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Background: Hepatocellular carcinoma is difficult to diagnose early, and most patients are 

already in the late stages of the disease when they are admitted to hospital. The total 5-year 

survival rate is less than 5%. Recent studies have showed that brucine has a good anti-tumor 

effect, but high toxicity, poor water solubility, short half-life, narrow therapeutic window, and a 

toxic dose that is close to the therapeutic dose, which all limit its clinical application. This study 

evaluated the effects of brucine immuno-nanoparticles (BIN) on hepatocellular carcinoma.

Materials and methods: Anionic polymerization, chemical modification technology, and pha-

coemulsification technology were used to prepare a carboxylated polyethylene glycol-polylactic 

acid copolymer carrier material. Chemical coupling technology was utilized to develop anti-

human AFP McAb-polyethylene glycol-polylactic acid copolymer BIN. The size, shape, zeta 

potential, drug loading, encapsulation efficiency, and release of these immune-nanoparticles 

were studied in vitro. The targeting, and growth, invasion, and metastasis inhibitory effects of 

this treatment on liver cancer SMMC-7721 cells were tested.

Results: BIN were of uniform size with an average particle size of 249 ± 77 nm and zeta 

potential of −18.7 ± 4.19 mV. The encapsulation efficiency was 76.0% ± 2.3% and the drug 

load was 5.6% ± 0.2%. Complete uptake and even distribution around the liver cancer cell 

membrane were observed.

Conclusion: BIN had even size distribution, was stable, and had a slow-releasing effect. BIN 

targeted the cell membrane of the liver cancer cell SMMC-7721 and significantly inhibited 

the growth, adhesion, invasion, and metastasis of SMMC-7721 cells. As a novel drug carrier 

system, BIN are a potentially promising targeting treatment for liver cancer.

Keywords: cancer targeting, hepatocellular carcinoma, nanoparticles, targeted drug delivery, 

anti-tumor effect

Introduction
Hepatocellular carcinoma (HCC) is the fifth most common malignant tumor, and there 

is only one cancer that causes more deaths worldwide. The overall 5-year survival rate 

is less than 5%. Each year some 564,000 new cases are diagnosed, and 549,000 people 

die. The poor prognosis is mainly due to common portal vein tumor invasion, which 

can cause high rates of intrahepatic metastasis and postoperative recurrence. Even in 

the early stages after radical resection, the metastasis and recurrence rate is 61.5%.1–3 

Currently, the primary treatment for primary liver cancer is surgery resection.

Primary liver cancer is often accompanied by varying degrees of cirrhosis, which is 

reported in 70%–90% of all cases. The risk of cirrhosis is enormously increased with 

respect to liver cirrhosis due to the high sensitivity of the hardened liver to ischemia and 
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blood loss. Long-term hepatic inflow occlusion and massive 

blood loss can easily lead to postoperative acute liver failure. 

The overall surgical resection rate is 15%–20%.4,5 Ziser et al 

found that patients with cirrhosis undergoing surgeries had a 

perioperative complication rate of 30.1% and mortality rate of 

11.6%.6 Liver transplantation for the treatment of liver cancer 

can completely resect the tumor and also radically improve 

the liver function of the patient. Especially for unresectable 

liver cancer or patients who cannot undergo liver resection, 

liver transplantation is the only radical surgical treatment. 

Nevertheless, tumor recurrence and metastasis significantly 

restrict the feasibility of liver transplantation. Calne et al 

reported that 37.5% of patients receiving liver transplants 

died of tumor recurrence from 2 months to 5 years after the 

surgery. The 5-year survival rate was 18.6%.7

For patients who cannot tolerate surgery or bear a high 

risk of recurrence and metastasis after the surgery and 

transplantation, the alternative treatments include systemic 

and local chemotherapy. These can control tumor growth to 

some extent, but some side effects such as poor targeting, 

low sensitivity, short effecting time, and high toxicity all 

significantly restrict their clinical application.8–10 Therefore, 

the development of a new drug delivery system characterized 

by effective targeting of the cancer cells, strong anti-tumor 

effects, local drug accumulation, slow release, and lower 

systemic toxicity is the focus for liver cancer treatment and 

the prevention of recurrence and metastasis.

Brucine is a weak basic indole alkaloid. Its formula is 

C
23

H
26

N
2
O

4
 and its molecular weight is 394.47 Da. It is a 

white crystal that is highly toxic and odorless, with a very 

bitter taste. It is slightly soluble in water, is levorotatory, and 

is soluble in ether, chloroform, ethanol, methanol and other 

organic solvents. Its high toxicity, poor water solubility, 

short half-life, and low toxic dose for intravenous use limit 

its clinical application in cancer treatment.

