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Introduction: Cartilage regeneration is a challenging issue due to poor regenerative properties of tissues. Electrospun nanofibers hold 
enormous potentials for treatments of cartilage defects. However, nanofibrous materials used for the treatment of cartilage defects 
often require physical and/or chemical modifications to promote the adhesion, proliferation, and differentiation of cells. Thus, it is 
highly desirable to improve their surface properties with functionality. We aim to design hydrophilic, adhesive, and compound 
K-loaded nanofibers for treatments of cartilage defects.
Methods: Hydrophilic and adhesive compound K-containing polycaprolactone nanofibers (CK/PCL NFs) were prepared by coatings 
of gallic acid-conjugated chitosan (CHI-GA). Therapeutic effects of CHI-GA/CK/PCL NFs were assessed by the expression level of 
genes involved in the cartilage matrix degradation, inflammatory response, and lipid accumulations in the chondrocytes. In addition, 
Cartilage damage was evaluated by safranin O staining and immunohistochemistry of interleukin-1β (IL-1β) using OA animal models. 
To explore the pathway associated with therapeutic effects of CHI-GA/CK/PCL NFs, cell adhesion, phalloidin staining, and the 
expression level of integrins and peroxisome proliferator-activated receptor (PPARs) were evaluated.
Results: CHI-GA-coated side of the PCL NFs showed hydrophilic and adhesive properties, whereas the unmodified opposite side 
remained hydrophobic. The expression levels of genes involved in the degradation of the cartilage matrix, inflammation, and 
lipogenesis were decreased in CHI-GA/CK/PCL NFs owing to the release of CK. In vivo implantation of CHI-GA/CK/PCL NFs 
into the cartilage reduced cartilage degradation induced by destabilization of the medial meniscus (DMM) surgery. Furthermore, the 
accumulation of lipid deposition and expression levels of IL-1β was reduced through the upregulation of PPAR.
Conclusion: CHI-GA/CK/PCL NFs were effective in the treatments of cartilage defects by inhibiting the expression levels of genes 
involved in cartilage degradation, inflammation, and lipogenesis as well as reducing lipid accumulation and the expression level of IL-1β 
via increasing PPAR.
Keywords: polycaprolactone nanofibers, gallic acid-conjugated chitosan, compound K, hydrophilic coating, adhesive material, 
cartilage regeneration

Introduction
The treatment of articular cartilage defects, including osteoarthritis (OA), remains a major challenge owing to its 
inherently limited capacity for self-healing, primarily due to the absence of blood vessels and nerves.1–5 To 
address this, researchers have focused on cartilage tissue engineering with particular attention to nanofibrous 
materials that may offer several advantages, such as the promotion of cell adhesion, proliferation, and differ-
entiation, and the delivery of therapeutic drugs to treat cartilage defects.6–11 In addition, the three-dimensional 
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architecture of nanofibers can be readily obtained by electrospinning, self-assembly, and phase separation 
methods.11–15 Furthermore, nanofiber modification stimulates chondrocyte growth and cartilage regeneration by 
providing a suitable microenvironment.16–18 For instance, plasma-treated and cationized gelatin-immobilized poly 
(lactic acid) nanofibers showed tight attachment of chondrocytes with improved osteoblast proliferation and 
differentiation.16 In addition, α-granules-encapsulated coaxial poly(ɛ-caprolactone)/poly(vinyl alcohol) nanofibers 
stimulate the viability and chondrogenic differentiation of mesenchymal stem cells.17,18 Thus, the functionaliza-
tion of nanofibrous materials is important for tailoring the physicochemical and biological properties of cartilage 
tissue engineering.

