduce clearance time imparts 
better anti-tumor properties to vincristine.53

Since camptothecins are alkaloids with excellent anticancer activity, and the potent anticancer agents irinotecan and 
topotecan are derivatives of these alkaloids, the continued development of comedones and their derivatives holds the promise 
of continued superior efficacy.83 9-Nitrocamptothecin (9-NC, a derivative of camptothecin) is a water-insoluble anticancer 
drug. After 30 min of inhalation of 9-NC liposomal aerosol, a large amount of the drug accumulated in the lungs (310 ng/g), 
while relatively little accumulated in other organs.54 Inhaled 9-NC liposome aerosol reduces lung weight, number of tumor 
foci and size of individual tumor nodules in mouse models of melanoma and osteosarcoma lung metastases.55,56 In contrast, 
oral 9-NC liposome had no detectable effect on cancer growth, suggesting that its therapeutic benefit is due to lung 
deposition.55 Mutations in the P53 oncogene have been found in most lung cancers, leading to increased drug resistance 
and tumor recurrence. Transfer of the P53 gene into tumor cells to induce apoptosis and increase cellular sensitivity to 
chemotherapeutic agents may be a potential solution. Aerosol pulmonary delivery of polyethyleneamine-p53-DNA (PEI-p53) 
complexes can achieve high levels of p53 gene expression to inhibit the growth of lung metastases.84,85 More importantly, the 
sequential aerosol delivery of PEI-p53 and 9-NC liposome showed significant synergistic efficacy in inhibiting the growth of 
established melanoma metastases in the lung, reducing the dose of drugs used and increasing the average survival time of the 
mice by 30–40%.57 This combination regimen also includes sonodynamic therapy. Xiao et al52 combined pulmonary delivery 
of cationic liposomal hydroxycamptothecin-based chemotherapy and 5-aminolevulinic acid-based sonodynamic therapy, 
again showing significant synergistic efficacy. This combined regimen showed enhanced cytotoxicity by inducing apoptosis 
and increasing reactive oxygen species (ROS) production in cancer cells, suggesting that inhaled therapies may be suitable for 
the development of combination regimens for lung cancer.

Curcumin is a naturally occurring polyphenol extracted from the rhizome of Curcuma longa, which limits its 
conversion into an anticancer agent due to its low hydrophilicity, poor bioavailability and rapid clearance from the 
body.86 Liposomal curcumin nanoformulations exhibit excellent atomization properties that promote the delivery of 
curcumin to deep lung tissues, increase the rate and extent of lung tissue uptake, and prolong exposure time in lung 
tissues.58 After freeze-drying, curcumin liposome dry powder was prepared, which was suitable for lung inhalation and 
selective targeting of lung cancer cells, and showed superior anticancer activity to gemcitabine and curcumin powders 
due to its high lung deposition with an average FPF of 46.71 and Dae of 5.81 μm.59 In addition, liposomes co-loaded 
with curcumin and 7-ethyl-10-hydroxyl camptothecin precursors showed enhanced anti-proliferative, pro-apoptotic and 
cell cycle inhibitory effects to synergistically inhibit lung cancer growth compared to the single agent.60

Ferroptosis therapy has been proposed as a promising strategy for lung cancer treatment by promoting intracellular 
ROS production and lipid peroxidation accumulation (LPO).87 However, insufficient intracellular ROS levels and 
suboptimal drug accumulation in cancer tissues hamper the effectiveness of iron death therapy, and the respirable 
biomineralized liposomes constructed by Fu et al helped to improve the situation through intracellular ROS and LPO 
accumulation-driven cell swelling and cell membrane disruption.61 The natural product dihydroartemisinin (DHA) was 
doped into the liposome core, while pH-responsive calcium phosphate (CaP) was coated on the liposome surface as a 
shell. Upon aerosolized delivery to lung tumors, the CaP shell disintegrates and releases a certain amount of Ca2+ into the 
cell, triggering an initial Ca2+ burst. Meanwhile, the intense endoplasmic reticulum stress induced by Ca2+, aided by 
DHA-mediated ROS generation and sarco-/endoplasmic reticulum calcium ATPase inhibition, can further promote LPO 
generation and ferroptosis, which in turn accelerates tumor elimination both in vitro and in vivo.61

To enhance antitumor drug-specific delivery and avoid off-target effects, active targeting is an effective strategy.88 T7 
peptide is a cell-targeting peptide with specific binding affinity for the transferrin receptor (TFR), and targeting of the 
TFR, which is overexpressed and confined to tumor cells, may increase the therapeutic efficacy in lung cancer.89 The T7 
surface is functionalized with loaded quercetin liposomes that are actively targeted for delivery to lung cancer cells, 
which in turn release quercetin to induce apoptosis, S-phase cell cycle arrest and growth inhibition of tumor tissue. Its 
accumulation and sustained release behavior in the lung lasted up to 96 hours without systemic toxicity.62 Similarly, Lin 
et al63 used carbonic anhydrase IX, an enzyme expressed on the surface of lung cancer cells, to surface-modify liposomes 
loaded with tretinoin lactone to specifically target and kill lung cancer cells.
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Solid Lipid Nanoparticles (SLN)
SLN are colloidal dispersions of non-polar lipids (eg, triglycerides and fatty acids) composed of excipients that are 
“generally recognized as safe”. SLN are solid at both room and body temperatures, which reduces the mobility of the 
delivered drug in the lipid matrix and improves its stability and sustained release efficiency. In contrast, SLN have a 
greater affinity for lipophilic drugs.90 Rosière et al64 developed inhalable SLN highly loaded with paclitaxel and modified 
with folic acid and chitosan to improve surface properties. Lung exposure to paclitaxel was prolonged up to 6 h after 
inhalation administration with limited systemic distribution. In addition, folic acid-modified SLN enhanced the selectivity 
of SLN for lung cancer cells by actively targeting the folate receptor on the surface of lung cancer cells, which in turn 
penetrated and distributed throughout the lung tumors independently of the vasculature.64 This vascular low-dependence 
therapeutic regimen will have positive implications for poorly vascularized solid tumors such as lung cancer.