Qin et al treated in vitro cultured human hepatoma cells 

SMMC-7721 with brucine and found that the inhibition 

rate grew as the amount of brucine increased. At a dosage 

of 320 µg/mL, the inhibition rate was close to 100%, which 

showed that brucine had a significant inhibitory effect on 

liver cancer cells. Further studies showed that brucine could 

induce cell apoptosis by increasing Fas expression.11 Deng 

et al found that brucine and its liposome complex showed 

significant growth inhibition on transplanted liver cancer in 

Heps tumor-bearing mice, and it stimulated the hematopoietic 

and immune systems. Liposomal brucine has targeting and 

slow-release effects, and showed more powerful anti-tumor 

effects than brucine monomer.12–14

Combining the drug-loaded nanoparticles with mono-

clonal antibodies (McAb) against human hepatocellular 

carcinoma, we produced a drug-nanoparticle-monoclonal 

antibody immune complex. With cellular-targeting capa-

bilities, McAb could carry the drug-loaded nanoparticle to 

specific sites and enhance the interaction between the drug 

and liver cancer cells, thus elevating local drug concentration 

and increasing drug efficacy. This study employed anionic 

polymerization and chemical modification technology to 

prepare a carboxylated polyethylene glycol-polylactic acid 

block copolymer material, used phacoemulsification technol-

ogy to prepare carboxylated polyethylene glycol-polylactic 

acid block copolymer brucine nanoparticles, and utilized 

chemical coupling technology to develop anti-human AFP 

McAb-polyethylene glycol-poly lactic acid copolymers with 

brucine immuno-nanoparticles. By culturing human liver can-

cer cells SMMC-7721 in vitro, as well as in matrix adhesion 

and transwell chamber experiments, we observed the effects 

of brucine immuno-nanoparticles on liver cancer cell growth, 

cell matrix adhesion, invasion, and migration ability.

Materials and methods
Materials
Brucine monomer (Chengdu Man Si Te Biotechnology 

Co, Ltd, batch number: 110706-200 505, purity .99%); 

5-fluorouracil(5-Fu) (Shanghai Xudong Haipu Pharmaceutical 

Co, Ltd, batch number: 090315); carboxylated polyethylene 

glycol-poly lactic acid block copolymer (PLA-PEG-COOH, 

molecular weight, 40 kDa) (Jiangsu Paige Bio Co, Ltd, 

PA20100302); mouse anti-human AFP monoclonal antibody 

(McAb, 70 kDa, Hangzhou Hua Biotechnology Co, Ltd); 

8% polyvinyl alcohol (PVA) aqueous solution, acetonitrile, 

methylene chloride, methanol, acetone, octanol, carbodiimide 

hydrochloride (EDAC) (Shanghai Xinhua Chemical Co, Ltd); 

goat anti-mouse IgG FITC (Shanghai Unitech Biotechnology 

Co, Ltd); human hepatocellular carcinoma SMMC-7721 cell 

line (provided by Shanghai Biological Sciences Institute 

affiliated to the Chinese Academy of Sciences); Tetrazolium 

salt (MTT), dimethyl sulfoxide (DMSO) (Sigma, Munich, 

Germany); Matrigel gel (BD Biosciences, Franklin Lakes, 

NJ); transwell (8 µm pore size; Corning, Inc, Corning, NY); 

fibronectin (Roche, Basel, Switzerland).

Methods
Preparation of the carboxylated polyethylene glycol-
 polylactic acid copolymers brucine nanoparticles
Anionic polymerization and chemical modif ication 

technology were used to prepare carboxylated polyethylene 
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glycol-polylactide block copolymer materials. The following 

were mixed into 120 mL of brucine nano- emulsion: 0.8 g of 

oil phase carboxylated polyethylene glycol-polylactic acid 

block copolymer (PLA-PEG-COOH), 40 mg of brucine, 

16 mL of dichloromethane (CH
2
Cl

2
), 8% aqueous polyvinyl 

alcohol (PVA), 40 mL of aqueous solution, and 80 mL of 

pure water. The mixture was dispersed by a high shear cut-

ting homogenization machine, then dispersed under 12,000 

rpm speed shear, and emulsified five times (for 30 seconds 

each time) under 300 W ultrasound. The emulsion was then 

added to 80 mL of purified water and magnetically stirred 

at 700 rpm at room temperature for 6 hours to volatilize the 

CH
2
Cl

2
. The dried emulsion was centrifuged at 5000 rpm 

for 10 minutes to remove any aggregates. The brucine nano-

emulsion was then harvested by collecting the supernatant. 

The brucine nano-emulsion was put into an ultrafiltration tube 

(Millipore Amicon 100, 000; Millipore, Billerica, MA) and 

centrifuged at 3000 g for 30 minutes to concentrate the solu-

tion and remove free brucine. The solution was then washed 

with purified water and centrifuged with ultrafiltration again 

to obtain the brucine concentrate, which was stored at 4°C 

in the refrigerator.

Preparation of the anti-human AFP McAb- 
polyethylene glycol-polylactic acid copolymer BINs
Five milligrams of EDAC (carbodiimide hydrochloride) 

was added to 3 mL of brucine nanoparticle solution. The 

mixture was shaken for 15 minutes at 200 rpm, and  anti-

human AFP McAb (1 mg/mL) was added, oscillated at 

200 rpm for 3 hours at 4°C, and centrifuged at 10,000 rpm 

for 5 minutes. The product of this was washed three times 

in 0.01 M PBS (pH 7.4). Nanoparticles were isolated by 

ultrafiltration centrifugation, and the BINs were stored at 

4°C in the refrigerator.