Polycaprolactone (PCL) is one of the most frequently used materials for the preparation of nanofibers by 
electrospinning. PCL-based nanofibers (PCL NFs) are promising materials for drug delivery depots and tissue 
engineering scaffolds because of their biocompatibility and biodegradability.19–23 For instance, drug (ie, kaemp-
ferol-loaded albumin nanoparticles and dexamethasone)-encapsulated PCL NFs in human chondrocytes induce 
the deposition of glycosaminoglycans with a sustained release of drugs.24 However, PCL-based nanofibers often 
require external agents for the tissue engineering because of their intrinsic surface properties of hydrophobic 
nature and poor interactions with biomolecules and cells.25–29 To address this, co-electrospinning of hydrophilic 
polymers or physical/chemical modifications of PCL NFs can be used to increase hydrophilicity and 
bioactivity.27,30–32 For instance, co-electrospun nanofibrous biomaterials and the immobilization of biomolecules 
(ie, poly(glycerol sebacate), gelatin-chondroitin sulfate, alginate, chondroitin sulfates, and hyaluronic acid) help 
improve the cartilage tissue engineering.33–37 Co-electrospinning of PCL and gelatin-chondroitin sulfate enhances 
the attachments and proliferations of human bone mesenchymal stem cells (hMSC) with improved 
hydrophilicity.34 In addition, hydrolysis and aminolysis of PCL NFs also reduce the water contact angles of 
NFs that can significantly enhance the cell attachments with increased cell viability.27 Furthermore, the immo-
bilization of carboxymethyl cellulose on the surface of PCL NFs enhances the osteochondral inductivity resulting 
in the induced osteochondral differentiations.38

Compound K (CK), a bioactive compound derived from ginsenosides, has been studied for its potential health 
benefits and physiological effects including anti-inflammatory, antioxidant, and anti-tumorigenic effects.39–41 In 
osteoarthritis (OA) cartilage, up-regulated inflammatory mediators, ie, interleukin-1β (IL-1β), tumor necrosis 
factor-α (TNF-α), and interleukin-6 (IL-6) stimulated the production of reactive oxygen species (ROS) and the 
expression of matrix-degrading proteases that lead to the degradation of the cartilage matrix.42 As the generation 
of ROS and inflammation are closely related to the development and progression of OA, CK may protect 
cartilage from degradation and promote its regeneration. Moreover, CK is known to inhibit matrix 
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metalloproteinases (MMPs), suggesting a chondroprotective role in the degradation of the cartilage matrix and 
preservation of structural integrity.43 Although the potential application of CK in cartilage preservation and 
regeneration is promising, its efficacy and practical applications in cartilage regeneration need to be explored. 
Moreover, as the efficiency of CK delivery can be influenced by the specific characteristics of the cartilage tissue 
and joint OA environment, additional research may provide a deeper understanding of the most efficient way to 
deliver CK to the cartilage, as well as to protect CK from degradation, increase its stability, and prolong its 
residence time in the joint to optimize its regenerative effects.

Conjugation of phenolic compounds to polymeric backbones is a useful technique for the coating of 
biomaterials, as previously reported.44–46 Along with the strong adhesiveness to tissue surfaces, the phenolic 
compounds have multiple functionalities with their bioactivities.47–49 In this study, we introduce a facile method 
for preparing hydrophilic and adhesive drug-loaded PCL NFs using gallic acid-conjugated chitosan (CHI-GA). In 
addition, CK was used as a drug for the cartilage regenerations. The CHI-GA-coated CK/PCL NFs surfaces 
exhibited hydrophilic and cell/tissue adhesive properties that were responsible for the successful attachment of 
the CHI-GA/CK/PCL NFs to cartilage defects with the delivery of CK. In contrast, the unmodified side of the 
CK/PCL NFs remained hydrophobic. Implantation of CHI-GA/CK/PCL NFs into the destabilization of the medial 
meniscus (DMM) cartilage led to the inhibition of inflammation, lipid accumulation, and expression level of IL- 
1β resulting in the prevention of cartilage degradation.

