Open Access Full Text Article

ORIGINAL RESEARCH

Time-dependent gene expression pattern of *Listeria monocytogenes* J0161 in biofilms

Prem Saran Tirumalai Soam Prakash

Environmental and Advanced Parasitology Laboratory, Department of Zoology, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, India

Correspondence: Soam Prakash Environmental and Advanced Parasitology Laboratory, Department of Zoology, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra 282110, India Tel +91 93 19112307 Fax +91 56 2280 1226 Email prakashsoamdei@gmail.com **Background:** *Listeria monocytogenes* J0161, a food-borne pathogen, forms biofilm on contact surfaces, which makes the bacterium highly resistant. Biofilm formation in vivo confers resistance to antimicrobial agents, and in vitro not only increases resistance but also increases the risk of transmission of the pathogen. Biofilm formation is a complex dynamic process. The mechanism of biofilm formation is not as yet well understood. Understanding the molecular mechanism of biofilm formation will be of significance in removal of biofilms, thereby reducing the risk of transmission.

Methods: *L. monocytogenes* cultures were grown to form biofilms on glass slides. At time intervals of 4, 12, and 24 hours, the cells were pelleted and the RNA extracted. The extracted RNA was analyzed using microarray technique and statistical tools.

Results: The microarray data showed that gene expression was specifically upregulated at each time interval. About 159, 40, and 184 genes were upregulated at 4, 12, and 24 hours, respectively. An ascending and descending pattern of gene upregulation was identified.

Conclusion: We report specific genes for biofilm growth of *L. monocytogenes* that were upregulated at particular time intervals. The role of specific genes in the formation of biofilms by *L. monocytogenes* J0161 can be studied using these data.

Keywords: Listeria monocytogenes, microarray, biofilms, gene expression

Introduction

Listeriosis a zoonotic bacterial disease that has emerged as a major food-borne disease during the past two decades, and has a high case fatality rate of approximately 20%–30%.¹ Listeriosis, as an important cause of severe illness accounts for 3.8% of hospitalizations for food-borne disease and 27.6% of deaths due to food-borne illness.² The severity of the disease includes meningitis, septicemia, and abortion. The risk of listeriosis is greatest among certain well defined high-risk groups, including pregnant women, neonates, and the elderly, but may occasionally occur in persons who have no predisposing underlying condition.¹ There have been more than 20 outbreaks of listeriosis in different parts of the globe since 1981, and involving different types of food.^{3–12}

The disease is caused by *Listeria monocytogenes*. The pathogen gains entry into a food-processing facility and survives by forming microbial community niches known as "biofilms".^{13–15} It has been reported that biofilm formation by *L. monocytogenes* is the major cause of transmission of the pathogen.¹⁶ Biofilm formation increases the resistance of the pathogen to antimicrobial agents and also increases resistance to environmental stress.¹⁷ Once established as a biofilm, removal of *L. monocytogenes* becomes a challenge.¹⁸ Biofilm formation is a multiphase complex process, starting

Advances in Genomics and Genetics 2012:2 1-18

© 2012 Tirumalai and Prakash, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

submit your manuscript | www.dovepress.com

http://dx.doi.org/10.2147/AGG.S26335

with attachment of a cell to a surface, followed by irreversible adherence, and multiplication and growth to form a threedimensional structure. This phase-wise development of a biofilm is therefore a time-dependent process. Understanding the complexity of the process of biofilm formation has been a long-standing issue. It is believed that understanding of the mechanism behind biofilm formation will yield answers to many intriguing questions, from the very objective and need for biofilm formation by a microbe to ways and means of getting rid or making use of biofilms.¹⁹ Therefore, it is essential to understand fundamentally the basic phenomenon, in particular the expression of genes that contribute to the formation of biofilm and are otherwise different from laboratory-grown cultures, broth, or a colony.

Here we report on the variations in gene expression of *L. monocytogenes* and patterns studied by microarray at different time intervals in biofilm formation. We chose to work on the microarray gene expression pattern of the J0161strain of *L. monocytogenes*, which is a human isolate of serotype 1/2a, and this adds to the significance of our study. We report on the genes that were upregulated specifically at 4, 12, and 24 hours.

Materials and methods

Bacterial strains and culture conditions

The J0161strain of *L. monocytogenes* was selected for study because its complete transcriptome was available and annotated in the *L. monocytogenes* database held at the Broad Institute. Further, amongst the strains that were annotated and for which the transcriptome was available, the J0161 strain had the highest percentage (78.5%) of annotated genes (2335 of 2973 gene transcripts).

The J0161 *L. monocytogenes* strain was obtained from the Agriculture Research Services, United States Department of Agriculture, and grown both in broth and as biofilm. Biofilms were grown as pure culture on three different slides for studying gene expression after set time periods of incubation, ie, at 4, 12, and 24 hours.

A pure culture of *L. monocytogenes* J0161 was grown in broth as well as biofilm using tryptone soy broth as the growth medium. *L. monocytogenes* in broth was grown for 24 hours at 37°C, and as biofilms for 4, 12, and 24 hours at 37°C on glass slides. The broth culture was used as a reference/control sample.

The culturing technique used for biofilm formation involved a static batch culture method, in which the experimental setup was incubated without nutrient replenishment at the defined time interval of the study after introducing the inoculum. Static batch cultures of this type have recently been reported to be an excellent method for genetic screening and for understanding the signals that trigger the transition of planktonic cells to form biofilms.²⁰

In our earlier experiments to enumerate the cells in biofilms grown using the static batch culture method, we observed a trend of cell count that was typical of a standard growth curve (data not shown), and peaked at 12 hours. The cell count after 12 hours of incubation was fluctuating until 24 hours of incubation. There was a decline in the cell count after 24 hours. A similar pattern was observed by Chavant et al.²¹ Therefore, based on our observation and inferences, we designed our experimental setup to study the gene expression pattern, taking into account the fact that the expression pattern at 4, 12 and 24 hours would depict gene expression at different stages of biofilm formation. We considered 4 hours of incubation as the stage of irreversible attachment, 12 hours as the stage of formation of microcolonies, and 24 hours as the peak stage of fruiting biofilm bodies.

In evaluating the kinetics of biofilm formation, Beresford et al²² had reported the attachment of Listeria cells as early as 2 hours, but our attempts to extract RNA completely at incubation times earlier than 4 hours did not yield the requisite volume (less than 50 ng) and/or concentration (<6 ng/µL) for downprocessing by microarray. Hence the decision was made to study the expression pattern after 4 hours of incubation at the earliest.

Microarray studies RNA extraction and evaluation

Cells were pelleted after 4, 12, and 24 hours of incubation as biofilms. Similarly, cells in pure culture broth (reference/control) were pelleted after 24 hours of incubation. The pelleted cells were washed with phosphate buffer solution. The cells were then further processed for RNA extraction using a Ribo pure bacteria kit (Ambion[®], Invitrogen, Carlsbad, CA) according to the manufacturer's instructions. The concentration and purity of the RNA extracted were evaluated using a bioanalyzer (Agilent 2100, Santa Clara, CA), and absorbance readings at 260 nm and 280 nm were performed using a Nanodrop spectrophotometer (ThermoScientific 1000, Hudson, NH). The concentration of the RNA extracted was evaluated using the bioanalyzer, while the purity of the RNA extracted was determined using the standard procedure of measuring \boldsymbol{A}_{260} and \boldsymbol{A}_{280} on the Nanodrop spectrophotometer.

An Agilent *Listeria monocytogenes* 8×15 k (Amadid 030831) custom gene expression microarray designed by Genotypic Technology Pvt Ltd (Bangalore, India) was used for the experiment. The array consists of 15,000 probes of 60 mer length and contains 2973 unique transcripts obtained from the *L. monocytogenes* database at the Broad Institute.

RNA labeling, amplification and hybridization

Poly (A)-tails was added to the 3' end of RNA using an A-plus Poly (A) polymerase tailing kit (Epicentre Biotechnologies, Madison, WI). The samples were then labeled using an Agilent Quick Amp Kit Plus, and 500 ng of polyadenylated RNA was reverse-transcribed using an oligodT primer tagged to the T7 promoter sequence. The cDNA thus obtained was converted to double-stranded cDNA in the same reaction. Further, the cDNA was converted to cRNA in the in vitro transcription step using T7 RNA polymerase enzyme, and Cy3 dye was added into the reaction mix. During cRNA synthesis, Cy3 dye was incorporated into the newly synthesized strands. The cRNA obtained was purified using Qiagen RNeasy columns. The concentration and amount of dye incorporated was determined using the Nanodrop spectrophotometer. Samples that passed quality control for specific activity were taken for hybridization, and 600 ng of labeled RNA was hybridized on the array.