Attributed to its limited water solubility (2 mg / mL), the bioavailability of myricetin is poor, which restricts its 
further drug development and clinical application.91 Based on phospholipid complexes, SLN encapsulating myricetin 
were prepared, which could ensure the high stability of myricetin and at the same time endow myricetin with faster drug 
release and uptake as well as more significant antitumor activity against lung cancer cells. After spray drying, the 
aerodynamic particles were produced with an mass median aerodynamic diameter (MMAD) of 2.77 μm, indicating that 
they could be deposited in the target bronchial area for targeted treatment of lung cancer.65 Similarly, Peng et al66 

successfully incorporated the poorly water-soluble drug naringenin into SLN for pulmonary delivery using emulsification 
and low-temperature hardening methods, significantly improving the bioavailability of naringenin by 2.53 times that of 
naringenin suspension.

Nanostructured Lipid Carrier (NLC)
NLC is a new type of nano-drug delivery system developed and formed on the basis of SLN. Through the introduction of 
liquid lipid carrier, compared with SLN, it has higher encapsulation rate, drug loading capacity and stability, which can 
effectively increase the solubility of drug, prolong the action time of drug in vivo, improve the bioavailability and reduce 
the adverse drug reactions.92 Inhalation of surfactant Cremophor EL-based NLCs enhances cellular uptake and drug 
accumulation of paclitaxel and doxorubicin in lung cancer cells, improving drug resistance while reducing toxicity to 
non-target tissues.67 Moreover, the use of NLC as a multifunctional nanomedicine platform can enable multiple 
mechanisms of lung cancer treatment.68,69 Garbuzenko et al68 fabricated a multifunctional delivery NLC co-loaded 
with paclitaxel and small interfering RNAs (siRNAs). The NLC enhances drug stability, solubility, and cellular 
penetration. The inhalation delivery technique delivers the drug to the lungs to promote passive targeting and uses 
luteinizing hormone-releasing hormone (LHRH) modification, a molecule specific for targeting receptors overexpressed 
in the plasma membrane of lung cancer cells, to actively target lung cancer cells. The system delivers paclitaxel to induce 
cancer cell death and a series of siRNAs to inhibit all four types of epidermal growth factor receptors - tyrosine kinases. 
In addition, the formulation exhibits desirable organ accumulation, superior anticancer activity and significantly fewer 
side effects than single agents or siRNA or non-targeted delivery.68 Similarly, Taratula et al69 developed multifunctional 
NLC for pulmonary co-delivery of chemotherapeutics and siRNAs. LHRH-modified NLC to actively target lung cancer 
cells, release anticancer drugs (paclitaxel/doxorubicin) after inhalation of the NLC to induce cancer cell death, and 
release siRNAs targeting MRP1 and BCL2 mRNAs to ameliorate resistance to the drugs, thus effectively inhibiting 
tumor growth and preventing adverse side effects on healthy organs.

Nanoemulsions (NEs)
Nanoemulsions(NEs) are biphasic dispersions of two immiscible liquids: water-in-oil (W/O) or oil-in-water (O/W) 
droplets stabilized by amphiphilic surfactants, with long-term kinetic and thermodynamic stability.93 NEs have been 
recognized by the US FDA as safe drug carriers capable of dissolving large quantities of hydrophobic drugs within their 
lipophilic cores and reducing enzymatic degradation and hydrolysis of the loaded drugs to achieve sustained drug 
release.94 In addition, its small size, typically averaging 20–200 nm in diameter, allows it to cross cellular barriers by 
diffusion, thus maintaining retention and deposition in lung tissue for extended periods of time, and has great potential in 
the treatment of lung diseases.12
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Tea tree oil (TTO), a natural essential oil, has potent antimicrobial activity and is almost unlikely to develop 
antimicrobial resistance. However, allergic reactions, instability, and hydrophobicity limit its clinical application.95 Li 
et al prepared an inhalable TTO nanoemulsion (nanoTTO) consisting of TTO/Cremophor EL/water with an average size 
of 12.5 nm. In vitro, the nanoTTO was able to significantly inhibit Escherichia coli, Acinetobacter baumannii, Klebsiella 
pneumoniae, Staphylococcus aureus, and Candida albicans. In a rat model of fungal pneumonia, inhaled nanoTTO 
directly reaches microbially infected lung tissue, exhibits superior antifungal activity to fluconazole, and inhibits 
leukocyte recruitment and pro-inflammatory mediators to attenuate lung injury. In a rat model of bacterial pneumonia, 
the efficacy of nanoTTO, although slightly lower than that of penicillin, was achieved at a much lower dose and without 
significant adverse effects.70 Due to the current prevalence of microbial bacterial resistance, inhaled nanoTTO are 
expected to be the alternative nanomedicine of choice for the treatment of bacterial and fungal pneumonia. Degradation 
and shedding of the glycocalyx, the gel-like layer that lines the surface of the lumen of the vascular endothelium, has 
been implicated as an important mechanism in the pathogenesis of acute lung injury.96 El-Moslemany et al71 prepared a 
tanshinone IIA-loaded NEs formulation (TSIIA-NE) using ultrasound technology based on bioactive natural ingredients, 
rhamnolipid biosurfactant and TTO (as the oily phase). TSIIA-NE ameliorated LPS-induced pulmonary ventilatory 
dysfunction and pathological changes through antioxidant (up-regulation of superoxide dismutase, glutathione perox-
idase, down-regulation of malondialdehyde), anti-inflammatory (up-regulation of IL-10, down-regulation of TNF-α and 
IL-17) and inhibition of glycocalyx degradation, as evidenced by a 1.4-fold and 1.9-fold increase in tidal volume and 
minute respiratory volume, respectively, a 32% decrease in the wet/dry lung weight ratio, and an improvement in arterial 
blood gas levels.71 Similarly, Arbain et al72 prepared an O/W NE formulation loaded with quercetin using palm oil ester/ 
ricinoleic acid as the oil phase. The formulation had an acceptable MMAD (3.09 ± 0.05 μm), high FPF (90.52 ± 0.10%), 
and percent inhaled (81.26 ± 1.28%), which met the physicochemical and nebulization characteristics required for deep 
lung delivery applications. In addition, NEs impart high stability to natural products and can continuously deliver 
quercetin and docetaxel to act on lung cancer tissue even under extreme environmental conditions, making them 
promising inhalable agents for the treatment of lung cancer.72,73 In addition to demonstrating significant safety and 
bioaccumulation in lung tissue, NEs delivering naringin also accumulate in the brain, liver and bone, the major organs for 
lung cancer metastasis.74 Moreover, natural products, due to their excellent anticancer activity and potential as 
chemotherapeutic sensitizers, make their combination with chemotherapeutic agents a potential combination for lung 
cancer treatment.97 The synergistic effect of NEs-based formulations co-loaded with curcumin and docetaxel, which have 
good physicochemical and aerodynamic pulmonary delivery properties that can reduce docetaxel toxicity and improve 
bioavailability, will undoubtedly play an important role in the treatment of lung cancer.75,76