Analysis of particle size and zeta potential
A PSS ZWL380 nano particle size analyzer (Particle Sizing 

Systems, Inc, Santa Barbara, CA) was used to measure BIN 

particle size, size distribution, and zeta potential by the 

dynamic light scattering method. The angle of observation 

was 90°, and the temperature of the measurement was 25°C.

Morphology
The prepared BIN suspension sample was put on aluminum 

foil, dried, and sprayed with platinum. A S4800 scanning 

electron microscope (Hitachi, Tokyo, Japan) was used 

to observe the morphology with an accelerating voltage 

of 1 kV.

Drug loading
Brucine acetonitrile solution (0.01 mg/mL) was prepared as 

the control solution. 0.1 mL of BIN concentrate was added 

to 5 mL of acetonitrile, and the concentrate was ultrasounded 

for 5 minutes to fully extract the brucine, then acetonitrile 

was added to make up the volume to 10 mL. After being 

shaken and centrifuged at 12,000 rpm for 20 minutes, the 

supernatant was collected to measure the UV absorption at 

263 nm wavelength, and the absorbance A2 was recorded. 

The UV absorption of the control solution was measured 

at a wavelength of 263 nm, and the absorbance (As) was 

recorded. The brucine content in the concentrate was 

calculated as (A2/As) in mg/mL.

In vitro drug release
The dialysis method was employed to determine the drug 

release rate of BIN in vitro.

To calculate the stability of the brucine in the release 

medium, 20 mg of brucine was diluted to 0.01 mg/mL with 

0.5% polyoxyethylene dehydrated sorbitol monooleate PBS 

solution. The solution was put into a water bath constant tem-

perature oscillator (37°C ± 0.5°C) in the dark and 1.0 mL was 

sampled at 0, 0.5, 1, 2, 4, 8, 12, 24, 36, 48, and 60 hours, with 

20 µL of this sample used to measure the brucine content. 

The content at 0 hours was set as 100% and changes in the 

brucine content were measured.

To calculate the drug release of BIN in vitro, dialysis bags 

were placed in distilled water for 24 hours. Eight  milliliters 

of BIN suspension was put into the dialysis bags, the ends 

of the dialysis bags were clipped, and the bags were placed 

into the release medium with magnetic stirring (200 rpm). 

Of the solution, 1.0 mL was sampled at 0, 0.5, 1, 2, 4, 8, 12, 

24, 36, 48, and 60 hours, with 20 µL of this sample used 

to measure the brucine content. The data were corrected 

in accordance with the degradation curve in the release 

medium. Concentrations of the brucine in the sample were 

measured at different time points. The cumulative drug 

release percentage (Q) was calculated and the cumulative 

release curve was plotted.

Determination of monoclonal antibody on brucine 
immuno-particle surface
The bicinchoninic acid (BCA) method was used to measure 

the antibody content of samples. After the BSA standard 

protein solution (10 µg/mL–750 µg/mL) and BCA working 

solution were allowed to react, the solution’s absorbance 

at 562 nm was measured and the concentration-absorbance 

curve and the curve equation were obtained. Forty microliters 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

371

Anti-tumor effects of brucine immune-nanoparticles

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2012:7

of BIN suspension reacted with the BCA working solution 

and its absorbance at 562 nm was determined. The concentra-

tion of the antibody on the brucine nanoparticles was then 

obtained using the curve equation.

Cell targeting and positioning
Human hepatoma cells (SMMC-7721) were diluted with 10% 

fetal calf serum medium (RPMI-1640) to a cell concentra-

tion of 1 × 105/mL. One milliliter of human hepatoma cells 

(SMMC-7721) was cultured in an incubator in 5% CO
2
 at 

37°C for 24 hours. The culture fluid was discarded and the 

cells were washed twice with 0.01 M PBS. Then 100 µL 

of BIN solution was added and the cells were incubated in 

5% CO
2
 at 37°C for 24 hours, after which the BIN solution 

was discarded and the cells were washed three times with 

0.01 M PBS. One hundred microliters of FITC-labeled goat 

anti-mouse antibody (20 µL stock solution + 80 µL 0.01 M 

PBS) was added. After incubation for 2 hours, the cells were 

washed three times with 0.01 M PBS. A Zeiss LSM 510 

META confocal microscope (Zeiss, Oberkochen, Germany) 

was used to observe the cells with 488 nm laser excitation.

Grouping
Based on the experimental requirements, eight groups were set 

up: a RPMI-1640 group, a PLA-PEG-COOH copolymer group, 

an anti-human AFP McAb group, an anti-human AFP McAb-

PEG-PLA block copolymer group, a 5-FU group, a  brucine 

group, a brucine nanoparticles group, and a BIN group.