Hybridization, scanning, and data analysis

Following amplification, the cRNA was hybridized using the Agilent gene expression hybridization kit in Sure hyb chambers (Agilent) at 65°C for 16 hours. The hybridized slides were washed using Agilent gene expression wash buffer. The hybridized washed microarray slides were then scanned on a G2505C scanner (Agilent) and the images were quantified using feature extraction software (version 10.5.1.1, Agilent). The raw data extracted were analyzed using GeneSpring GX version 11.0 software from Agilent. Normalization of the data was done in GeneSpring GX using the 75th percentile shift (percentile shift normalization is a global normalization, where the locations of all the spot intensities in an array are adjusted). This normalization takes each column in an experiment independently, and computes the nth percentile of the expression values for the array across all spots (where n has a range of 0-100 and n = 75 is the median). It subtracts this value from the expression value of each entity normalized to specific control samples. Significant genes upregulated and downregulated by at least one-fold within the samples with respect to the control sample were identified. Differentially regulated genes were clustered using hierarchical clustering based on the Pearson coefficient correlation algorithm to identify significant gene expression patterns (the clustering algorithm measures the similarity or difference between genes or conditions).

Pathway annotations

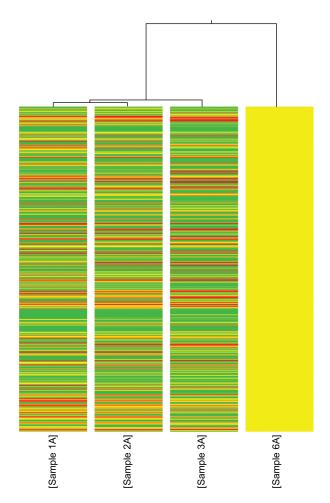
All pathway and gene ontology function data for the available strains of *L. monocytogenes* and the protein sequences for available pathway data were collected from Uniprot. Transcript sequences for *L. monocytogenes* J0161 were BLASTed against the protein database. All the significant genes showing hits greater than 90% identity were selected for pathway annotation.

Microarray data accession number

The microarray data have been deposited and made available at the Gene Expression Omnibus database under the accession number GSE27936 (http://www.ncbi.nlm.nih.gov/geo).

Validation by quantitative PCR

To validate our microarray data, we performed real-time polymerase chain reaction (PCR) to determine the gene expression pattern of PrfA (LMOG_03055T0), glycoprotein (gp)49 (LMOG 02949T0), chitinase (LMOG 01358T0), and penicillin-binding protein gene (LMOG_00981T0) at different time points (4, 12, and 24 hours). Total RNA was extracted from independent biofilm cultures at 4, 12, and 24 hours, respectively, using AM-1925 (Ambion). DNasetreated RNA was used to synthesize cDNA using an Affinity Script quantitative PCR cDNA synthesis kit (Agilent). Relative quantification by quantitative PCR was done using an Invitrogen Power SYBR Green PCR Master Mix. The experiment was conducted using a Stratagene $M \times 3005P$ (Agilent) platform. The sequences and length of the primers used are as shown in Table 1. The relative gene expression levels were determined after normalizing with GAPDH as the reference gene using the Delta CT method.


Results

The results obtained from the study were analyzed and are shown with the emphasis on understanding the specific genes expressed at a higher level than the reference sample (after 24 hours of broth culture at 37°C) at different stages of biofilm formation. Further, genes showing a gradual increase in upregulation or downregulation at every stage of biofilm

 Table I Forward and reverse primers of target genes for qPCR

Gene	Primer type	Sequence	Length
PrfA	Forward	ATTTAGAAGTCATTAGCGAGCA	22
	Reverse	CAGGATTAAAAGTTGACCGCA	21
gp49	Forward	TTAGAAGAGGCAATGAACATAG	22
	Reverse	GTTGTTCATTTTGCTGTTCGTT	22
Chitinase	Forward	GAAGGGAGACGGAGTAAATC	20
	Reverse	CGAACGCCTGCTCATCCC	18
Penicillin binding protein gene	Forward	CTATCACTACAGGACTTCGC	20
	Reverse	CAAGAGCTGTATGAATGGTTAA	22

formation have been identified. Figure 1 compares variation in the *L. monocytogenes* J0161 gene expression pattern at different stages of biofilm formation with that of the reference sample at 24 hours of broth culture. Figure 2 is a Venn diagram showing the upregulated genes for the whole transcriptome of *L. monocytogenes* J0161 at different stages of biofilm

Figure I Microarray results in dendrogram after normalization with the reference. Columns marked as 1A, 2A and 3A, represent gene expression as bioflims (of *L* monocytogenes J0161) at 4, 12, and 24 hours respectively. Column marked as 6A is the reference, which is gene expression at 24 hours as broth of *L* monocytogenes J0161. **Notes:** Yellow depicts neutral regulation, red depicts upregulation and green depicts downregulation. formation (4, 12, and 24 hours) and that at 24 hours of broth culture. The diagram compares the genes upregulated at specific intervals of biofilm formation and genes upregulated at all three time intervals of biofilm formation.

Upregulation of genes as a function of time

More than 150 genes were upregulated after 4 hours of incubation for biofilm formation, three of which showed a more than two-fold upregulation in expression. While two of them are hypothetical protein coding genes (http://www.broadin-stitute.org/annotation/genome/listeria_group/MultiHome. html), the third is a "thioredoxin" gene (LMOG_00491T0) known for its role in the response to oxidative stress.^{23,24} Further analysis of the hypothetical proteins revealed that one of them (LMOG_00557T0) is likely to be involved in oxidation-reduction (http://www.uniprot.org/), as shown in Table 2.

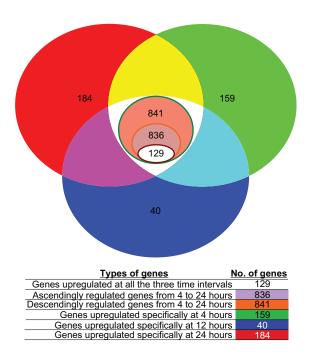


Figure 2 Venn diagram showing the number of genes with a specific pattern of regulation at specified time intervals.

At 12 hours, the number of upregulated genes decreased to 40. Three of these 40 genes showed more than a two-fold increase in expression, with the "M protein transacting positive regulator" (LMOG_01126T0) showing at least a three-fold increase in expression. The other two genes were PTS system galactitol-specific enzyme IIB component (LMOG_01128T0) and a hypothetical protein (LMOG_02496T0), as shown in Table 3.

After 24 hours of incubation for biofilm formation, more than 150 genes were upregulated, of which 24 were showing more than two-fold gene expression. Among the 24 genes that showed more than two-fold gene expression, nine were glycoprotein genes, ie, *gp43*, *11*, *37*, *39*, *15*, *44*, *63*, and *22* (LMOG_03098T0, LMOG_03129T0, LMOG_03097T0, LMOG_03100T0, LMOG_03133T0, LMOG_03099T0, LMOG_03115T0, and LMOG_03140T0, respectively), while five of them were hypothetical protein genes (Table 4).

Our results show incremental upregulation of genes over time. Apart from the transcripts that were specifically upregulated at a particular time interval, a total of 836 genes showed a gradual increase in expression with time (from 4 to 24 hours of incubation). Further, there were variations in the expression levels among these genes. A significant upregulation of at least six-fold in the expression of gp49 (LMOG_03104T0) was observed at 4-24 hours, while 8, 20, and 44 genes were upregulated by five-fold, four-fold, and three-fold, respectively. Proteins of the glycoprotein family comprised the majority of the transcripts prominently exhibiting this trend (Tables 5 and 6). More than 70% of the genes downregulated at 4-24 hours of incubation were related to sugar metabolism and transport (Tables 7 and 8). Sets of 129 transcripts were upregulated at incubation time intervals of 4, 12, and 24 hours as biofilms (Table 9). It is noteworthy that these genes were upregulated only during growth as biofilms but not in broth.

Quantitative PCR was done on *PrfA* (LMOG_03055T0), *gp49* (LMOG_02949T0), *chitinase* (LMOG_01358T0), and penicillin-binding protein gene (LMOG_00981T0) genes to validate the expression pattern observed using the microarray data. In the microarray data, genes for both *PrfA* and *chitinase* showed a trend of descending regulation over time, while the genes for *gp49* and penicillin-binding protein gene showed an incremental pattern of expression. The quantitative PCR data for the target genes showed a similar pattern of expression to that observed in the microarray data (Figures 3, 4, 5, and 6).