Materials and Methods
Materials
Polycaprolactone (Mn. 80 kDa), chitosan (medium molecular weight, 200–800 cP), and gallic acid (GA) were purchased 
from Sigma-Aldrich (Milwaukee, WI, USA). N-hydroxysuccinimide (NHS) and 1-Ethyl-3-(3-dimethylaminopropyl) 
carbodiimide (EDC) were purchased from Tokyo Chemical Industry Co. Ltd. (TCI-SU, Tokyo, Japan). Ginsenoside 
Compound K (CK) from the roots of Panax ginseng C.A. Mey was purchased from ChemFaces (Wuhan, China). 
Chloroform and methyl alcohol were purchased from Samchun Pure Chemicals (Pyeongtaek, South Korea). All the other 
chemicals were of analytical grade.

Preparation of CK-Loaded PCL NFs (CK/PCL NFs)
CK-loaded PCL NFs were prepared by electrospinning. Briefly, PCL (9 wt%) was dissolved in a mixed solution of 
chloroform and methanol (3:1 v/v) and CK (9 mg) was added to the PCL solution. The final concentration of CK was 
0.18 wt%. The CK/PCL solution was electrospun using 18-gauge needles at a voltage of 17 kV and a flow rate of 15 L/ 
min using an electrospinning/spray system (ESR100D, NanoNC, Seoul, South Korea). The distance between the needle 
and the collector wrapped with aluminum foil was 18 cm.

Synthesis of Gallic Acid-Conjugated Chitosan (CHI-GA)
CHI-GA was synthesized using an EDC coupling agent, as previously reported.50,51 Briefly, chitosan (500 mg) 
was dissolved in distilled deionized water (DDW, 44.5 mL) containing 5 mL of 1 N HCl. The pH was adjusted 
to 5 by adding 1 N NaOH. After the complete dissolution of chitosan, GA (467 mg), EDC (526 mg), and NHS 
(316 mg) in ethanol (25 mL) were added to the chitosan solution and allowed to react for 12 h. The pH of the 
solution was maintained at 4.5 to 5.5 during the reactions. The product was purified using a dialysis membrane 
(MWCO = 3.5 kDa, SpectraPor, Spectra Labs, Rancho Dominguez, CA, USA) against a NaCl solution (pH 2.0, 
10 mM) for 2 d and DDW for 4 h and was lyophilized. The gallic acid conjugation of CHI-GA was confirmed 
using UV-Vis spectroscopy (UV-1900i, Shimadzu, Japan).

Preparation of CHI-GA-Coated CK/PCL NFs (CHI-GA/CK/PCL NFs)
To prepare the CHI-GA/CK/PCL NFs, CHI-GA was dissolved in PBS solution (pH 7.4) with a concentration of 2 mg/mL. 
After the complete dissolution of CHI-GA, the CK/PCL NFs were placed onto the CHI-GA solution and allowed to react for 8 
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h in incubators at 37 °C. During the reactions, the CK/PCL NFs floated on the CHI-GA solution owing to the hydrophobic 
properties of the PCL NFs. After incubation, the CHI-GA/CK/PCL NFs were vigorously washed with PBS and DDW, at least 
three times each. Due to the hydrophobicity of CK/PCL NFs, the CHI-GA was coated on one side of CK/PCL NFs. The final 
CHI-GA/CK/PCL NF products were freeze-dried and stored in a moisture-free desiccator until further use.

Morphological Analysis of CHI-GA/CK/PCL NFs
The morphology of the CHI-GA/CK/PCL NFs was analyzed using scanning electron microscopy (SEM, S-4800, Hitachi 
Ltd., Tokyo, Japan) at an acceleration voltage of 15 kV at the Core Facility for Supporting Analysis & Imaging of 
Biomedical Materials at Wonkwang University, which is supported by the National Research Facilities and Equipment 
Center. Briefly, PCL, CK/PCL, and CHI-GA/CK/PCL NFs (1 × 1 cm2) were placed on SEM holders using carbon tapes. 
The NFs were coated with platinum before the SEM images were obtained.