Morphological changes of liver cancer cells
Human hepatoma cells SMMC-7721 were diluted with 10% 

fetal calf serum medium RPMI-1640 to a cell concentration 

of 4 × 104/mL. The cell suspension was seeded on a 96-well 

plate with 100 µL per well under conditions of saturated 

humidity, 5% CO
2
, and 37°C for 12 hours. After the medium 

was removed, 100 µL of 10% fetal calf serum RPMI-1640 

culture medium containing different drug concentrations 

was added to each well. The different drug concentrations 

were 0.5, 1.0, 1.25, 2.5, 5.0, 7.5, 10, 15, 20, 25, 30, 40, 80, 

160, 240, 320, 400, 480 µg/mL. Three wells were set up for 

each dose group.

The blank control group used 10% fetal calf serum 

medium RPMI-1640 and the control group used human 

hepatoma cells cultured with 10% fetal calf serum RPMI-

1640 culture medium. The content of PLA-PEG-COOH 

copolymer, anti-human AFP-McAb, and anti-human AFP 

McAb-PLA-PEG block copolymer nanoparticles cor-

responded to the amount of anti-human AFP -McAb and 

PEG-PLA block copolymer in the BIN. After placing the 

HCC cells under conditions of saturated humidity, 5% CO
2
, 

and 37°C for 72 hours, morphological changes as well as 

the growing state of cells were observed by inverted phase 

contrast microscope.

Cancer cell growth inhibition
After 72 hours of culture, 20 µL of MTT solution (5 mg/mL) 

was added to each well and cells were cultured for 4 hours 

under 37°C in the dark. Then the MTT-containing medium 

was removed and 150 µL DMSO was added to the culture 

dish to react for 10 minutes. The absorbance value A of the 

blank control group was detected at 570 nm and adjusted 

to zero. The inhibition rate was calculated by the following 

formula:

Cell growth inhibition rate = (1 – test-well average A value  
 /average A value of control wells) × 100%

Effects of BIN on cell adhesion of liver cancer cells
Serum-free 1640 was used to dilute Matrigel (100 µg/mL), 

and 25 µL of the solution was then added to each of the 

96 wells in the plate and left to dry in a biological safety 

cabinet at room temperature. Brucine, 5-FU, brucine nano-

particles, and BIN were applied to SMMC-7721 hepatoma 

cells for 72 hours, with each applied at five different concen-

trations: 20, 40, 80, 160, and 240 µg/mL. A cell suspension 

of 4.0 × 105 cells/mL was prepared and 100 µL was added 

to each well of a 96-well plate adhesion system containing 

Matrigel. Each of the concentration cell suspensions was 

added to three wells, and each plate included three empty 

holes that were left empty as the control (only 100 µL serum-

free 1640 was added in the adhesion system). The 96-well 

plates containing hepatoma cells were placed in an incubator 

at 37°C, with 5% CO
2
 for 2 hours. The plates were then gently 

washed three times with 0.01 M PBS to remove non-adhesive 

cells. Twenty microliters of MTT solution (5 mg/mL) was 

added to each well, and the plates were then placed in the 

incubator at 37°C, with 5% CO
2
 for 4 hours. PBS (0.01 M) 

was used to wash the plates three times, and 100 µL of DMSO 

solution was added to each well and mixed for 10 minutes. 

The optical density of each well was measured under 570 nm 

to indirectly determine the cell-matrix adhesion. The average 

adhesion rate and the standard deviation were obtained by 

calculating the adhesion rate of each experimental concentra-

tion and that of the three blank holes.

Experimental adhesion rate of each well = (OD value 

of each hole – average OD value of blank wells)/(average 
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OD value of control wells – average OD value of blank 

wells) × 100%

Effects of BIN on invasion of liver cancer cells
Serum-free 1640 was used to dilute Matrigel (100 µg/mL), which 

was added to the upper transwell chamber (50 µL/chamber) to 

dry in a biological safety cabinet at room temperature. Serum-

free 1640 was added, and after 90 minutes the liquid and 

uncombined Martigel were removed. Brucine, 5-FU,  brucine 

nanoparticles, and BIN at concentrations of 10, 20, 40, 80, 

160, and 240 µg/mL were applied to SMMC-7721 hepatoma 

cells for 72 hours. A cell suspension of 4.0 × 105 cells/mL 

was prepared and added to the upper transwell chamber 

(150 µL/chamber). Six hundred microliters of RPMI-1640 

containing 10 µg/mL fibronectin and 10% BSA serum was 

added to the lower transwell chamber. The transwell plates 

were then removed and placed in a 37°C incubator with 5% 

CO
2
 for 24 hours. The filter side of the upper chamber was 

then cleaned with a cotton swab and the filter was stabilized 

with ethanol and stained with H&E. The filter was carefully 

cut from the chamber and the cells that had migrated through 

the filter pores from the underside of the filter were counted 

in four high-power fields per insert, and average values were 

calculated based on five vision fields (the upper, lower, 

left, right, and central). For each migration condition, three 

replicates were performed.