Discussion

Biofilm formation is a multiphase dynamic process, beginning from the stage of initial attachment to its development and dispersion. Cells in the biofilm formation stage are different from culture-grown planktonic cells.¹⁵ When a microbial culture is introduced into a medium, the bacterial cells adhere to the available contact surface, eventually forming an irreversible attachment. Thereafter, the cells grow in number to develop into a mature biofilm. Fully formed/ mature biofilms, which are often multilayered structures, burst to disperse cells from within the biofilm. These dispersed cells, in turn, settle down at remote sites on a contact surface and develop further into independent biofilm. Despite the enormous amount of data available on biofilm physiology, the molecular level dynamics governing the various stages of biofilm development are not well understood. Given the phenotypic differences between biofilms and planktonic cells, the metabolic pathways and gene expression of the sessile biofilm cells are likely to be different. Using microarrays, Yi et al²⁵ have reported on the role of a particular regulatory protein in biofilm formation by yeasts. In this study, we have analyzed time-dependent gene expression data to delineate the probable role of genes at different stages of biofilm formation.

Several earlier studies have reported such time-dependent expression. Hautefort et al²⁶ have reported simultaneous time-dependent expression of three type 3 secretion systems in Salmonella enterica. In another study, Chan et al²⁷ have shown differential gene expression at fixed time intervals (log and stationary phases) of L. monocytogenes growth when cultured in broth at 4°C and 37°C under given conditions. However, there are no studies directed towards understanding the time-dependent gene expression pattern of L. monocytogenes in biofilm. For the first time, we have demonstrated specific genes that are upregulated or overexpressed and downregulated or poorly expressed during particular stages of biofilm growth. We have also tried to ascertain the generic function of genes active at a particular stage of biofilm formation. To represent the gene expression pattern, we have used L. monocytogenes J0161 gene expression over 24 hours in broth culture as a reference.

As compared with *L. monocytogenes* J0161 gene expression after 24 hours of broth culture, about 159 gene transcripts were specifically upregulated after 4 hours of biofilm formation. Upregulation by more than two-fold was observed in only three of the total number of genes upregulated, and among them were two gene transcripts that were related to oxidative stress at hour 4 of incubation. Oxidative stress in biofilm has been directly linked to diversity within the biofilm in *Pseudomonas aeruginosa*.²⁸ The mechanism of

Table 2 List of genes and their annotations upregulated at 4 hours of incubation as biofilms

S no	Gene	Fold expression values	No of gene transcripts	Annotations
I	LMOG_00557T0	2.3	3	Hypothetical protein
<u>)</u>	LMOG_00491T0	2.1		Thioredoxin
}	LMOG_02373T0	2.0		Hypothetical protein
ł	LMOG_01789T0	2.0	92	Hypothetical protein
5	LMOG_01659T0	2.0		Thioredoxin
	LMOG_01058T0	1.9		Hypothetical protein
,	LMOG_01215T0	1.9		Cold shock protein CspB
}	LMOG 01361T0	1.8		Ribonuclease HI
)	LMOG 00723T0	1.8		Hypothetical protein
0	LMOG 00716T0	1.8		Yku] protein
I	LMOG_00589T0	1.8		Glyoxalase
2	LMOG_01063T0	1.7		, Ribonucleotide reductase-associated flavodoxin
3	LMOG 01728T0	1.7		Cellobiose-specific PTS system IIA component
4	LMOG 02751T0	1.7		Adenylosuccinate lyase
5	LMOG 01776T0	1.7		6-phosphogluconolactonase
6	LMOG_01615T0	1.7		Cytochrome aa3 quinol oxidase subunit IV
7	LMOG 02706T0	1.6		Hypothetical protein
8	LMOG 00859T0	1.5		Transcriptional regulator
9	LMOG_01707T0	1.5		Catalase
.0	LMOG 02774T0	1.5		Hypothetical protein
.0	LMOG_0277410	1.4		
	—	1.4		Hypothetical protein ROK family protein
2 .3	LMOG_01729T0			
	LMOG_01748T0	1.4		General stress protein 26
4	LMOG_02173T0	1.3		Phospholipase/carboxylesterase
5	LMOG_02549T0	1.3		Maltose/maltodextrin transport ATP-binding protein MalK
.6	LMOG_00928T0	1.3		Carbonic anhydrase
7	LMOG_00980T0	1.3		Hypothetical protein
.8	LMOG_01932T0	1.3		Hypothetical protein
.9	LMOG_01799T0	1.3		Oxidoreductase
0	LMOG_00343T0	1.3		Cold shock protein CspB
I	LMOG_00429T0	1.3		Succinyl-CoA synthetase
2	LMOG_03195T0	1.3		Pyridine nucleotide-disulfide oxidoreductase
13	LMOG_02413T0	1.3		Preprotein translocase SecG subunit
4	LMOG_02841T0	1.3		Hypothetical protein
5	LMOG_01669T0	1.3		Hypothetical protein
6	LMOG_02457T0	1.3		FeS assembly protein SufB
7	LMOG_00881T0	1.3		Hypothetical protein
8	LMOG_00965T0	1.3		Glyoxalase
9	LMOG_02813T0	1.3		Hypothetical protein
0	LMOG_00126T0	1.3		FxsA
1	LMOG_03310T0	1.3		Methionine-R-sulfoxide reductase
2	LMOG_01767T0	1.3		HAD-superfamily hydrolase
3	LMOG_03193T0	1.3		Hypothetical protein
4	LMOG_03055T0	1.3		Virulence regulatory factor <i>PrfA</i>
5	LMOG_00673T0	1.2		Molybdenum cofactor biosynthesis protein B
6	LMOG_02319T0	1.2		Serine hydroxymethyltransferase
7	LMOG 02232T0	1.2		Sulfate transporter
8	LMOG 00834T0	1.2		Phosphoserine phosphatase rsbX
9	LMOG 00749T0	1.2		Esterase
0	LMOG_02014T0	1.2		Peptidoglycan binding protein
Ĩ	LMOG 01697T0	1.2		Phosphosugar-binding transcriptional regulator
2	LMOG 00671T0	1.2		Hypothetical protein
3	LMOG_0007110	1.2		Two-component system response regulator
4	—	1.2		Hypothetical protein
т	LMOG_03015T0	1.2		
5	LMOG_02092T0			Hypothetical protein

Table 2 (Continued)

S no	Gene	Fold expression values	No of gene transcripts	Annotations
57	LMOG_02221T0	1.2		Transcriptional regulator
58	LMOG_02393T0	1.1		NADPH dehydrogenase NamA
9	LMOG_00954T0	1.1		Hypothetical protein
0	LMOG_00829T0	1.1		Hypothetical protein
51	LMOG_02637T0	1.1		Hypothetical protein
2	LMOG 00750T0	1.1		Acetyltransferase
53	LMOG 03030T0	1.1		Cysteine synthase A
54	LMOG_00650T0	1.1		Hypothetical protein
55	LMOG 00080T0	1.1		Hypothetical protein
66	LMOG_02827T0	1.1		Hypothetical protein
57	LMOG_01064T0	1.1		Thioredoxin
68	LMOG_00272T0	1.1		Proton-coupled thiamine transporter YuaJ
59	LMOG 00007T0	1.1		l,4-dihydroxy-2-naphthoate octaprenyltransferase
70	LMOG 02601T0	1.1		Glutamyl-tRNA synthetase
71	LMOG_02324T0	1.1		ATP synthase subunit A
2	LMOG_02080T0	1.1		Acetyltransferase
- 73	LMOG 01159T0	1.1		Chaperonin GroL
'4	LMOG 03033T0	1.1		ATP-dependent metalloprotease FtsH
75	LMOG 00144T0	1.1		Valyl-tRNA synthetase
76	LMOG_00787T0	1.1		Peroxide resistance protein Dpr
77	LMOG_01502T0	1.1		Lipase
, 78	LMOG_00466T0	1.1		Hypothetical protein
79	LMOG 00068T0	1.1		Dipeptidase PepV
80	LMOG 02678T0	1.1		Alpha-mannosidase
81	LMOG_00219T0	1.1		30S ribosomal protein S20
32	LMOG_01068T0	1.1		Hypothetical protein
33	LMOG 02994T0	1.1		Transcriptional regulator
33 34	LMOG 01037T0	1.1		Hypothetical protein
35	LMOG 02681T0	1.1		Fructose-specific IIA PTS system component
36	LMOG_00814T0	1.1		Cellobiose-specific PTS system IIB component
37	LMOG_01393T0	1.1		Manganese-binding lipoprotein mtA
38	LMOG 02095T0	1.0		Transcriptional regulator
39	LMOG_00813T0	1.0		IIC component PTS system
90		1.0		
90 91	LMOG_01434T0			Acyl carrier protein
) 2	LMOG_01007T0	1.0		Hypothetical protein
93	LMOG_01004T0	1.0 1.0		Hypothetical protein
94	LMOG_03216T0	1.0		General stress protein 13
	LMOG_00431T0			Aldose epimerase
95	LMOG_003 60T0	1.0	64	Glycine cleavage system T protein
96	LMOG_00624T0	1.0		Monooxygenase
97	LMOG_01803T0	1.0		Dihydroxyacetone kinase L subunit
98	LMOG_01631T0	1.0		DNA polymerase III beta subunit
99	LMOG_01730T0	1.0		Cellobiose-specific PTS system IIC component
00	LMOG_01377T0	1.0		Hemolysin-3
01	LMOG_02218T0	1.0		Thermostable carboxypeptidase I
02	LMOG_03160T0	1.0		Hypothetical protein
03	LMOG_03041T0	1.0		Peptidyl-tRNA hydrolase
04	LMOG_01834T0	1.0		Transcriptional regulator
05	LMOG_01167T0	1.0		MOSC domain-containing protein
06	LMOG_02679T0	1.0		Fructose-specific PTS system fructose-specific II component
07	LMOG_00257T0	1.0		Transmembrane protein
08	LMOG_01358T0	1.0		Chitinase
09	LMOG_00743T0	1.0		Glutathione peroxidase
10		1.0		Hypothetical protein
11	LMOG_01952T0	1.0		Mannose-specific PTS system IID component
112	LMOG 02094T0	0.9		Acetyltransferase