For the morphological analysis after cell attachment tests, the iMAC cell suspension (20 μL of 5×105 cell/mL) was 
seeded onto nanofibers and incubated for 1 h at 37 °C. Loose and unadhered cells were removed. The wells were gently 
washed twice with PBS. The adherent cells were fixed with 4% paraformaldehyde in PBS for 15 min. Once the fixation was 
completed, the samples were dehydrated with ethanol at serially increasing concentrations of 25, 50, 75, 90, and 100%.

Study on Tissue Adhesive Properties
Tissue adhesiveness of the CHI-GA/CK/PCL NFs was examined using a universal testing machine (UTM, Instron 5583, 
Instron, USA) equipped with a 50 N load cell according to previous research with a slight modification.50–52 The PCL sides of 
the CHI-GA/CK/PCL NFs (1 × 1 cm2) were attached to the PET film (1 × 5 cm2) using commercially available adhesives 
(Loctite® 401, Rocky Hill, Connecticut, USA) resulting in the exposure of the CHI-GA-coated surfaces. In addition, the 
porcine intestine (1 × 1 cm2) was attached to a PET film (1 × 5 cm2) using commercially available adhesives. After washing 
the CHI-GA/CK/PCL NFs and porcine intestine on the PET films, both were overlapped and pushed. The tensile strengths 
were measured by pulling the film at a loading rate of 1 mm/min. All measurements were performed in triplicate.

Immature Mouse Articular Chondrocyte (iMACs) Culture
The iMACs were isolated from postnatal day 5 pups and were cultured with Dulbecco’s modified Eagle’s medium 
(DMEM; Gibco) with 10% fetal bovine serum (FBS; Gibco) and 100 units/mL of penicillin and streptomycin at 37 °C 
supplied with 5% CO2.

Immunocytochemistry
For actin staining, up to 10,000 cells were seeded on 12 mm coverslips coated with BSA, CHI, or CHI-GA. After 24 hr, 
the cells were fixed in 4% PFA for 20 min, permeabilized with Triton X-100 in PBS, incubated with 1% BSA in PBS for 
1 h, stained with Alexa488-phalloidin (1: 500 dilution, Molecular Probes, Eugene, OR) for 1 h at RT and incubated with 
DAPI (1: 1000 dilution) solution in PBS.

Experimental Animals
Wild-type C57BL/6N mice were purchased from Samtako BioKorea, Inc. (Osan, Korea). All mice were housed 
at 22 ± 1°C with 12 h light/dark cycles and a relative humidity of 50 ± 5% with food and water available ad 
libitum. Destabilization of the medial meniscus (DMM) was performed on the left knee joint of 8-week-old mice 
(n=8) without cutting the ligament as a control (n=8) and randomly divided into two groups for implantation of 
nanofiber. Eight weeks after DMM surgery, knee joint tissues were processed for histological analysis. All animal 
experiments were performed in accordance with the guidelines of the Institutional Animal Care and Use 
Committee (IACUC) of Wonkwang University and were approved by the Animal Ethics Committee of 
Wonkwang University (WKU21-05).
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Histological Analysis
Cartilage samples were fixed with 10% neutral buffered formalin (NBF) for 24 h and decalcified using 0.5 
M ethylenediaminetetraacetic acid (EDTA) solution for a week. After paraffin embedding, blocks were cut at 5 
μM thickness and stained with safranin O. For immunohistochemical analysis, deparaffinized sections were 
incubated with primary antibodies overnight at 4 °C in a humidified chamber. Sections were developed using 
ImmPACT DAB (Vector Laboratories, #SK-4105). The following antibodies were used for immunohistochemical 
analysis: PPARγ (1:100 dilution, Abcam, #ab41928), IL-1β (1:100 dilution, Abcam, #ab9722), Bodipy (1:50 
dilution, Thermo Fisher Scientific), and horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG (1:200 
dilution, Enzo Life Sciences, #ADI-SAB-300).