Polymeric Nanoparticles
Polymers are mainly classified as natural polymers (eg, chitosan nanoparticles) or synthetic polymers (eg, poly(lactic-co- 
glycolic acid, PLGA), which have good properties such as good biodegradability, biocompatibility, and controllable drug 
release profile. Drugs can be encapsulated within the polymer or coupled to the surface of the polymer, and further 
modification of the ligand on the surface allows for targeted delivery of the drug.29,98 In nanoformulations for inhalation 
drug delivery, polymeric nanoparticles help prevent the drug from being cleared by lung macrophages and ciliary mucus 
mechanisms, and are able to remain in the lungs longer to exert their effects (Table 3).

Antibiotic resistance is one of the most serious medical problems today, and urgent clinical needs require the timely 
discovery of alternative therapies for bacterial infections. Curcumin, a natural bacterial inhibitor, was prepared into pure 
curcumin nanoparticles by evaporative precipitation of nanosuspensions, solid dispersions and antisolvent precipitation, 
which in turn kills bacteria deep in the alveoli via inhaler without using any support or nano-carrier.8 PLGA nanoparticles 
co-loaded with antibiotics (tobramycin, ciprofloxacin or azithromycin), N-acetylcysteine and curcumin, resulting in a 
combination of antimicrobial, mucolytic and anti-inflammatory properties to improve antibiotic resistance for effective 
control of pulmonary infections.99 Moreover, as a naturally occurring photosensitizer, curcumin-based antimicrobial 
photodynamic therapy offers new options for improving drug-resistant bacterial pneumonia.109 Curcumin-loaded inhal-
able PLGA nanoparticles adhered tightly to the bacterial cell wall and stimulated antimicrobial phototoxicity under an 
applied low-energy light source, disrupted bacterial morphology and ultrastructure, and significantly inhibited the growth 
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Table 3 Natural Products-Based Inhaled Polymeric Nanoparticle Formulations for the Treatment of Pulmonary Diseases

Natural 
Products

Nanoformulation Diseases Size (nm) Aerodynamic 
Diameter 
(μm)

Zeta 
Potential 
(mV)

Polydispersity 
Index (PDI)

Mechanism Refs

Curcumin Pure curcumin nanoparticles Pulmonary 
infections

65.3/98.7/ 47.4 – – – Killing bacteria lying deep down within the 
alveoli of lungs

[8]

Antibiotics with N-acetylcysteine and 
curcumin-loaded PLGA-nanoparticles

Pulmonary 
infections

105 ± 1.5 2.16–2.63 −9.1 ± 4.6 0.063 ± 0.019 ↓TNF-α, IL-8, and IL-1β [99]

Chitosan modified curcumin loaded 
PLGA nanoparticles

Pulmonary 
infections

187.17 ± 2.77 – +6.47 ± 0.79 0.09 ± 0.03 ↓Staphylococcus saprophyticus subsp. 
bovis and Escherichia coli DH5 alpha

[100]

Curcumin-loaded PLGA-nanoparticles 
embedded in a mannitol matrix

Pulmonary 
infections

185.96 ± 16.79 2.88 ± 0.13 −4.71 ± 0.79 0.11 ± 0.04 ↓Staphylococcus saprophyticus subsp. 
bovis and Escherichia coli DH5 alpha

[101]

Quercetin Chitosan-assisted encapsulation of 
quercetin in nanoparticles

Silicosis 168.19 ± 2.07 – 30.15 ± 2.37 0.134 ± 0.011 ↑Antioxidant and anti-inflammatory 
activities of quercetin