(Continued)

S no	Gene	Fold expression	No of gene	Annotations
		values	transcripts	
13	LMOG_00329T0	0.9		6-phosphogluconate dehydrogenase
14	LMOG_02252T0	0.9		Hypothetical protein
15	LMOG_00998T0	0.9		Hypothetical protein
16	LMOG_01839T0	0.9		PTS system IIA 2 domain-containing protein
17	LMOG_00821T0	0.9		Phosphoglycerate mutase
18	LMOG_01699T0	0.9		Hypothetical protein
19	LMOG_01797T0	0.9		Recombination protein RecR
20	LMOG_03303T0	0.9		UTP-glucose-I-phosphate uridylyltransferase
21	LMOG_01024T0	0.9		Competence negative regulator mecA
22	LMOG_00479T0	0.9		Phosphoglycerate mutase
23	LMOG_02332T0	0.9		ATP synthase FI epsilon subunit
24	LMOG_01692T0	0.9		Oxidoreductase
25	LMOG_01858T0	0.9		Transcriptional antiterminator
26	LMOG_02001T0	0.9		Lacl family transcription regulator
27	LMOG_00748T0	0.9		Branched-chain amino acid aminotransferase
28	LMOG_01947T0	0.9		Amino acid permease
29	LMOG_02435T0	0.9		Hypothetical protein
30	LMOG_00444T0	0.9		rnhB
31	LMOG_00769T0	0.9		llm protein
32	LMOG_01087T0	0.9		APC family amino acid-polyamine-organocation transporter
33	LMOG_01691T0	0.9		N-acetylmannosamine-6-phosphate 2-epimerase
34	LMOG_03200T0	0.9		4-hydroxybenzoyl-CoA thioesterase domain-containing prote
35	LMOG 00987T0	0.9		Hypothetical protein
36	LMOG_02680T0	0.9		Fructose-specific PTS system IIB component
37	LMOG_01478T0	0.9		Acetyltransferase
38	LMOG 00421T0	0.9		Glycerophosphoryl diester phosphodiesterase
39	LMOG 01624T0	0.9		Spermidine NI-acetyltransferase
40	LMOG 03027T0	0.9		DNA-directed RNA polymerase delta subunit
41	LMOG 01094T0	0.9		Maltose/maltodextrin ABC transporter
42	LMOG 00797T0	0.9		Membrane protein
43	LMOG_01802T0	0.9		Dihydroxyacetone kinase phosphotransfer subunit
44	LMOG_00158T0	0.8		Glycerol kinase
45	LMOG 00167T0	0.8		Preprotein translocase
46	LMOG 01870T0	0.8		Heptaprenyl diphosphate synthase component l
47	LMOG_01148T0	0.8		M22 family peptidase
48	LMOG_00124T0	0.8		6-phosphofructokinase
49	LMOG_01255T0	0.8		Hypothetical protein
50	LMOG 00352T0	0.8		Translation elongation factor P
51	LMOG 01162T0	0.8		Hypothetical protein
52	LMOG_01618T0	0.8		Quinol oxidase AA3
53	LMOG_02561T0	0.8		Phosphoglycerate mutase
54	LMOG_02517T0	0.8		Hypothetical protein
55	LMOG 02819T0	0.8		Methionine aminopeptidase type I
56	LMOG 01213T0	0.8		PAP2 family protein
57	LMOG_01842T0	0.8		Galactitol-specific PTS enzyme IIC component
58	LMOG 01956T0	0.8		Hypothetical protein
59	LMOG 00953T0	0.8		Intracellular protease I

diversity caused by oxidative stress is attributed to doublestranded DNA breaks that cause breaks in the whole genome and repair thereafter, leading to mutagenic variants.²³ Oxidative stress has also been attributed to increased antibiotic resistance in *P. aeruginosa*. Even though we could not observe any discernible increase in antibiotic resistance in terms of related gene expression patterns from our data, two oxidative stress genes showing the highest upregulation further corroborate earlier established links between oxidative stress and biofilm physiology. *prf*A (positive [virulence] regulator factor) is another gene of significance that we observed to be upregulated, specifically at hour 4 of incubation. Lemon et al²⁹ have suggested that *prf*A positively regulates biofilm formation. The expression of *prf*A increased

Table 3 List of	genes and their	annotations	upregulated at	12 hours	of incubation as b	iofilms

S no	Gene	Fold expression values	No of gene transcripts	Annotations
I	LMOG_01126T0	3.4	I	M protein trans-acting positive regulator
2	LMOG_01128T0	2.7	2	PTS system galactitol-specific enzyme IIB component
3	LMOG_02496T0	2.7		Hypothetical protein
4	LMOG_01127T0	1.7	15	PTS system galactitol-specific enzyme IIA component
5	LMOG_02429T0	1.7		Glyoxalase/bleomycin resistance protein/dioxygenase
6	LMOG_00058T0	1.6		Indole-3-glycerol phosphate synthase
7	LMOG_02409T0	1.5		Phosphopyruvate hydratase
8	LMOG_02376T0	1.4		Hypothetical protein
9	LMOG_01132T0	1.4		Hypothetical protein
10	LMOG_01556T0	1.3		Hypothetical protein
11	LMOG_00585T0	1.3		Propanediol utilization polyhedral body protein PduU
12	LMOG_02404T0	1.2		Transcriptional regulator
13	LMOG_01131T0	1.2		Hypothetical protein
14	LMOG_01129T0	1.2		Galactitol-specific PTS system IIC component
15	LMOG_02407T0	1.1		Triosephosphate isomerase
16	LMOG_02408T0	1.1		2,3-bisphosphoglycerate-independent phosphoglycerate mutat
17	LMOG_00151T0	1.1		Septum site-determining protein MinC
18	LMOG_00275T0	1.1		Osmotically activated L-carnitine/choline ABC transporter
19	LMOG_00231T0	1.0	22	GatB/Yqey domain-containing protein
20	LMOG_02178T0	1.0		Transcriptional regulator
21	LMOG_02220T0	1.0		Glycosyl hydrolase, family 4
22	LMOG_01105T0	1.0		Bacitracin export ATP-binding protein BceA
23	LMOG_00328T0	0.9		Two-component system response regulator
24	LMOG_01310T0	0.9		2-heptaprenyl-I,4-naphthoquinone methyltransferase
25	LMOG_00956T0	0.9		Hydrolase
26	LMOG_01454T0	0.9		STAS domain-containing protein
27	LMOG_02302T0	0.9		Fructose-16-bisphosphate aldolase class II
28	LMOG_01059T0	0.9		Metallo-beta-lactamase
29	LMOG_00205T0	0.9		MTA/SAH nucleosidase
30	LMOG_01322T0	0.9		Zn-dependent protease
31	LMOG_03179T0	0.9		YbbK protein
32	LMOG_02234T0	0.8		Phosphosugar-binding transcriptional regulator
33	LMOG_00079T0	0.8		Glutamyl aminopeptidase
34	LMOG_00742T0	0.8		LytTr DNA-binding domain family
35	LMOG_01227T0	0.8		Acetolactate synthase catabolic
36	LMOG_01900T0	0.8		Adenylate kinase
37	LMOG_02465T0	0.8		Hypothetical protein
38	LMOG_00039T0	0.8		Hypothetical protein
39	LMOG_01873T0	0.8		Sex pheromone cADI
40	LMOG_02142T0	0.8		Internalin

by 1.26-fold at 4 hours and thereafter declined by 0.56-fold at 12 hours and 0.20-fold at 24 hours, strongly suggesting that expression of this gene is only necessary in the initial stages of biofilm formation.

At hour 12 of biofilm formation, only about 40 gene transcripts were upregulated. Expression of the upregulated genes except for M-protein transacting factor was less than three-fold. M-protein transacting factor has a probable role in regulation of surface protein expression, and was the only significantly upregulated gene at hour 12 of biofilm formation. At later stages of biofilm formation, cell-cell communication is largely mediated via signal transduction mechanisms, and surface proteins are key players. We speculate that upregulation of a gene involved in expression of surface proteins establishes its role in biofilm cell communication. Further studies involving knockout of these genes will help broaden our understanding of their role(s) in biofilm formation.