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
qRT-PCR was performed using AMPIGENE qPCR Green Mix (Enzo Life Sciences, #ENZ-NUC104-1000). RN18S was 
used as an endogenous control. The qRT-PCR primer sequences used in this study are listed in Supplementary Table 1.

Results and Discussion
Preparation and Characterizations of CHI-GA/CK/PCL NFs
To prepare CK/PCL NFs with a one-sided coating of hydrophilic and adhesive materials, CHI-GA was synthe-
sized by forming amide bond linkages. As shown in Figure 1a, the amine group of chitosan was reacted with the 
carboxylic acid group of gallic acid using EDC coupling agents. A peak at 265 nm was observed in the UV-Vis 
spectrum of CHI-GA due to the gallol groups (Figure 1b). In addition, the UV-Vis spectrum of CHI-GA was 
upshifted with a broad shoulder when CHI-GA was incubated for 8 h in phosphate-buffered saline (PBS) solution 

Figure 1 (a) Synthesis and chemical structures of CHI-GA. (b) UV-Vis spectra of chitosan, CHI-GA, and CHI-GA after incubation for 8 hrs. (c and d) Schematic illustrations 
of preparations of CK/PCL NFs (c) and CHI-GA-coated CK/PCL NFs (d).
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(pH 7.4) due to the intra-and inter-molecular crosslinking of CHI-GA. As previously reported, the gallol moieties 
in the polymer backbones spontaneously are oxidized at neutral pH solutions.53,54 In addition to hydrophilic and 
adhesive materials, CK/PCL NFs were prepared by electrospinning, as illustrated in Figure 1c. The CK/PCL NFs 
were then placed in the CHI-GA solution and incubated for 8 h. The CK/PCL NFs floated in the CHI-GA 
solution during the incubation because of the hydrophobicity of the PCL NFs (Figure 1d).

Figure 2 shows the morphological analysis of PCL (Figure 2a–d), CK/PCL (Figure 2e–h), and CHI-GA/CK/PCL NFs 
(Figure 2i–l) with the schematic illustrations. Scanning electron microscopy (SEM) images of PCL (Figure 2b and c), CK/PCL 
(Figure 2f and g), and CHI-GA/CK/PCL NFs (Figure 2j and k) were obtained to monitor the morphological changes after coating 
with CHI-GA. The average diameters obtained from the SEM images of CK/PCL NFs were 471.7 ± 244.4 nm, which were 
slightly smaller than that of the PCL NFs (602.2 ± 339.7 nm) (Figure 2d and h). Although there was no significance (p > 0.5) in 
diameters of NFs between two groups, the slight reduction in the diameter was probably due to the multiple hydroxyl groups of 
CK. As previously reported, the additives of small molecules that have multiple hydroxyl groups in the electrospinning of PCL 
affects the NF diameters by decreasing viscosity of solutions.55,56 After the CHI-GA coating, the average diameters slightly 
increased to 563.1 ± 308.2 nm (Figure 2l). It also showed no significance (p > 0.5) in diameters of NFs between two groups, but the 
slight increase in the diameter was due to the formation of CHI-GA layers on CK/PCL NFs. Unexpectedly, several spots and/or 
defects in the CK/PCL NFs mesh were covered with CHI-GA polymers during the drying steps (Figure 2k). Vigorous washing 
steps using both PBS (pH 7.4) and distilled deionized water (DDW) after CHI-GA coatings of CK/PCL NFs could not prevent 
non-uniform coverage of PCL NFs with CHI-GA polymers. However, this was expected to increase the hydrophilic and adhesive 
properties on one side of the CK/PCL NFs.