[102]

Resveratrol Resveratrol-cyclodextrin complex 
loaded biodegradable nanoparticles

Non-small 
cell lung 

cancer

264.2 ± 0.03 2.2±0.4 µ −1.46 ± 1.47 0.16 ± 0.03 ↑Cellular uptake, cytotoxicity, apoptosis, 
and antioxidant activity

[103]

Paclitaxel Reactive Oxygen Species/Glutathione- 

Responsive Paclitaxel Dimeric 

nanoparticles

Lung cancer 154.8 ± 1.7 – –14.7 ± 0.1 0.111 ± 0.039 ↑Drug release rate [104]

Docetaxel Cholesterol-PEG co-modified poly (n- 

butyl) cyanoacrylate nanoparticles

Lung cancer 182.3 ± 3.2 4.20 ± 0.12 −7.31 ± 0.46 0.217 ± 0.011 ↑The pulmonary absorption time and pass 

through the air-blood barrier and enter 
the brain

[105]

Naringin PLGA nanoparticles Lung cancer 215 to 267 5.65 ± 0.18 −18.3 to −25.9 0.071 to 0.16 ↑High distribution to the lung, bones, 
brain, and liver

[106]

Paclitaxel Spray-dried chemotherapeutic PEGylated 
phospholipid particles

Lung cancer – 3.4–7 – – ↑Mucus penetration [107]

Biomimetic endogenous pulmonary 
surfactant phospholipid modified 

nanoparticles

– 221–234 – −34 to −28 0.18–0.21 ↑Mucoadhesive or mucus penetration 
properties

[108]

Notes: ↑, increase or promote; ↓, decrease or inhibit.
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of Staphylococcus saprophyticus subsp. bovis (Gram-positive bacteria) and Escherichia coli DH5 alpha (Gram-positive 
bacteria).100,101

Silicosis, caused by excessive inhalation of dust containing crystalline silica, is a life-threatening disease of 
pulmonary fibrosis for which there is a lack of effective treatment.110 The natural product quercetin may be an effective 
strategy against fibrosis due to its antioxidant and anti-inflammatory activities. Quercetin encapsulated in chitosan- 
assisted manufactured nanoparticles (Qu/CS-NPs) facilitated the enhancement of quercetin’s antifibrotic activity by 
virtue of its excellent encapsulation ability, excellent hydrophilic stability, and outstanding controlled and slow release 
capabilities. Inhaled Qu/CS-NPs ameliorated silica-induced silicosis-associated fibrosis by reducing ROS and malon-
dialdehyde production to attenuate oxidative stress, inhibiting IL-1β and TNF-α release to alleviate inflammation, and 
downregulating α-smooth muscle actin levels and inhibiting extracellular matrix deposition to improve lung histology.102 

Given the negligible toxicity, inhalation of nanomodified natural products may be a viable therapeutic option for the 
treatment of silicosis.

Resveratrol, a natural polyphenol found in fruits, has excellent anticancer activity and low toxicity; however, its low 
water solubility and instability limit its clinical use.111 The loading of sulfobutylether-β-cyclodextrin onto PLGA 
polymers (CD-RES NPs) perfectly ameliorates the above-mentioned deficiencies of resveratrol, with a 66-fold increase 
in its water solubility. Moreover, the excellent aerodynamic properties of CD-RES NPs after inhalation endowed 
resveratrol with enhanced anticancer efficacy as evidenced by significantly increased cellular uptake, cytotoxicity, 
antioxidant and pro-apoptotic activities.103 Notably, tumor cells typically possess higher levels of ROS and glutathione 
(GSH) compared with normal cells, resulting in greater redox potentials.112 Based on this, Tian et al104 designed ROS/ 
GSH-responsive paclitaxel dimer nanoparticles, which were able to rapidly decompose in the ROS- and GSH-rich tumor 
microenvironment thereby increasing local paclitaxel exposure and accumulation, exhibiting enhanced anticancer 
potential and reduced systemic toxicity. Metastasis is also a major threat to the treatment and prognosis of lung cancer. 
Hu et al105 designed Cholesterol-PEG Co-Modified Poly (n-Butyl) Cyanoacrylate Nanoparticles for sustained pulmonary 
delivery of docetaxel. The PEG modification could avoid docetaxel clearance by macrophages and prolong the lung 
uptake time. Cholesterol modification, on the other hand, promotes docetaxel diffusion across the blood-brain barrier and 
into the brain in a sustained release fashion, making it a promising and effective vehicle for the treatment of lung cancer 
brain metastases.105 In addition, bone and liver are common metastatic sites of lung cancer. Inhalation of naringin- 
encapsulated PLGA nanoparticles can not only accumulate in lung tissue, but also exist in large quantities in bone, liver, 
and brain, which will undoubtedly be an effective therapeutic strategy to control lung cancer metastasis.106

Inhaled nanoparticles deliver chemotherapy drugs deeper into the lungs than traditional intravenous drug delivery due 
to their smaller size and more localized drug delivery, which could significantly improve the efficacy of drugs such as 
paclitaxel.107 However, inhaled nanomedicines inevitably interact with surface-active substances in the lung, forming a 
“surfactant corona” that affects drug adhesion/penetration. Paclitaxel-loaded PLGA nanoparticles were modified with 
biomimetic endogenous lung surfactant phospholipids, such as phosphatidyl dipalmitoyl phosphatidylcholine. The 
different phospholipids conferred adhesion, mucus permeability and cellular uptake properties to the nanoparticles, 
respectively, and modulated their retention in bronchoalveolar lavage fluid, uptake by alveolar macrophages and uptake 
by lung tissues, providing a scientific rationale for improving the intrapulmonary distribution of inhaled formulations.108