In our study, 20 genes showed more than a two-fold increase in expression at 24 hours of biofilm formation. Of these 20 genes, nine were glycoproteins and five were hypothetical proteins. Among the four genes that showed more than a three-fold increase in expression, two were hypothetical proteins, and one was gp43. Apart

 Table 4 List of genes and their annotations upregulated at 24 hours of incubation as biofilms

S no	Gene	Fold expression values	No of gene transcripts	Annotations
I	LMOG_01638T0	5.2	I	Hypothetical protein
<u>)</u>	LMOG 01387T0	3.5	3	Copper-translocating P-type ATPase
	LMOG 03098T0	3.1		gp43
ł	LMOG_01262T0	3.1		Hypothetical protein
	LMOG 02415T0	3.0	20	Carboxylesterase
	LMOG_02195T0	2.9		Magnesium transporter
,	LMOG 03129T0	2.6		gpII
	LMOG 03157T0	2.4		Transmembrane protein
	LMOG_03097T0	2.4		gp37
0	LMOG_03100T0	2.3		gp39
1	LMOG_03095T0	2.3		Hypothetical protein
2	LMOG_01388T0	2.3		Heavy metal-binding protein
3	LMOG_03133T0	2.3		gp15
4	LMOG_03099T0	2.2		gp44
5	LMOG_03119T0	2.2		Hypothetical protein
6	LMOG_03102T0	2.2		Hypothetical protein
7	LMOG_03116T0	2.2		gp64
8	LMOG_01660T0	2.1		Nitroreductase
9	LMOG_00387T0	2.1		YlxR
20	LMOG_03115T0	2.1		gp63
1	LMOG_02114T0	2.1		Methyltransferase
2	LMOG_02100T0	2.1		Glyoxalase
3	LMOG_03140T0	2.0		gp22
4	LMOG_01461T0	2.0		Zinc ABC transporter
5	LMOG 01002T0	2.0	114	Acetyltransferase
.6	LMOG_02801T0	1.9		ABC transporter ATP-binding protein
7	LMOG_00254T0	1.9		Zinc ABC transporter
.8	LMOG_01450T0	1.8		Methyltransferase
.9	LMOG_02416T0	1.8		Ribonuclease R
0	LMOG_00014T0	1.8		Laminin-binding surface protein
1	LMOG_02807T0	1.8		Outer surface protein
2	LMOG_03300T0	1.8		N-acetylmuramoyl-L-alanine amidase, family 4
3	LMOG_01386T0	1.8		YvgZ
34	LMOG_01493T0	1.8		Hypothetical protein
35	LMOG_03132T0	1.7		gp14
6	LMOG_03106T0	1.7		Predicted protein
7	LMOG_03085T0	1.7		gp33
8	LMOG_02115T0	1.7		Rrf2 family protein
9	LMOG_03101T0	1.7		Predicted protein
0	LMOG_03111T0	1.7		Hypothetical protein
	LMOG_00784T0	1.7		Late competence protein ComEC
2	LMOG_03128T0	1.7		gp10
3	LMOG_00385T0	1.6		Translation initiation factor IF-2
4	LMOG_01448T0	1.6		Hypothetical protein
5	LMOG_00438T0	1.6		Tyrosine recombinase XerC
6	LMOG_00135T0	1.6		Primosomal protein Dnal
7	LMOG_01359T0	1.6		SSU ribosomal protein S14p
8	LMOG_02803T0	1.6		Helicase domain-containing protein
19 60	LMOG_00253T0	1.6 1.5		Zinc ABC transporter
	LMOG_03127T0	1.5		gp9 Glutamyl tBNA(Glp) amidotransformso (chain C)
2	LMOG_02768T0	1.5		Glutamyl-tRNA(Gln) amidotransferase (chain C)
3	LMOG_00450T0 LMOG_01426T0	1.5		Trigger factor tig DAK2 domain-containing protein
3 4	LMOG_0142810	1.5		Guanylate kinase
5	LMOG_01263T0	1.5		Hypothetical protein
6	LMOG 00427T0	1.5		DNA topoisomerase IV A subunit

(Continued)

Table 4 (Continued)

S no	Gene	Fold expression values	No of gene transcripts	Annotations
57	LMOG_00440T0	1.5	.	tRNA:m(5)U-54 methyltransferase
8	LMOG_02572T0	1.5		Hypothetical protein
9	LMOG_02463T0	1.4		SMC domain-containing protein
0	LMOG_01855T0	1.4		Translation elongation factor G
I	LMOG_03110T0	1.4		gp54
2	LMOG 00436T0	1.4		Heat shock protein HsIVU ATPase subunit HsIU
3	LMOG 00490T0	1.4		Excinuclease ABC C subunit
4	LMOG_00774T0	1.4		Hypothetical protein
5	LMOG 00263T0	1.3		Penicillin-binding protein
6	LMOG 00446T0	1.3		Signal peptidase I
7	LMOG 02170T0	1.3		Translocase subunit secA 2
8	LMOG_01003T0	1.3		Hydrolase
9	LMOG 00112T0	1.3		N-6DNAmethylase
0	LMOG_01888T0	1.3		30S ribosomal protein S17
1	LMOG_03066T0	1.3		4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase
2	LMOG 00043T0	1.3		Helicase
3	LMOG 02806T0	1.3		Beta-glucoside-specific PTS system IIA component
4	—	1.3		
5	LMOG_02765T0 LMOG_00384T0	1.3		ATP-dependent DNA helicase PcrA YIxP
6	LMOG_00378T0	1.3		Polyribonucleotide nucleotidyltransferase
7	LMOG_00441T0	1.3		DNA topoisomerase I
8	LMOG_02145T0	1.3		ABC transporter
9	LMOG_02140T0	1.3		Transcriptional regulator
0	LMOG_01484T0	1.3		Phage holin
I	LMOG_02766T0	1.3		DNA ligase NAD-dependent
2	LMOG_02146T0	1.3		Transcriptional regulator
3	LMOG_02417T0	1.3		SsrA-binding protein
4	LMOG_01884T0	1.3		50S ribosomal protein L22
5	LMOG_00101T0	1.3		Aminotransferase
6	LMOG_01890T0	1.3		50S ribosomal protein L24
7	LMOG_02589T0	1.3		50S ribosomal protein LI I
8	LMOG_01489T0	1.3		Hypothetical protein
9	LMOG_02594T0	1.2		RNA polymerase sigma-30 factor
0	LMOG_01879T0	1.2		50S ribosomal protein L3
I	LMOG_01889T0	1.2		50S ribosomal protein L14
2	LMOG_01449T0	1.2		Hypothetical protein
3	LMOG_01949T0	1.2		Sigma54-associated activator ManR
4	LMOG_03270T0	1.2		Lysyl-tRNA synthetase
5	LMOG_01490T0	1.2		Hypothetical protein
6	LMOG_03113T0	1.2		Predicted protein
7	LMOG_01483T0	1.2		N-acetylmuramoyl-L-alanine amidase
8	LMOG_00212T0	1.2		Hypothetical protein
9	LMOG_00456T0	1.2		Helix-turn-helix domain-containing protein
00	LMOG_03125T0	1.2		Phage capsid protein
01	LMOG_00045T0	1.2		STAS domain-containing protein
02	LMOG 03131T0	1.2		gp13
03	LMOG 02605T0	1.2		DNA repair protein RadA
04	LMOG_00395T0	1.2		Di-trans,poly-cis-decaprenylcistransferase
05	LMOG 00153T0	1.2		Ribonuclease
06	LMOG 01319T0	1.2		TPR domain-containing protein
07	LMOG_03120T0	1.2		Phage terminase small subunit
07		1.2		-
				Major tail shaft protein
09	LMOG_02588T0	1.2		50S ribosomal protein Ll
10	LMOG_03117T0	1.2		gp65
11	LMOG_00695T0	1.2		Zn-dependent hydrolase
12	LMOG_01488T0	1.1		Hypothetical protein

(Continued)

Table 4 (Continued)