Effects of Cell and Tissue Adhesiveness
The water contact angle (WCA) of the CHI-GA/CK/PCL NFs was monitored to confirm the enhanced hydrophilicity by CHI-GA 
coatings (Figure 3a and b). The WCA of CK/PCL NFs was 107.8 ± 5.8° similar to PCL NFs alone (111.4 ± 4.7°). After CHI-GA 

Figure 2 Morphological analysis of (a–d) PCL NFs, (e–h) CK/PCL NFs, and (i–l) CHI-GA/CK/PCL NFs. Schematic illustration (a, e and i), SEM images with 1 kX (b, 
f and j, scale bar: 50 μm) and 10 kX (c, g and k scale bar: 5 μm), and diameter distributions (d, h and l). The counts of NF diameters were measured with standard 
deviations of 100 NFs.
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Figure 3 (a) Water contact angle (WCA) images and (b) average WCA of PCL, CK/PCL, CHI-GA/PCL, and CHI-GA/CK/PCL NFs. (c–h) SEM images of (c–e) CK/PCL NFs 
and (f–h) CHI-GA/CK/PCL NFs after cell attachment experiments with 1.5 kX (c and f, scale bar: 30 μm) and 10 kX (d, e, g and h, scale bar: 5 μm). (i) An illustration of 
tissue adhesion measurements. (j) Average detachment stress of CHI-GA/PCL and CHI-GA/CK/PCL NFs. ***P < 0.001, ****P < 0.0001.
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coatings on the PCL and CK/PCL NFs, the WCAs were significantly decreased to 58.3 ± 8.7° and 47.5 ± 11.7° (P* < 0.01). The 
CHI-GA-coated CK/PCL NFs surfaces were hydrophilic, whereas the uncoated CK/PCL NFs surfaces were hydrophobic. Thus, 
the CHI-GA/CK/PCL NFs exhibited the opposite (ie, hydrophilic and hydrophobic) properties on the different sides. In addition, 
the adhesion of the cells and tissues to the CHI-GA/CK/PCL NFs was monitored. Cellular attachment to PCL NFs and cell 
morphology were evaluated using SEM. As shown in Figure 3c–h, the CHI-GA/CK/PCL NFs (Figure 3f–h) showed significantly 
increased cell density on the nanofibers compared with the unmodified CK/PCL NFs (Figure 3c–e). Moreover, the cells were 
strongly anchored to the CHI-GA/CK/PCL NFs with increased protrusion of the cell membranes. More importantly. Increased 
cellular and cell-to-cell contacts were observed in CHI-GA/CK/PCL NFs with elongated cells (Figure 3g and h). In PCL NFs, 
globular cells were more prominent (Figure 3d and e).

The tissue adhesion properties of the CHI-GA/CK/PCL NFs were measured using modified lap-shear test methods. 
As shown in Figure 3i, the PCL NFs side of the CHI-GA/CK/PCL NFs was attached to the adherend, and the porcine 
tissue was attached to another adherend. Then, the CHI-GA side of the CHI-GA/CK/PCL NFs and the porcine tissue 
were overlapped, and the tensile strengths were measured by pulling the film. As shown in Figure 3j, CHI-GA/CK/PCL 
NFs showed excellent tissue adhesiveness to porcine tissues (9.4 ± 0.7 kPa) compared with CK/PCL NFs (0.13 ± 0.05 
kPa). Unexpectedly, the detachment stress of CK/PCL NFs increased 70-fold after coating with CHI-GA. This may be 
due to several defects in the CHI-GA polymer networks on the CK/PCL NFs meshes.