Other Nanocarriers
Nanomicelles are thermodynamically stable systems composed of amphiphilic polymers with small particle size, strong 
adsorption capacity, good biocompatibility and targeting. The hydrophobic core can load insoluble drugs, which is an 
effective way to improve the oral absorption of insoluble drugs, while the hydrophilic shell can prevent the micelles from 
being recognized by the reticuloendothelial system, thus prolonging the circulation time of drugs in the body.113,114 

Micelle-based delivery systems can be prepared that are both tissue-targeted and biologically active, delivering natural 
products to the deep lung for enhanced pharmacological activity.114,115 Mahajan et al116 prepared curcumin-loaded 
polymeric micelles based on l-lactide grafted xyloglucan and then used freeze-drying technique to prepare DPI 
formulations for pulmonary delivery of curcumin. The local concentration of curcumin was higher in deep lung tissues 
and was maintained at the effective drug concentration for a longer period of time. Matrix metalloproteinases (MMPs), 
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specific markers of malignancy, are involved in malignant behaviors such as angiogenesis, invasion and metastasis in 
lung cancer.117 MMP2/9-triggered release micelles were developed for pulmonary delivery of paclitaxel. Upon nebulized 
inhalation, paclitaxel was released in a concentration-dependent MMP2/9-triggered release at the tumor site and was 
rapidly taken up by cancer cells to enhance anticancer activity and reduce toxicity to healthy lung cells.118

Nanogels are non-toxic and biocompatible porous carriers with large surface area and drug loading capacity, making 
them particularly suitable for clinical topical applications.119 For example, cholesteryl group-modified pullulan self- 
assembled polysaccharide nanogels for cancer vaccine delivery and enhancement of immune response against tumor 
cells.120 Chen et al121 designed an inhalable nanogel with a “material-drug” structure to improve the low solubility and 
bioavailability deficiencies of quercetin, a natural flavonoid with excellent antioxidant and anti-inflammatory properties. 
In this nanoformulation, quercetin and alginate are cross-linked by Ca2+ and stabilized by intermolecular hydrogen 
bonding, resulting in a “co-construct” water-soluble nanogel (QU-nanogel). In a rat model of acute lung injury, inhaled 
QU-nanogel provided targeted delivery of quercetin to the lung, attenuated lung inflammation and oxidative damage, and 
prevented subsequent lung fibrosis as evidenced by down-regulation of inflammatory cytokines (TNF-α, IL-6, and IL-1β) 
and up-regulation of antioxidant enzymes (SOD, catalase, and heme oxygenase-1).121

Exosomes, which are small lipid bilayer nanoparticles derived from many cell types, can deliver drugs to specific cell 
types or tissues for targeted drug delivery due to their stable structure and unique permeability.122 Zheng et al123 

encapsulated paclitaxel using T cell-derived exosomes expressing chimeric antigen receptors (PTX@CAR-Exos). In a 
mouse model of orthotopic lung cancer, inhaled PTX@CAR-Exos accumulated in the tumor region by targeting the 
mesothelin-expressing Lewis lung cancer through the anti-mesothelin single-chain variable fragment of CAR-Exos, 
thereby reducing tumor volume and prolonging survival of the mice. In addition, PTX@CAR-Exos reprogrammed the 
tumor microenvironment and reversed the immunosuppression, as evidenced by CD8 T-cell infiltration and increased 
levels of IFN-γ and TNF-α.123

Nanocochleates, a new type of nanocarrier with a helical structure composed of soluble lipid molecules, have been 
prepared as oral formulations to improve the bioavailability of chemotherapeutic drugs such as paclitaxel.124 The surface 
activity of nanocochleates was found to be similar to that of endogenous lung surfactant, which is expected to be used as 
both a drug delivery vehicle and lung surfactant for lung diseases. Paclitaxel-loaded nanocochleates (PTX-CPTs) 
exhibited excellent lung surface activity and terminal airway patency. Inhaled PTX-CPTs were readily deposited in the 
deep alveoli, which in turn enhanced cellular uptake-mediated cytotoxicity via energy-dependent endocytosis. In a mouse 
model of melanoma lung metastasis, PTX-CPTs significantly inhibited the numbers of tumor nodules and percent 
metastasis area covered by melanoma cells in the lung, and reduced respiratory complications and side effects of 
chemotherapeutic agents.125

In addition, albumin nanoparticles,126,127 nano transfersome,128 and nanocapsules129 have been prepared to deliver 
natural compounds to the lungs as inhalable nanoformulations. Moreover, the preparation of natural phytochemicals into 
nanocrystals for pulmonary delivery using methods such as milling can also improve the bioavailability of natural 
phytochemicals130,131 (Table 4).

Microparticles
Microparticles have excellent aerodynamic properties with an average size of about 5 μm, and spray drying produces 
inhalable formulations that effectively evade phagocytosis by alveolar macrophages and penetrate deep into the lungs.-
132,133 Using materials such as PLGA, alginate, chitosan and lipids, they can be easily atomized as dry powder 
formulations for sustained drug release in the lungs (Table 5).