S no	Gene	Fold expression values	No of gene transcripts	Annotations
13	LMOG_01896T0	1.1		30S ribosomal protein S5
14	LMOG 00255T0	1.1		zurR
15	LMOG 00512T0	1.1		Transcriptional regulator
16	LMOG_00172T0	1.1		Adenine phosphoribosyltransferase
17	LMOG 00213T0	1.1		lojap protein 155
18	LMOG 03123T0	1.1		Minor capsid protein
19	LMOG_00383T0	1.1		Ribosome-binding factor A
20	LMOG 00373T0	1.1		5-formyltetrahydrofolate cyclo-ligase
21	LMOG_03156T0	1.1		Rrf2 family protein
22	LMOG 03109T0	1.1		Hypothetical protein
23	LMOG 01195T0	1.1		Cell division protein FtsA
24	LMOG 01852T0	1.1		30S ribosomal protein S12
25	LMOG 00408T0	1.1		Cell division suppressor protein yneA
26	LMOG 00209T0	1.1		Shikimate 5-dehydrogenase
27	LMOG 00500T0	1.1		ABC transporter permease
28	LMOG_00171T0	1.1		Single-stranded-DNA-specific exonuclease rec
29	LMOG 03139T0	1.1		Short tail fiber
30	LMOG 00102T0	1.1		Thiamine biosynthesis/tRNA modification protein Thil
31	LMOG 01901T0	1.1		Hypothetical protein
32	LMOG 01495T0	1.1		Prophage LambdaLm01
33	LMOG 03122T0	1.0		Phage portal protein
34	LMOG_03121T0	1.0		Phage terminase large subunit
35		1.0		
	LMOG_02452T0	1.0		Hypothetical protein
36	LMOG_02335T0			MreB-like protein
37	LMOG_03308T0	1.0		Translation initiation factor IF-3
38	LMOG_01869T0	1.0		Heptaprenyl diphosphate synthase component II
39	LMOG_00486T0	1.0	47	Ribonuclease PH
40	LMOG_00240T0	1.0		DNA repair protein RecO
41	LMOG_01892T0	1.0		30S ribosomal protein S14p/S29e
42	LMOG_00132T0	1.0		Dephospho-CoA kinase
43	LMOG_02609T0	1.0		Transcriptional regulator CtsR
44	LMOG_00437T0	1.0		ATP-dependent protease hslV
45	LMOG_01482T0	0.9		Hypothetical protein
46	LMOG_00074T0	0.9		Phosphotransferase enzyme family protein
47	LMOG_03142T0	0.9		Phage holin
48	LMOG_03090T0	0.9		gp37
49	LMOG_03126T0	0.9		gp8
50	LMOG_01486T0	0.9		Hypothetical protein
51		0.9		Inorganic polyphosphate/ATP-NAD kinase
52	LMOG_02356T0	0.9		Cell division ATP-binding protein FtsE
53	LMOG_00501T0	0.9		ABC transporter ATP-binding protein
54	LMOG 00611T0	0.9		Hypothetical protein
55	LMOG_00703T0	0.9		Ribonucleic acid-binding domain-containing protein
56	LMOG 02007T0	0.9		Hypothetical protein
57	LMOG 03273T0	0.9		Dihydroneopterin aldolase
58	LMOG 00804T0	0.9		ABC transporter permease
59	LMOG 00183T0	0.9		ATPase
50	LMOG_01902T0	0.9		Translation initiation factor IF-1
61	LMOG 03238T0	0.9		50S ribosomal protein L35
62	LMOG_0323810	0.9		tilS/hprT
		0.9		-
63 64				YabE protein
		0.9		Septation ring formation regulator EzrA
65 ((LMOG_00717T0	0.9		Hypothetical protein
66	LMOG_01264T0 LMOG_00445T0	0.9		Pentitol PTS system enzyme II B component

(Continued)

Table 4 (Continued)

S no	Gene	Fold expression	No of gene	Annotations
		values	transcripts	
168	LMOG_01378T0	0.9		DegV family protein
169	LMOG_03271T0	0.8		Dihydrouridine synthase
170	LMOG_00220T0	0.8		GTP-binding protein LepA
171	LMOG_00011T0	0.8		Hydrolase
172	LMOG_02658T0	0.8		Transcriptional regulator
173	LMOG_01491T0	0.8		Hypothetical protein
174	LMOG_02291T0	0.8		Hypothetical protein
175	LMOG_03065T0	0.8		Hypothetical protein
176	LMOG_00404T0	0.8		Predicted protein
177	LMOG_03124T0	0.8		Scaffolding protein
178	LMOG_02655T0	0.8		PRD/PTS system IIA 2 domain-containing regulatory protein
179	LMOG_00339T0	0.8		DNA repair protein RecN
180	LMOG_01302T0	0.8		Ribosome-associated GTPase EngA
181	LMOG_02304T0	0.8		Glycosyltransferase
182	LMOG_00122T0	0.8		Acetyl-CoA carboxylase carboxyl transferase alpha subunit
183	LMOG_00218T0	0.8		DNA polymerase III delta subunit
184	LMOG_02522T0	0.8		Hypothetical protein
185	LMOG 01494T0	0.8		Prophage LambdaLm01

from the genes that were upregulated specifically at fixed time intervals, we also report on the genes that showed a pattern of fluctuating levels of upregulation. Some genes were either not upregulated or minimally upregulated at 4 hours of growth, but were increasingly upregulated after 12 and 24 hours. Similarly, a group of genes was markedly upregulated at 4 hours, but was downregulated after 12 and 24 hours.

An interesting observation in this respect is the expression pattern for glycoproteins, which have been reported to have varied functions, ranging from cell adhesion to cellto-cell signaling.^{30,31} Glycoprotein expression, as observed in our study, is of significance for the reason that a set of 12 glycoproteins showed an ascending pattern of upregulation over time. For instance, gp49, a putative gene transcript with an unknown function, is expressed with an ascending

Table 5 Number of genes upregulated with a ascending pattern from 4 to 24 hours of biofilms growth as compared to the 24 hours broth culture of *L. moncytogenes* J0161.

Fold variation	Number of genes	% of genes	
More than 6 fold variation	l	0.1	
More than 5 fold variation	8	I	
More than 4 fold variation	20	2.4	
More than 3 fold variation	44	5.3	
More than 2 fold variation	86	10.3	
More than I fold variation	330	39.5	
Less than I fold variation	347	41.5	

order of more than six-fold variation from 4 to 24 hours. The glycoprotein expression pattern specifically in biofilm but not in broth culture signifies a clear role of glycoproteins in biofilms. Glycoproteins have been reported to play a role in cell-to-cell signaling and communication. The ascending trend of glycoprotein expression in biofilm is suggestive of a similar role of cell-to-cell communication/ signaling. Cell-to-cell communication for quorum sensing in biofilms is critical. Though we report specific genes that were upregulated at a particular time of biofilm growth, we could not fully understand or implicate the role of these genes in biofilm formation. Knockout studies would help to clarify the role of these genes further.

Acknowledgments

We sincerely thank Sant Prakash and VG Das for their support and encouragement. We also express our sincere gratitude to the Agriculture Research Services, United States Department of Agriculture, for providing us with the *L. monocytogenes* J0161 strain and Genotypic Technology Pvt Ltd for their support. We are indebted to Mohamed Aiyaz and Madhan Tirumalai for their suggestions and comments on the manuscript. We also wish to acknowledge the support of the Ministry of Science and Technology, Government of India through the Department of Science and Technology FIST program, which provided us with the laboratory facilities needed to undertake this work.

Gene	Variation (ascending) in fold expression from 4 to 24 hours of biofilm	Gene description
LMOG_03104T0	Above 6.0	gp49
LMOG_03102T0	5.0 to 6.0	Hypothetical protein
LMOG_02195T0		Magnesium transporter
LMOG_01461T0		Zinc ABC transporter
LMOG_03098T0		gp43
LMOG_03101T0		Predicted protein
LMOG_03111T0		Hypothetical protein
LMOG_03129T0		gpll
LMOG_03115T0		gp63
LMOG_03099T0	4.0 to 5.0	gp44
LMOG_03113T0		Predicted protein
LMOG_03097T0		gp37
LMOG_03100T0		gp39
LMOG_03106T0		Predicted protein
LMOG_03116T0		gp64
LMOG_03140T0		gp22
LMOG_03133T0		gp 1 5
LMOG_03090T0		gp37
LMOG_03120T0		Phage terminase small subunit
LMOG_02114T0		Methyltransferase
LMOG_01262T0		Hypothetical protein
LMOG_03107T0		gp51
LMOG_02115T0		Rrf2 family protein
LMOG_01386T0		YvgZ
LMOG_00932T0		Spermidine/putrescine import ATP-binding protein potA
LMOG_01462T0		Zinc ABC transporter
LMOG_01652T0		Inner membrane ABC transporter permease YcjP
LMOG_03122T0		Phage portal protein
LMOG_01650T0		ABC-type sugar transport system periplasmic binding protein YcjN

Table 6 List of genes and their annotations upregulated with a ascending pattern from 4 to 24 hours of biofilms growth as compared to the 24 hours broth culture of *L. monocytogenes* J0161

Table 7 Number of genes upregulated with a descending pattern from 4 to 24 hours of biofilms growth as compared to the 24 hours broth culture of *L. monocytogenes* J0161

Number of genes	% of genes
2	0.2
6	0.7
19	2.2
34	4
120	14.2
296	34.9
370	43.7
	2 6 19 34 120 296

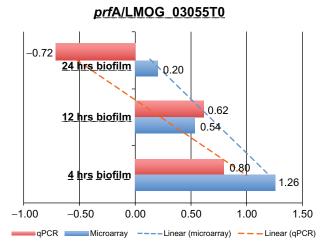


Figure 3 Comparison of expression data of *prfA* from microarray and qPCR.