Invasion rate = (Number of invasive cells in drug groups 
 /number of invasive cells in the control group) × 100

Effects of BIN on the cell movement of liver  
cancer cells
Serum-free 1640 was added to the upper transwell chamber 

(100 µL/chamber). Brucine, 5-FU, brucine nanoparticles, and 

BIN were used on SMMC-7721 hepatoma cells for 72 hours 

at concentrations of 10, 20, 40, 80, 160, and 240 µg/mL. 

A cell suspension of 4.0 × 105 cells/mL was prepared and 

added to the upper transwell chamber (150 µL/chamber). 

Six hundred microliters of RPMI-1640 containing 10 µg/mL 

fibronectin and 10% BSA serum was added to the lower 

transwell chamber, and the transwell plates were placed in 

a 37°C incubator with 5% CO
2
 for 24 hours. The filter side 

of the upper chamber was then cleaned with a cotton swab 

and the filter was stabilized with ethanol and stained with 

H&E. The filter was carefully cut from the chamber and 

the cells that had migrated through the filter pores from the 

underside of the filter were counted in four high-power fields 

per insert, and average values were based on five vision fields 

(the upper, lower, left, right, and central). For each migration 

condition, three replicates were performed.

Migration rate = (number of migrated cells in drug groups 
 /number of migrated cells in the control group) × 100

Statistical analysis
SPSS statistical software (v 13.0; SPSS, Inc, Chicago, IL) 

was used to analyze the data. Analysis of variance of the ran-

domized design was employed within the group, and analysis 

of the data covariance of the randomized block design was 

used to compare the difference between groups. P , 0.05 

was considered statistically significant.

Results and discussion
Preparation and properties of BIN
In this study, anionic polymerization, chemical modification 

technology, and phacoemulsification technology were used 

to prepare carboxylated polyethylene glycol-polylactic acid 

copolymer carrier material. Chemical coupling technology 

was utilized to develop anti-human AFP McAb-polyethylene 

glycol-polylactic acid copolymer BIN. BIN were successfully 

prepared and showed uniform size with an average particle 

size of 249 ± 77 nm and zeta potential of –18.7 ± 4.19 mV. 

The drug load was 5.6% ± 0.2% (Figures 1 and 2). Brucine 

was completely released within 2 hours. BIN were very stable 

in the medium with an accumulative release rate of over 80% 

in 24 hours and 100% in 48 hours (Figure 3).

Determination of monoclonal antibodies 
on BIN surface
BCA was used to determine the concentration of AFP mono-

clonal antibodies on BIN, and the concentration was 15 µg 

antibodies/mg nanoparticles.

Brucine

Anti-human
AFP McAb

PEG PLA

Anionic polymerization and
chemical modification technology 

Phacoemulsification technology

–COOH Chemical coupling
technology

Brucine
immnue
nanoparticles

Brucine
nanoparticles

PLA-PEG-COOH
block copolymer

–NH2

Figure 1 Synthesis scheme of brucine immuno-nanoparticles.
Abbreviation: PEG-PLA-COOH, carboxylated polyethylene glycol-polylactic acid 
block copolymer.
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Brucine intake by cancer cells  
and its positioning
BIN were evenly distributed around the liver cancer cell 

membrane, showing consistent ring shapes and good target 

positioning (Figure 4).

Liver cancer cell growth inhibition by BIN
Liver cancer cells in the blank control group showed adher-

ent growth, clear cell outline, uniform cell arrangement, and 

vigorous growth under each experimental concentration. As 

the dose of BIN increased, the number of liver cancer cells 

dropped. Liver cancer cells that were arranged in sparse, 

round pseudopodia disappeared, normal cell structures 

were lost, and cytoplasm “bubble” phenomena could be 

seen. Other effects such as cell shrinkage and cell peripheral 

refraction changes decreased adhesion capacity, and more 

cell debris could be found (Figure 5).

Negative control groups showed no significant growth 

inhibition on liver cancer SMMC-7721 cells. The difference 

between groups was not statistically significant (P . 0.05) 

after 72 hours. BIN had a significant inhibitory effect on 

the growth of hepatoma cells SMMC-7721, which was cor-

related with the drug concentration and showed a time and 

dose-dependent manner for 72 hours. The difference between 

the groups was statistically significant (F = 5.719, P , 0.01) 

(Figure 6). Compared with brucine and brucine nanoparticles, 

BIN had the strongest inhibitory effects on hepatoma cells 

SMMC-7721 and the IC
50

 was 28.2 µg/mL, close to that of 

5-FU (IC
50

, 16.7 µg/mL) (Figure 7).

Effects of BIN on cell adhesion of liver 
cancer cells
In the negative control group, increased drug concentration 

had no significant effect on human hepatoma SMMC-7721 

cell matrix adhesion. No significant difference was found 

between groups (F = 0.001, P . 0.05). 5-FU, brucine, 

brucine nanoparticles, and BIN all had significant inhibi-

tory effects on human hepatoma SMMC-7721 cell matrix 

adhesion after 72 hours. As drug concentration increased, 

the inhibition effects were enhanced. The difference between 

groups was statistically significant (F = 125.194, P , 0.01). 