Salvianolic acid B (Sal B), a water-soluble component of Salvia miltiorrhiza Bunge, prevents or delays the onset and 
progression of idiopathic pulmonary fibrosis by modulating inflammatory cytokines and fibrosis-related cytokines. Its 
preparation as an inhalable dry powder formulation may overcome the limitations of oral and intravenous 
administration.134,135 Sal B-DPI was prepared by spray-drying using L-leucine as an excipient for targeted delivery to 
the deep lung as a dry powder.134 Similarly, Jiang et al135 prepared new Sal B powder formulations containing L-arginine 
and lecithin using ball milling technique. L-arginine was used to modulate the strong acidity of Sal B solution, and 
lecithin could improve the flowability and biocompatibility due to its similarity in composition to lung surfactants. These 
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Table 4 Natural Products-Based Other Inhaled Nanocarriers for the Treatment of Pulmonary Diseases

Nanocarrier Natural 
Products

Nanoformulation Diseases Size (nm) Aerodynamic 
Diameter 
(μm)

Zeta 
Potential 
(mV)

Polydispersity 
Index (PDI)

Mechanism Refs

Micelles Paclitaxel Spray-dried inhalable powders 

containing polymeric micelles

Lung cancer 102 to 196 3.8 ± 0.98 −9.4 to −13.8 - ↑Cytotoxic activity of PTX [115]

Curcumin Curcumin loaded polymeric 

micelle based on a newly 
synthesized grafted xyloglucan

Lung cancer 102.4 106.67 nm −18.2 0.275 ↑Bioavailability [116]

Paclitaxel Matrix metalloproteinase 2/9- 
triggered-release

Lung cancer 34.43±0.47 – – 0.35±0.01 ↑Tumor sensitivity to 
chemotherapeutics 

↓The toxicity of chemotherapy 

to healthy lung cells

[118]

Nanogel Quercetin Quercetin -alginate nanogel Acute lung 

injury

61.87 – − 30 – ↓Pulmonary inflammation and 

oxidative stress damage

[121]

Exosomes Paclitaxel Paclitaxel loaded CAR-T cell- 

derived exosomes

Lung cancer 100 – −17.3 −25.7 ↓Tumor size; 

↑Survival with little toxicity; 
Reprogramming the tumor 

microenvironment and reversing 

immunosuppression.

[123]

Nanocochleates Paclitaxel Paclitaxel-carrying aerosol 

nanocochleates

Lung cancer 384.8 ± 96.6 – −23.5 ± 1.9 0.12 ± 0.08 ↓Tumor growth [125]

Albumin 

nanoparticles

Apigenin Apigenin-Loaded Albumin 

Nanocarriers

Pulmonary 

inflammation

376 ± 7.824 2.123 ± 0.098 −19.20 ± 0.818 0.285 ± 0.01 ↑Antioxidant activity. [126]

Silymarin/ 
curcumin

Silymarin/curcumin loaded 
albumin nanoparticles

COVID-19 – – 32 ± 2 – ↑Anti-viral/inflammation activity [127]

Transfersome Paclitaxel Paclitaxel-loaded micro or nano 
transfersome formulation

Lung cancer 292.16 to 
483.62

– −2.61 to −2.55 0.434 to 0.451 ↑Toxicity to cancer cells while 
safe to normal lung fibroblast 

cells

[128]

Nanocapsules Paclitaxel Paclitaxel in lipid nanocapsules – 53.4 ± 1.9 2.7 ± 0.1 −5.84 ± 0.87 0.08 ± 0.02 – [129]

Nanocrystals Baicalein Baicalein nanocrystal – 335±18 – – 0.12 ↑The solubility and lung 
absorption rate of baicalein

[130]

Curcumin Curcumin nanocrystals – 10 to 40 – – – ↑The blood concentration and 
lung deposition of curcumin

[131]

Notes: ↑, increase or promote; ↓, decrease or inhibit.
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Table 5 Natural Products-Based Inhaled Microparticles for the Treatment of Pulmonary Diseases

Natural 
Products

Inhalable Formulations Diseases Size (μm) Mechanism Refs

Quercetin Quercetin solid lipid microparticles Lung cancer 2.90 ± 0.30 ↑Quercetin diffusion [132]

Quercetin-loaded lipid microparticles prepared with tristearin and hydrogenated 

phosphatidylcholine

4.1±0.2 ↑stability and cellular uptake of 

quercetin

[133]

Salvianolic acid 

B

Salvianolic acid B dry powder inhaler Idiopathic pulmonary 

fibrosis

1.00–1.17 ↓Inflammatory factors and fibrotic 

cytokines

[134]

Salvianolic acid B powder formulation containing L-arginine and 2% of lecithin 1.83 ± 0.18 ↑Drug concentration in the lung and 

the bioavailability

[135]

Baicalin Baicalin/ambroxol hydrochloride combined dry powder inhalation formulation 1.24 −2.01 ↓Inflammatory factors and pulmonary 

fibrosis 

↑IFN-γ

[136]

Fisetin Dry powder sulfobutylether-β-cyclodextrin complex for pulmonary delivery of 
fisetin

Lung cancer 1.48 ± 0.08 ↑Aqueous solubility of fisetin [137]

Paclitaxel and 
Curcumin

Dry powder inhalation formulation containing paclitaxel and a curcumin 2.64–3.12 ↑Apoptosis/necrotic cell death and G2/ 
M cell cycle arrests

[138]

Resveratrol Resveratrol spray-dried formulation Chronic obstructive 
pulmonary disease

3.7 ± 0.1 ↓IL-8, TNF-α, LPS, and TGF-β1 [139]

Co-spray dried resveratrol and budesonide inhalation formulation 1.2 to 6.23 ↓Inflammation and oxidative stress [140]

Naringin Naringin microparticles prepared by spray-drying using water/ethanol (6:4) co- 

solvents

– 1.17–9.47 ↑Solubility and improved aerodynamic 

behaviour.