Gene	Variation (descending) in fold expression from 4 to 24 hours of biofilm formation	Gene description	
LMOG_02681T0	Above 6.0	Fructose-specific IIA PTS system component	
LMOG_02679T0		Fructose-specific PTS system fructose-specific II component	
LMOG_01728T0	5.0 to 6.0	Cellobiose-specific PTS system IIA component	
LMOG_02680T0		Fructose-specific PTS system IIB component	
LMOG_01844T0		Alcohol dehydrogenase	
LMOG_01843T0		Alcohol dehydrogenase	
LMOG_01845T0		Ribose 5-phosphate isomerase B	
LMOG_00557T0		Hypothetical protein	
LMOG_01848T0	4.0 to 5.0	Ribulose-phosphate 3-epimerase	
LMOG_01842T0		Galactitol-specific PTS enzyme IIC component	
LMOG_01839T0		PTS system IIA 2 domain-containing protein	
LMOG_02678T0		Alpha-mannosidase	
LMOG_01846T0		Ribulose-phosphate 3-epimerase	
LMOG_01215T0		Cold shock protein CspB	
LMOG_01841T0		Galactitol-specific PTS enzyme IIB component	
LMOG_00362T0		Competence protein ComGA	
LMOG_01840T0		Galactitol-specific PTS system IIA component	
LMOG_01729T0		ROK family protein	
LMOG_02677T0		PRD/PTS system IIA 2 domain-containing protein	
LMOG_01162T0		Hypothetical protein	
LMOG_01996T0		Glycosyl hydrolase family 1 subfamily	
LMOG_00980T0		Hypothetical protein	
LMOG_01371T0		DedA family protein	
LMOG_02000T0		D-allulose-6-phosphate 3-epimerase	
LMOG_01731T0		Cellobiose-specific PTS system IIB component	
LMOG_01094T0		Maltose/maltodextrin ABC transporter	
LMOG_01732T0		Beta-glucosidase	

Table 8 List of genes and their annotations upregulated with a descending pattern from 4 to 24 hours of biofilms growth as compared to the 24 hours broth culture of *L. monocytogenes* JO161

Table 9 List of genes unregulated commonly at all the three time intervals

 Table 9 (Continued)

interva	als		S no	Gene	Annotation
S no	Gene	Annotation	19	LMOG_00286T0	Hydroxymethylglutaryl-CoAsynthase
1	LMOG_02396T0	Clp protease	20	LMOG_01784T0	GW repeat-containing protein
2	LMOG_00591T0	Clp protease	21	LMOG_00411T0	LexA repressor
3	LMOG_02411T0	Hypothetical protein	22	LMOG_00675T0	Molybdenum cofactor biosynthesis
4	LMOG_02477T0	NifU family protein			protein C
5	LMOG_00277T0	Nramp family mn2+/fe2+ transporter	23	LMOG_01667T0	D-isomer specific 2-hydroxy acid
6	LMOG 02607T0	ATP:guanido phosphotransferase			dehydrogenase
7	LMOG_00679T0	Molybdopterin biosynthesis protein	24	LMOG_01701T0	Chromosome partitioning protein parA
	—	MoeA			Sporulation initiation inhibitor
8	LMOG_01005T0	ATP-dependent chaperone ClpB			protein Soj
9	LMOG_02567T0	Internalin C2	25	LMOG_01013T0	OsmC/Ohr family protein
10	LMOG_01012T0	Transcriptional regulator	26	LMOG_00309T0	3-ketoacyl-(acyl-carrier-protein)
11	LMOG_02442T0	ArsC family protein			reductase
12	LMOG_00358T0	Glycine dehydrogenase	27	LMOG_00287T0	Acetyl-CoA acetyltransferase
13	LMOG_02443T0	Glycine cleavage system H protein	28	LMOG_02412T0	Carboxylesterase
14	LMOG_01666T0	Phosphoserine aminotransferase	29	LMOG_00049T0	Muramoyl-tetrapeptide
15	LMOG_01498T0	Helix-turn-helix domain-containing			carboxypeptidase family
		protein	30	LMOG_00321T0	lsopentenyl-diphosphate delta-isomerase
16	LMOG_03035T0	Hypothetical protein	31	LMOG_01783T0	Peptidoglycan bound protein
17	LMOG_00763T0	Hypothetical protein	32	LMOG_00234T0	HDIG domain-containing protein
18	LMOG_00674T0	Molybdenum cofactor biosynthesis	33	LMOG_00237T0	Cytidine deaminase
		protein A	34	LMOG_00225T0	Co-chaperone GrpE
		(Continued)			(Continu

S no	e 9 (Continued) Gene	Annotation	S no	Gene	Annotation
35	LMOG_00667T0	Pyruvate dehydrogenase complex,	85	LMOG_01574T0	Accessory regulator protein D
	—	El component, pyruvate dehydrogenase	86	LMOG_00312T0	ABC transport system permease
		beta subunit	87	LMOG_01136T0	Lipase
36	LMOG 01759T0	CBS domain-containing protein	88	LMOG_02347T0	Transcriptional regulatory protein Degl
37	LMOG 00224T0	Heat-inducible transcription	89	LMOG_00020T0	Peptidoglycan linked protein
	—	repressor HrcA	90	LMOG_00302T0	Hypothetical protein
38	LMOG 00304T0	RecA protein	91	LMOG 01907T0	50S ribosomal protein L17
39	LMOG 00236T0	Diacylglycerol kinase	92	LMOG 00839T0	Serine/threonine-protein kinase rsbT
40	LMOG_01170T0	Protoheme IX farnesyltransferase	93	LMOG_00315T0	Surface antigen
41	LMOG_00661T0	Thioredoxin family protein	94	LMOG_00301T0	Acetyltransferase
42	LMOG_01018T0	Oligopeptide ABC transporter	95	LMOG_01281T0	Fur protein
		oligopeptide-binding protein	96	LMOG_00842T0	PemK family transcriptional regulator
43	LMOG_02468T0	Hypothetical protein	97	LMOG 00665T0	Dihydrolipoyl dehydrogenase
44	LMOG 02473T0	HAD-superfamily subfamily IIA hydrolase	98	LMOG 02735T0	Hypothetical protein
45	LMOG 02386T0	Thioredoxin-disulfide reductase	99	LMOG 00663T0	Lactate/malate dehydrogenase
46	LMOG_00946T0	HAD-superfamily hydrolase	100	LMOG 01172T0	Regulatory protein YlbF
47	LMOG_00233T0	PhoH family protein	101	LMOG 01261T0	DNApolymerase IV
48	LMOG_00676T0	Molybdopterin converting factor	102	LMOG_01173T0	Hypothetical protein
	—	subunit l	103	LMOG 00011T0	Hydrolase
49	LMOG 00322T0	Hypothetical protein	104	LMOG 00188T0	TPR domain-containing protein
50	LMOG_01573T0	Accessory regulator protein C	105	LMOG_03307T0	dTDP-4-dehydrorhamnose
51	LMOG 01006T0	Phosphoglycerate mutase			3,5-epimerase
52	LMOG 02471T0	Ser/Thr protein phosphatase	106	LMOG 02392T0	Hypothetical protein
53	LMOG 01702T0	Partition protein ParB homolg	107	LMOG 02474T0	Acetyltransferase
54	LMOG 02604T0	Pin/tram domain-containing protein	108	LMOG 00841T0	Modulator protein RsbR
55	LMOG_00133T0	Transcriptional regulator NrdR	109	LMOG 00083T0	tRNA binding domain-containing proteir
56	LMOG_00325T0	Hypothetical protein	110	LMOG_00771T0	Glucosamine-6-phosphate isomerase
57		CopG family transcriptional regulator		LMOG_03305T0	Minor teichoic acids biosynthesis
58	LMOG_00130T0	DNA polymerase I			protein GgaB
59	LMOG 00128T0	Methylcitrate synthase	112	LMOG_01099T0	Hypothetical protein
60	LMOG 02374T0	Excinuclease ABC B subunit	113	LMOG 02767T0	CamS sex pheromone cAM37
61	LMOG_01572T0	Accessory regulator protein A	114	LMOG_01188T0	Cell division protein ftsL
62	LMOG 00100T0	Septation ring formation regulator EzrA	115	LMOG_00389T0	Hypothetical protein
63	LMOG 00235T0	Hypothetical protein	116	LMOG 00349T0	General stress protein
64	LMOG_00824T0	Hypothetical protein	117	LMOG_02571T0	DNA-directed RNA polymerase beta
65	LMOG_00095T0	Hypothetical protein	117	21100_025/110	subunit
66	LMOG_00662T0	Hypothetical protein	118	LMOG 02771T0	Hypothetical protein
67	LMOG_01019T0	Oligopeptide ABC transporter permease	119	LMOG_01340T0	Pantoate-beta-alanine ligase
68	LMOG_02999T0	Hypothetical protein	120	LMOG_00204T0	Hypothetical protein
69	LMOG 00623T0	PTS system IIB component	121	LMOG 00207T0	HAD superfamily phosphatase
70	LMOG_00694T0	Hypothetical protein	122	LMOG_00699T0	Potassium transport system
71	LMOG_00326T0	OxaA-like protein	122		NAD-binding component
72	LMOG 02171T0	p60	123	LMOG 01621T0	Diphosphomevalonate decarboxylase
73	LMOG 00448T0	Signal peptidase I	123	LMOG_00802T0	Sulfatase
74	LMOG 00406T0	Transketolase	125	LMOG 00299T0	YmcA
75	LMOG 00048T0	DNA-3-methyladenine glycosylase I	125	LMOG 02353T0	Preprotein translocase SecA subunit
76	LMOG_00091T0	General stress protein	120	LMOG_00191T0	DNA-binding response regulator
77	LMOG 00211T0	Nicotinate nucleotide	127	LMOG 02456T0	NifU family SUF system FeS assembly
//	21103_0021110	adenylyltransferase	120	LHOG_0245010	protein
78	LMOG_01200T0	S4 domain-containing protein	129	LMOG_00823T0	Hypothetical protein
79	LMOG_01622T0	Mevalonate kinase			
80	LMOG_00713T0	Transcriptional regulator			
81	LMOG_00840T0	RsbS			
82	LMOG_00131T0	Formamidopyrimidine-DNA glycosylase			
83	LMOG_02455T0	Carbon-sulfur lyase			
84	LMOG 00371T0	Hypothetical protein			