500 nm

Figure 2 Scanning electron microscope image of brucine immuno-nanoparticles 
(100,000× magnification).
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Figure 3 Release curve of brucine immuno-nanoparticles in vitro. Brucine was 
completely released within 2 hours. Brucine immuno-nanoparticles were very stable 
in the medium with an accumulative release rate of over 80% in 24 hours and 100% 
in 48 hours.

 
20 µm

 
Figure 4 Cell targeting and positioning of the brucine immuno-nanoparticles. 
Complete uptake and even distribution of the brucine immuno-nanoparticles 
around the liver cancer cell membrane after incubation for 4 hours (A) ring green 
fluorescence; (B) without laser excitation; 400× magnification.

A B C

Figure 5 Growth effect of brucine immuno-nanoparticles on liver cancer cells. Liver 
cancer cells shrank and pseudopodia disappeared at a brucine concentration of 
1.0 µg/mL in brucine immuno-nanoparticles for 72 hours in vitro (A).  The number of 
liver cancer cells dropped, and liver cancer cells were sparse and round at a brucine 
concentration of 40 µg/mL in brucine immuno-nanoparticles for 72 hours in vitro (B). 
Liver cancer cells showed cytoplasm “bubble” phenomena and low adhesion capacity, 
and more cell debris could be found at a brucine concentration of 160 µg/mL in 
brucine immuno-nanoparticles for 72 hours in vitro (C) (200× magnification).
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Compared with brucine and brucine nanoparticles, BIN had 

the strongest inhibition effects on liver cancer cell matrix 

adhesion (Figure 8).

Effects of BIN on invasion  
of liver cancer cells
In the negative control group, increased drug concentration 

had no significant effect on human hepatoma SMMC-7721 

cell invasion. No significant difference was found between 

groups (F = 0.380, P . 0.05). 5-FU, brucine, brucine nanopar-

ticles, and BIN all had significant inhibitory effects on human 

hepatoma SMMC-7721 cell invasion after 72 hours. As the 

drug concentration increased, the inhibition effects were 

enhanced. The difference between groups was statistically 

significant (F = 57.238, P , 0.01). Compared with brucine 

and brucine nanoparticles, BIN had the strongest inhibitory 

effect on liver cancer cell invasion (Figures 9 and 10).

Effects of BIN on cell movement  
of liver cancer cells
In the negative control group, increased drug concentration 

had no significant effect on human hepatoma SMMC-7721 cell 

migration. No significant difference was found between groups 

(F = 1.183, P . 0.05). 5-FU, brucine, brucine nanoparticles, 

and BIN all had significant inhibitory effects on human hepa-

toma SMMC-7721 cell migration after 72 hours. As the drug 

concentration increased, the inhibitory effects were enhanced. 

The difference between the groups was statistically significant 

(F = 51.237, P , 0.01). Compared with brucine and brucine 

nanoparticles, BIN had the strongest inhibitory effect on liver 

cancer cell migration. (Figures 11 and 12).

Many anti-cancer drugs that are clinically employed at 

present have many problems and side effects such as poor 

water solubility, short half-life, poor targeting of cancer cells, 
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Figure 6 The growth inhibition curve of the brucine immuno-nanoparticles on 
liver  cancer  cells.  Brucine  immuno-nanoparticles  have more  significant  inhibitory 
effects on the hepatoma cells SMMC-7721 than brucine or brucine nanoparticles for 
72 hours. Time- and dose-dependent effects were observed.
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Figure 8 The matrix adhesive rate of the brucine immuno-nanoparticles on liver 
cancer cells. Compared with brucine and brucine nanoparticles, brucine immuno-
nanoparticles had the strongest inhibition effects on liver cancer cell matrix adhesion 
for 72 hours.
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Figure 9 The  number  of  cells  permeating  through  the  filter  pores  from  the 
underside of the filter after brucine immuno-nanoparticles were applied at various 
concentrations to liver cancer cells for 72 hours (200× magnification).  As the drug 
concentration increased, the number of cell invasions decreased. (A) 10 µg/mL; (B) 
20 µg/mL; (C) 40 µg/mL; (D) 80 µg/mL.
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Figure 10 The invasion rate of the brucine immuno-nanoparticles on liver 
cancer cells. Compared with brucine and brucine nanoparticles, brucine immuno-
nanoparticles had the strongest inhibition effects on liver cancer cell invasion after 
72 hours.
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high toxicity, and the suppression of bone marrow activity. In 