In vitro Assessments
To investigate the chondrogenic effects of CK on CHI-GA-coated nanofibers, immature mouse articular chondrocytes 
(iMACs) were isolated and cultured in PCL or CHI-GA-coated PCL with or without CK (Figure 4a). The anti- 
inflammatory effects of the nanofiber membranes were evaluated using real-time quantitative polymerase chain reaction 
(qRT-PCR). Catabolic biomarkers, including A disintegrin and metalloproteinase with thrombospondin motifs 
(ADAMTS)-4, −5, and matrix metalloproteinases (Mmp)-3, −5 or −13 were significantly inhibited by PCL and CHI/ 
GA/PCL coated with CK (CK/PCL and CHI-GA/CK/PCL) compared to PCL or CHI-GA/PCL NFs, respectively 
(Figure 4b and c). The most dramatic reduction was observed in iMACs with CHI-GA/CK/PCL NFs. In addition, the 
expression levels of inflammatory markers, including C-C motif chemokine ligand (CCL)-4, −12, and interleukin-1β 
were significantly inhibited by the CK/PCL nanofibers compared to the PCL NFs (Figure 4d). The expression levels of 
CCL-2, −4, −5, CXC ligand-2, −3, and IL-1β were significantly inhibited by the CHI-GA/CK/PCL NFs compared to the 
CHI-GA/PCL NFs. Moreover, the CHI-GA/CK/PCL NFs showed the most significant decrease in the expression of these 
inflammation-related cytokines compared with the CK/PCL NFs. Recent studies have suggested that lipid accumulation 
is a key factor affecting the development and progression of OA, and the gene profiles involved in lipid metabolism have 
been examined.57–59 Consistent with the expression profile of inflammatory biomarkers, a dramatic reduction in lipogenic 
genes was observed with CHI-GA/CK/PCL NFs compared to that with CHI-GA/PCL NFs. Moreover, the CHI-GA/CK/ 
PCL NFs showed the highest decrease in the expression of lipogenic genes compared to the CK/PCL NFs.

Cartilage Regeneration Using CHI-GA/CK/PCL NFs
To investigate the therapeutic effects of the CHI-GA/CK/PCL NFs on the pathogenesis of OA, DMM was performed to 
induce OA pathological conditions (Figure 5a). Positive staining (red staining), indicating the secretion of glycosami-
noglycans, a specific matrix for articular cartilage, significantly decreased in DMM-treated mice implanted with PCL or 
CHI-GA/PCL NFs (Figure 5b). The Osteoarthritis Research Society International (OARSI) score confirmed the progres-
sion of OA in DMM-induced mice implanted with PCL or CHI-GA/PCL NFs. However, the CHI-GA/CK/PCL NFs 
showed the most evident therapeutic effect on the alleviation of OA severity, with a decreased OARSI score compared to 
all other nanofibers (CHI-GA/PCL, CK/PCL, and PCL).

It has been suggested that the signaling mechanisms involved in lipid metabolism play an essential role in the 
pathogenesis of OA. Among these, peroxisome proliferator-activated receptor (PPAR) has been reported to be involved 
in reducing inflammatory responses in OA cartilage. Here, we found an increased level of PPARγ in DMM-induced 
cartilage implanted with CHI-GA/PCL and CHI-GA/CK/PCL NFs (Figure 5c). However, the expression level of PPARγ 
did not change with the implantation of PCL or CK/PCL NFs. Previously, it was reported that the deficiency of PPARγ 
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increases the catabolic activity of MMPs and inflammatory factors such as IL-1β, IL-6, and tumor necrosis factor-α in the 
articular cartilage and contributes to cartilage destruction and the progression of OA.59 Consistent with this, lipid 
accumulation (Figure 6a) and the expression level of IL-1β (Figure 6b) were also significantly reduced by the 
implantation of CHI-GA/PCL and CHI-GA/CK/PCL NFs in DMM-induced cartilage. To see whether gallic acid- 
conjugation affects the cellular adhesion, iMACs were cultures with BSA, CHI, or CHI-GA coated glass surface. 
Notably, the CHI-GA-coated glass surface exhibited the highest cell adhesion properties (Figure 7a). Furthermore, 
cytoskeleton staining also indicated a strong intensity in cells cultured on CHI-GA coated glass surface (Figure 7b). 
Gallol-containing molecules can enhance the cell adhesion with functionalities such as anti-inflammatory and anti- 
oxidative properties, as previous reported.60 It was noteworthy that gallol groups of CHI-GA significantly enhanced the 
cell attachments on the substrates that could provide the therapeutic strategy for cartilage regenerations.