[141]

Naringin microparticles prepared by spray-drying a solution containing 5% leucine in 

a co-solvent of ethanol and water (3:7).

Cystic fibrosis 2.75–3.42 ↓NF-κB and MAPK/ERK pathways [142]

Notes: ↑, increase or promote; ↓, decrease or inhibit.
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two dry powder formulations have good powder properties, low irritation, effective pulmonary delivery, high bioavail-
ability and pulmonary drug concentration. By attenuating oxidative damage and modulating inflammatory factors and 
fibrotic cytokines (eg, I/III Collagen type α1, intercellular adhesive molecule-1, fibronectin, inducible nitric oxide 
synthase, and arginase type 1) during disease progression, Sal B-DPI significantly alleviated bleomycin-induced 
pulmonary fibrosis as evidenced by the reduction of alveolar wall congestion, inflammatory cell infiltration, emphysema 
extent, and lung ventilatory function.134,135 Moreover, the DPI co-loaded with baicalein/ambroxol hydrochloride 
demonstrated antifibrotic, anti-inflammatory, and antioxidant effects of pirfenidone due to its pulmonary targeting, 
rapid onset of action and high pulmonary bioavailability.136 These inhaled formulations will undoubtedly help to address 
the current dilemma of the extreme shortage of drugs for the treatment of pulmonary fibrosis.

Complexation of the natural flavonoid fisetin with sulfobutylether-β-cyclodextrin increased the solubility of fisetin while 
maintaining its antioxidant activity. Subsequently, it was fabricated into a low-density inhalable powder using a spray-drying 
method for delivery to deep lung tissues for therapeutic purposes.137 However, the dose of fisetin required for this formulation 
to achieve a significant degree of anticancer activity is relatively high, and thus co-delivery of natural products and 
chemotherapeutic agents to the particles may achieve superior efficacy. Curcumin and paclitaxel were homogeneously 
mixed and co-jet milled to form particles suitable for inhalation with a MMAD of 2.64–3.12 μm. This co-delivery regimen 
possessed, on the one hand, enhanced anticancer activity, inducing apoptosis/necrotic cell death, G2/M cell cycle arrests and 
oxidative stress (increase in ROS, mitochondrial depolarization and decrease in ATP content). On the other hand, the presence 
of curcumin attenuated the toxic effects of paclitaxel on healthy cells.138 This suggests that combination formulations of 
chemotherapeutic agents with chemoprotective agents (natural products) are a promising option.

Inhaled medications are already the first-line treatment for COPD, such as budesonide, but some airway inflammation 
is resistant to glucocorticoids, leading to treatment failure. Inhalable dry powder formulations of resveratrol with an 
MMAD of 3.7 ± 0.1 μm were prepared using a spray-drying method, showing excellent lung deposition, transport and 
cellular uptake, which in turn inhibited the production of multiple inflammatory mediators (eg, IL-8, TNF-α, and TGF- 
β1) is expected to be efficacious in inflammatory lung diseases such as COPD.139 In addition, the combination of 
resveratrol and budesonide to design inhalable microparticles holds promise for synergistic efficacy in the treatment of 
COPD. Budesonide reduced cohesion between resveratrol particles and reduced particle agglomeration, resulting in 
significantly improved aerosol properties suitable for inhaled drug delivery, which in turn synergistically inhibited 
alveolar macrophage inflammation and oxidative stress.140 Naringin is also a flavonoid with excellent antioxidant 
activity, and inhalable naringin microparticles were prepared by spray-drying method with higher solubility, lower 
density and improved aerodynamic properties.141 Next, the researchers used leucine to further enhance the aerosol 
properties of naringenin microparticles, which in turn enhanced the pharmacological activity of naringenin, inhibiting 
NF-κB and MAPK/ERK pathways to attenuate the hyperinflammatory state associated with cystic fibrosis.142

Nanocomposites and Nanoaggregates
Although nanocarriers are excellent carriers for targeted drug delivery, their size range (<1 μm) makes them easily exhaled 
before reaching the target. In general, particles in the size range of 1–5 μm can only be deposited at the lung base and reach the 
alveoli, thus fully utilizing the anti-cancer activity of the drug.143 Physical instability and low lung deposition efficiency of 
nanoparticles, particle-particle interactions also hinder drug delivery to the lungs. Despite overcoming this challenge, 
microparticles undergo pulmonary clearance via alveolar macrophages.12 Incorporating nanoparticles into inhalable 
micron-sized carriers combines the advantages of both micron and nanoparticle drug delivery systems and will likely offer 
unique advantages in pulmonary drug delivery,144 thus taking full advantage of natural products (Table 6).

Ahmed et al145 first prepared resveratrol-loaded bovine serum albumin nanoparticles (BSA NPs), and then the NPs 
were co-spray-dried into composite microparticles with different carriers including mannitol, dextran, trehalose, leucine, 
glycine, aspartic acid, and glutamic acid. Encouragingly, the MMAD of these microparticles was less than 5 μm, and all 
were suitable for deep lung deposition, especially leucine aerosolization was the most effective with an FPF of 75.74%. 
The composite microparticles released NPs upon contact with lung fluid and sustained the release of resveratrol, which 
successfully ameliorated bleomycin-induced pulmonary fibrosis in mice.145 Similarly, other natural products, such as 
curcumin146,147 and honokiol,148 could be prepared first as nanoparticles to enhance their therapeutic effects, followed by 
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Table 6 Natural Products-Based Inhaled Nanocomposites and Nanoaggregates for the Treatment of Pulmonary Diseases