recent years, nanotechnology has been incorporated into the 

development of new nano-anti-cancer drugs which promise 

ideal targeting and sustained release. The concentration of the 

drug in the cancer-affected organ can be significantly increased, 

accompanied by significantly enhanced efficacy and reduced 

side effects. Thus, these drugs show promise in the treat-

ment of liver cancer.15 Wang et al used tanshinone IIA and 

tanshinone IIA nanoparticles in the treatment of tumor-bearing 

mice with transplanted liver cancer H22 cells. Compared 

with the control group, tanshinone IIA and tanshinone IIA 

nanoparticles significantly inhibited tumor growth, and at the 

same level of drug concentration, tanshinone IIA nanoparticles 

inhibited tumor growth significantly better than tanshinone IIA, 

as demonstrated by significantly increased tumor necrosis and 

apoptosis, and lower cyclin E expression. This indicated that 

tanshinone IIA nanoparticles were superior to tanshinone IIA.16 

The uptake of nanoparticles was affected by the size, shape, 

surface characteristics, medium concentration, incubation 

time, temperature, and many other factors.17–22

Combining drug-loaded nanoparticles with monoclonal 

antibodies against human hepatocellular carcinoma produces 

a drug-nanoparticle-monoclonal antibody immune complex. 

McAb can carry drug-loaded nanoparticles to specific target 

sites, thus enhancing specific cancer cell-drug combinations, 

increasing the drug concentration, and improving efficacy. 

Wu et al combined the highly specific anti-human liver acid 

ferritin monoclonal antibody with doxorubicin-poly butyl 

cyanoacrylate nanoparticles and prepared liver-specific 

doxorubicin immuno-nanoparticles. Experiments showed 

that the nanoparticles had a significantly longer half-life and 

high targeting in nude mice tumor inhibition experiments 

in vivo and cytotoxicity experiments in vitro. The drug 

accumulated in the liver tumor, greatly increasing the 

drug’s concentration, extending the time during which it is 

effective, enhancing the efficacy, and reducing toxicity to 

other organs.23 Liu et al connected anti-tumor monoclonal 

antibody HAb18 with mitoxantrone-bovine serum albumin 

nanoparticles and prepared liver-specif ic immuno-

nanoparticles, which could effectively combine with human 

liver cancer cells. In vitro studies indicated that the nano-

drug could significantly enhance the inhibition of human 

hepatoma SMMC-7721 cell growth.24 Chen et al wrapped 

doxorubicin in a phospholipid bilayer and prepared liver-

specific immuno-phospholipid nanoparticles, which showed 

greatly increased inhibition of human liver cancer cell 

growth compared with doxorubicin or an ordinary plasmid. 

Compared with liposomes, lipid nanoparticles significantly 

improved the inhibition rate in mice bearing nude human 

liver cancer. Nanoparticles significantly increased the 

targeting of tumors, elevated drug concentration, extended 

the time during which it was effective, and reduced 

doxorubicin toxicity to other organs.25

Alpha-fetoprotein (AFP) is a major plasma protein pro-

duced by the yolk sac and the liver during fetal development. 

Normal adult liver cells lose the ability to produce AFP, and 

serum concentration is less than 20 µg/L. Cancerous liver 

cells can synthesize a large quantity of AFP, so AFP may be 

used as a biomarker for primary liver cancers. Liver cancer 

cells expressing AFP show a tendency towards early vascular 

invasion and intrahepatic metastasis. For primary liver cancer 

detection, the sensitivity for AFP is 79% and the specificity 

is 78%. The presence of AFP mRNA in peripheral blood 

reflects the level of free circulating peripheral liver cancer 

cells and allows early diagnosis, differential diagnosis, as well 

as signaling cancer recurrence or metastasis.26–28  Anti-tumor 

drugs connected with anti-AFP monoclonal antibodies can 

destroy tumor cells while causing only minor injury to normal 

cells, so are playing an increasingly important role in HCC 

treatment.29–31

A B C
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Figure 11 The  number  of  cells  migrating  through  the  filter  pores  from  the 
underside of the filter after brucine immuno-nanoparticles were applied at various 
concentrations to liver cancer cells for 72 hours (200× magnification).  As the drug 
concentration increased, the cell migration decreased. (A) 10 µg/mL; (B) 20 µg/mL; 
(C) 40 µg/mL; (D) 80 µg/mL; (E) 160 µg/mL; (F) 240 µg/mL.
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Figure 12 The migratory rate of the brucine immuno-nanoparticles on liver 
cancer cells. Compared with brucine and brucine nanoparticles, brucine immuno-
nanoparticles had the strongest inhibitory effect on liver cancer cell migration.
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This study exploited the hydrophilic and biocompatible 

characteristics of polyethylene glycol-polylactic acid block 

copolymers, and developed polyethylene glycol-polylactic 

acid block copolymer brucine nanoparticles. These have a 

number of advantages including good sustained release and 

strong targeting, and overcomes the disadvantages of brucine 

such as high toxicity, wide distribution, and short half-life. 

For the first time, we used phacoemulsification technology 

to combine brucine and carboxylated polyethylene glycol-

polylactic acid block copolymers to produce brucine 

nanoparticles, and we coupled the C-terminal polyethylene 

glycol with anti-human AFP McAb to improve the link 

ability. The BIN was successfully prepared, and results 

showed that the BIN had a uniform size distribution. 