To validate the enhanced cellular effects of CHI-GA/CK/PCL NFs, iMACs were treated with CK, CHI, or CK/CHI- 
CA. Since cell adhesion is accomplished by the cell adhesion molecules located on the cell surface such as integrins,61 

Figure 4 (a) Optical images of cells in PCL, CK/PCL, CHI-GA/PCL, and CHI-GA/CK/PCL NFs. (b) Expression level of cartilage degrading genes. (c) Expression level of the 
Mmp13 gene. (d) Expression level of genes involved in inflammation and lipid metabolism. *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001.
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the expression level of integrins were analyzed. Exposure to CK/CHI-GA significantly increased the expression level of 
ITGα1, ITGα5, ITGα10, and ITGα1 compared to CK or CHI treatment (Figure 7c). Additionally, an increased level of 
pparα and pparγ recognized as promising therapeutic targets for the prevention of OA progression,62,63 was observed 
with CK/CHI-GA treatment (Figure 7d). Our findings indicate that CHI-GA/PCL demonstrates a therapeutic effect in 
osteoarthritis (OA) pathogenesis by improving chondrocyte adhesion and preventing cartilage degradation through the 
upregulation of integrin levels and stimulation of the PPARγ pathway. While the DMM model in mice is widely 
acknowledged for its high reproducibility and its ability to induce moderate to severe cartilage lesions,64 it’s crucial to 
understand the inherent differences between mice and humans. Due to their considerably smaller size compared to 

Figure 5 (a) Experimental scheme. (b) Safranin O staining and OARSI score. (c) Immunohistochemistry of PPARγ (left panel) and percentage of PPARγ-positive cells (right 
panel). **P < 0.01; ***P < 0.001, ****P < 0.0001, Scale bar: 100 µm.
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human, mice undergo substantial biomechanical stress on their joints, a factor that should not be overlooked or 
underestimated. Moreover, there are notable anatomical differences in mouse cartilage, such as differences in overall 
thickness, the presence of a thick layer of calcified cartilage, and the absence of distinct superficial, transitional, and 
radial zones of chondrocytes. In addition, recent reports have highlighted the impact of the interplay between muscle or 
bone on cartilage degeneration.65,66 Hence, it may be important to explore the potential correlation between the inhibitory 
effects of CHI-GA/CK/PCL NFs on cartilage degeneration and their interaction with muscle or bone might be crucial and 
related research is currently ongoing.

Figure 6 (a) Bodipy staining. Scale bar: 200 µm. (b) Immunohistochemistry of IL-1β (left panel) and percentage of IL-1β positive cells (right panel). Scale bar: 400 µm. **P < 0.01.
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Conclusion
In summary, hydrophilic and adhesive CHI-GA-coated compound K-loaded PCL NFs were developed for cartilage tissue 
regeneration. The CHI-GA-coated surfaces of the CK/PCL NFs exhibited excellent cell (ie, increased up to 50%) and 
tissue adhesive properties with hydrophilicity. Furthermore, the CHI-GA layer within the CK/PCL NFs demonstrated an 

Figure 7 (a) Bright field image. (b) Immunohistochemistry of phalloidin staining. The positive area for adherent cells and phalloidin staining was measured by Image Pro software. (c) 
Expression level of integrin genes. Measured by Image Pro software. (d) Expression level of PPARα and PPARγ genes. *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001.
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increased adhesion to cartilage defects and CK demonstrated a significant therapeutic efficacy in cartilage regeneration, 
exhibiting a remarkable improvement of up to 60% according to OARSI scoring. CHI-GA/CK/PCL increased the 
expression level of integrins up to 20% compared to CK-treated chondrocytes, decreased the major cartilage- 
degrading enzyme MMP13, up to 60% compared to OA chondrocytes and inflammatory cytokine, IL-1β up to 50% 
compared to PCL-DMM cartilage possibly through increased peroxisome proliferator-activated receptor (PPAR). Our 
study proved that these CK-loaded hydrophilic adhesive nanofibers and simple coating methods have an enormous 
potential in cartilage tissue regeneration.
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