Natural 
Products

Nanoformulation Diseases Nanoparticle 
Size (nm)

Nanocomposites/ 
Nanoaggregates Size 
(μm)

Aerodynamic 
Diameters 
(μm)

Mechanism Refs

Curcumin Curcumin-loaded PLGA nanoparticles with 

chitosan-grafted-PEG or chitosan

– 243.4±34.8 1.09 ± 0.02 to 1.80 ± 0.01 1.25–1.96 ↑Efficient deposition in the airways [143]

Resveratrol Resveratrol-loaded spray-dried composite 

microparticles

Idiopathic 

pulmonary 
fibrosis

177.67 ± 0.95 2.64 ± 1.57 2.28 ± 0.22 ↓Hydroxyproline, TNF-α, and 

matrix metalloproteinase-9

[145]

Curcumin Curcumin loaded Nano-in-Microparticles Lung cancer 181.20±11.52 0.5–4 3.02 ± 0.07 ↑Sufficient deposition in the lung [146]

Curcumin nanocomposite particles Lung cancer 135 2.1 1–3 ↑Sufficient deposition in the lung [147]

Honokiol Honokiol-loaded chitosan microparticles – – 6.9–8.4 2.8–3.3 ↑Sufficient deposition in the lung [148]

Paclitaxel/ 

quercetin

Nanoparticles in the form of polymeric 

microspheres loaded with paclitaxel and quercetin

Lung cancer 100 3.373 1.804±0.022 ↑Circulation time and a markedly 

high accumulation in the lung

[149]

Quercetin 

and 

paclitaxel

Nanocomposite microparticles modified by 

cetuximab and loaded quercetin and paclitaxel

Non-small cell 

lung cancer

– 4.54 ± 0.30 2.91 ± 1.94 ↑The accuracy targeting ability and 

killing effect

[150]

Notes: ↑, increase or promote; ↓, decrease or inhibit.
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the use of chitosan as a material for encapsulating the nanoparticles and spray-drying to produce composite micro-
particles with appropriate aerodynamic properties to disintegrate into pristine nanoparticles to exert their medicinal 
effects when sufficiently deposited and redispersed in the lungs.

Inhalable nano-formulations with deformable size also contribute to lung retention and targeted drug accumulation.81 

El-Sherbiny et al143 doped curcumin-loaded PLGA nanoparticles into amphiphilic PEG-chitosan copolymer hydrogel 
microspheres to develop swellable biocompatible microparticles. Upon inhalation, the formulation was able to rapidly 
expand under humid conditions, such as in the lung, and evade macrophage uptake, allowing for effective deposition in 
the airways and controlled release of curcumin over 24 hours.143

In addition, composite particles provide an optional option for drug co-loading. Liu et al149 prepared NPs loaded with 
paclitaxel and quercetin as polymeric microspheres (PMs). PMs are polymers formed from a large number of NPs with a 
uniform size ranging from 1 to 5 μm in diameter. PMs are inhaled deep into the lungs and redispersed into NPs with 
diameters ranging from 250 to 350 nm. This formulation prolongs drug release and increases the retention time of 
paclitaxel in the lungs. Quercetin inhibits the expression of the P-glycoprotein drug efflux pumps, which in turn improves 
the body’s sensitivity to paclitaxel.34 Cui et al150 fabricated cetuximab-modified nanoparticles loaded with paclitaxel and 
quercetin, respectively, and then used a spray-drying technique to composite these two nanoparticles into nanocomposite 
microparticles (P/Q@CNMPs). The P/Q@CNMPs had a suitable aerodynamic diameter and homogeneous morphology 
to meet the requirements for particle deposition in the lungs. The excipient mannitol, which is highly absorbent and 
easily disintegrated, ensures rapid decomposition of the nanocomposite microparticles in the moist environment of lung 
mucus and lung surface active substances to release drug-loaded nanoparticles. Cetuximab modification enhances the 
precise targeting and killing effect of the formulation on the surface high-expression EGFR lung cancer cells.150 These 
results show that nanocomposites and nanoaggregates combine the advantages of both nano- and micro-size particles and 
have great potential for targeted drug delivery in lung diseases.

Conclusion and Prospects
Although inhalable nanoformulations are still in the exploratory stage, it is clear that the direct, inhalable route is more 
favorable for pulmonary drug delivery and lung disease control than conventional systemic delivery, significantly 
avoiding drug loss, off-target effects, systemic and organ toxicity. The real clinical use of inhaled formulations currently 
faces a number of challenges: the first is to design a drug delivery system that matches the physiological-pathological 
characteristics of the lung. The size, surface properties, and aerodynamic characteristics of micro/nano carriers determine 
their ability to target deeper regions of the lung (alveoli) while safely crossing the mucosal barrier to avoid clearance by 
pulmonary macrophages. The second is potential toxicity. The drug delivery system itself may be potentially toxic, and 
the cumulative effect of prolonged use without timely pulmonary clearance may have unknown consequences, which is 
certainly contrary to the intended purpose. Even more critical is the return to nature. Medicinal plants are a promising 
source for inhalation formulations. More and more researchers and drug development companies should consider natural 
plant components when designing and developing novel dosage forms. How to optimize the bioavailability of natural 
products based on the full pharmacological activity of botanical ingredients is a current problem that needs to be solved. 
It can be expected that, along with the advances in nanomaterials and inhaled drug delivery technology, more and more 
new inhaled formulations will eventually be used in various lung diseases to change the current dilemma of lung disease 
prevention and control.
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