In experiments, brucine was completely released into 

the medium within 2 hours, while brucine in immuno-

nanoparticles was completely released within 48 hours. In 

vitro experiments showed that BIN specifically targeted 

the liver cell membrane and had stronger liver cancer cell 

growth inhibition properties than brucine in a time- and dose-

dependent manner. Regarding liver cancer cell inhibition, 

the IC
50

 of BIN was lower than that of brucine and brucine 

nanoparticles, and close to that of 5-FU. After 72 hours, 

an increased dose caused the number of liver cancer cells 

to reduce, pseudopodia disappeared, “bubble” phenomena 

appeared in the cytoplasm, cells shrank, cell peripheral 

refraction weakened, and adhesion capacity decreased.

Primary liver cancer invasion and metastasis is a multi-step 

and complex process involving a series of important changes 

including cell adhesion, matrix degradation, cell migration, 

proliferation, and angiogenesis, and leads to recurrence and 

metastasis which severely impair the effects and prognosis 

of treatment.4 Recurrence and metastasis are important 

biological behaviors of malignant tumors.  Malignant cell 

invasion and metastasis begin with intercellular adhesion loss 

after early local infiltration.  Laminin, fibronectin,  collagen, 

and other integrins located on the basement  membrane 

 surface combine with laminin receptors, f ibronectin 

receptors,  collagen receptors, and integrin  receptors on 

the surface of the tumor cell, which allows a tumor cell to 

adhere to the basement membrane. A decrease is seen in the 

homogenous cell adhesion between tumor cells mediated by 

adhesion molecules, which promotes the  shedding of tumor 

cells. The heterogenous adhesion between tumor cells and 

the matrix increases.32–35 Extracellular matrix degradation and 

basement membrane damage is one of the key steps in the 

process of tumor invasion and metastasis. After a number of 

hours of close contact between tumor cells and the  basement 

membrane, tumor cells will directly induce host cells to 

secrete endothelial growth factors and epidermal growth fac-

tors, and activate endothelial cells to produce proteases which 

can digest laminin, fibronectin, proteoglycans, collagen, and 

other extracellular matrix components. The basement mem-

brane is degraded with local defects, allowing tumor cells to 

move deeper into the tissue.36,37 Induced by growth factors 

and chemokines, tumor cells continue to move deeper, and 

after dissolving interstitial connective tissues, tumor cells 

can eventually reach blood vessels. Tumor cells can pass 

through the wall of a blood vessel in the same way and so 

enter the circulatory system, which can lead to recurrence 

and metastasis.38 The mechanisms of tumor recurrence and 

metastasis are still unclear, and we have not yet identified 

specific molecular markers or developed preventive measures 

to be used before these occur.

In vitro studies found that BIN could effectively inhibit 

cell matrix adhesion, invasion, and migration of SMMC-7721 

human hepatocellular carcinoma cells in a dose-dependent 

manner. Brucine was superior to brucine nanoparticles in 

inhibiting cell matrix adhesion, invasion, and movement of 

SMMC-7721 cells, probably related to the nanoparticles’ 

slow drug release. Compared with brucine and brucine 

nanoparticles, BIN had the strongest inhibitory effects on 

cell matrix adhesion, invasion, and migration of human liver 

cancer SMMC-7721 cells. The results showed that brucine 

nanoparticles combined with anti-human AFP McAb had 

immunospecificity and increased drug-targeting effects, 

which promoted the specific interaction between the drug and 

the targeted cells. The drug concentration was significantly 

elevated around the tumor cells. The BIN with the applica-

tion of polyethylene glycol-polylactic acid copolymers as 

drug carriers were macrocyclic and had good biocompat-

ibility, large drug loading, wide drug range, good stability, 

and excellent bioavailability characteristics. Combining the 

monoclonal antibody with nano-anti-cancer drugs, we pro-

duced brucine immuno-targeting nanoparticles with greatly 

improved positioning and anti-tumor effects. Compared with 

brucine and brucine nanoparticles, BIN displayed more spe-

cific tumor cell targeting, increased local drug concentration, 

and effectively inhibited cancer cell growth, matrix adhesion, 

invasion, and metastasis. Therefore, BIN is a promising anti-

cancer-targeting drug for inhibiting growth, recurrence, and 

metastasis of hepatocellular carcinoma.

Conclusion
A targeted drug delivery system was successfully prepared 

and its in vitro effects examined. This research shows that 
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the BIN can specifically combine with liver cancer cells, 

target the liver cancer cell membrane, and exert anti-tumor 

effects. BIN inhibit the growth of human hepatoma SMMC-

7721 cells in a time- and dose-dependent manner. BIN have 

significant sustained release, high local drug concentration, 

longer duration of action, and improved efficacy. Compared 

with brucine and brucine nanoparticles, BIN displayed 

more specific tumor cell targeting, increased local drug 

concentration, and effectively inhibited cancer cell growth, 

matrix adhesion, invasion, and metastasis. BIN are a poten-

tially promising anti-cancer targeting drug for inhibiting 

the growth, recurrence, and metastasis of hepatocellular 

carcinoma.
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