(Continued)

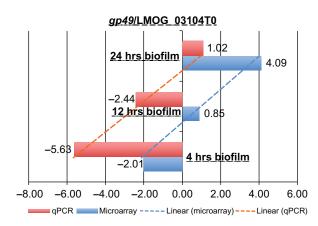


Figure 4 Comparison of expression data of gp49 from microarray and qPCR.

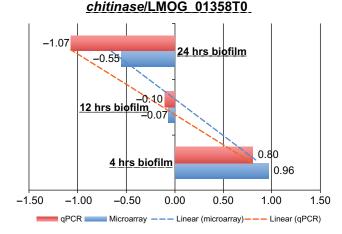


Figure 5 Comparison of expression data of chitinase from microarray and qPCR.

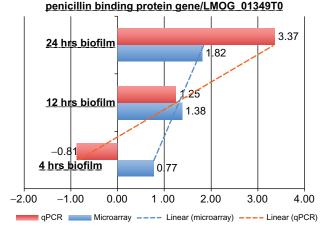


Figure 6 Comparison of expression data of penicillin binding protein from microarray and qPCR.

Disclosure

The authors report no conflicts of interest in this work.

References

- Doyle MP, Beuchat LR, Montville TJ, editors. *Food Microbiology: Fundamentals and Frontiers*. 2nd ed. Washington, DC: American Society for Microbiology; 2001.
- Adak GK, Long SM, O'Brien SJ. Trends in indigenous foodborne disease and deaths, England and Wales: 1992 to 2000. *Gut*. 2002;51:832–841.
- Fleming DW, Cochi SL, MacDonald KL, et al. Pasteurized milk as a vehicle of infection in an outbreak of Listeriosis. *N Engl J Med.* 1985;312:404–407.
- Goulet V, Jacquet C, Vaillant V, et al. Listeriosis from consumption of raw-milk cheese. *Lancet*. 1995;345:1581–1582.
- Ho JL, Shands KN, Friedland G, Eckind P, Fraser DW. An outbreak of type 4b *Listeria monocytogenes* infection involving patients from eight Boston hospitals. *Arch Intern Med.* 1986;146:520–524.
- Linnan MJ, Mascola L, Lou XD, et al. Epidemic listeriosis associated with Mexican-style cheese. N Engl J Med. 1988;319:823–828.
- McLauchlin JS. Human listeriosis in Britain. *Epidemiol Infect*. 1967;104:181–189.
- Mead PS, Slutsker L, Dietz V, et al. Food-related illness and death in the United States. *Emerg Infect Dis.* 1999;5:607–625.
- Nguyen MH, Yu VL. Listeria monocytogenes peritonititis in cirrhotic patients. Dig Dis Sci. 1994;39:215–218.
- Riedo FX, Pinner RW, Tosca ML, et al. A point-source foodborne listeriosis outbreak: documented incubation period and possible and possible mild illness. *J Infect Dis.* 1994;170:693–696.
- Schlech WI, Lavigne PM, Bortolussi RA, et al. Epidemic listeriosis evidence of transmission by food. N Engl J Med. 1983;308:203–206.
- Schwartz B, Ciesielski CA, Broome CV; TLS Group. Association of sporadic listeriosis with consumption of uncooked hotdogs and undercooked chicken. *Lancet*. 1988;2:779–782.
- Donlan RM. Biofilms: microbial life on surfaces. *Emerg Infect Dis*. 2002;8:881–890.
- Jeong D, Frank J. Growth of *Listeria monocytogenes* at 10°C in biofilms with microorganisms isolated from meat and dairy processing environments. *J Food Prot.* 1994;57:576–586.
- Kornacki JL, Gurtler J. Incidence and control of *Listeria* in food processing facilities. In: Ryser ET, Marth EH, editors. *Listeria, Listeriosis* and Food Safety. 3rd ed. New York, NY: CRC Press Inc; 2007.
- Kumar CG, Anand SK. Significance of microbial biofilms in food industry: a review. *Int J Food Microbiol*. 1998;42:9–27.
- Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother. 2001;5:999–1007.
- Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. *Trends Microbiol*. 2001;9:34–39.
- Moreto T, Langsrud S. *Listeria monocytogenes*: biofilm formation and persistence in food-processing environments. *Biofilms*. 2004;1:107–121.
- Merritt JH, Kadouri DE, O'Toole GA. Growing and analysing static biofilms. *Curr Protoc Microbiol*. 2011.
- Chavant P, Martinie B, Meylheuc T, Fontaine MNB, Hebraud M. *Listeria* monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. *Appl Environ Microbiol*. 2002;68:728–737.
- Beresford M, Andrew P, Shama G. Listeria monocytogenes adheres to many materials found in food-processing environments. J Appl Microbiol. 2001;90:1000–1005.
- Boles BR, Singh PK. Endogenous oxidative stress produces diversity and adaptability in biofilm communities. *Proc Natl Acad Sci U S A*. 2008;105:12503–12508.
- Zeller T, Klug G. Thioredoxins in bacteria: Functions in oxidative stress response and regulation of thioredoxin genes. *Naturwissenschaften*. 2006;93:259–266.
- 25. Yi S, Sahni N, Daniels KJ, et al. Alternative mating type configurations $(a/\alpha \text{ versus } a/a \text{ or } \alpha/\alpha)$ of *Candida albicans* result in alternative biofilms regulated by different pathways. *PLoS Biol.* 2011;9:1–17.

- Hautefort I, Thompson A, Eriksson-Ygberg S, et al. During infection of epithelial cells *Salmonella enterica* serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. *Cell Microbiol*. 2008;10:958–984.
- Chan YC, Raengpradub S, Boor KJ, Wiedmann M. Microarray-based characterization of the *Listeria monocytogenes* cold regulon in log- and stationary-phase cells. *Appl Environ Microbiol*. 2007;73:6484–6498.
- Drenkard E. Antimicrobial resistance of *Pseudomonas aeruginosa* biofilms. *Microbes Infect*. 2003;5:1213–1219.
- Lemon KP, Freitag NE, Kolter R. The virulence regulator PrfA promotes biofilm formation by *Listeria monocytogenes*. J Bacteriol. 2010;192:3969–3976.
- 30. Messner P. Bacterial glycoproteins. Glycoconj J. 1997;14:3-11.
- Upreti RK, Kumar M, Shankar V. Bacterial glycoproteins: Functions, biosynthesis and applications. *Proteomics*. 2003;3:363–379.

Advances in Genomics and Genetics

Publish your work in this journal

Advances in Genomics and Genetics is an international, peer reviewed, open access journal that focuses on new developments in characterizing the human and animal genome and specific gene expressions in health and disease. Particular emphasis will be given to those studies that elucidate genes, biomarkers and targets in the development of new or improved therapeutic interventions. The journal is characterized by the rapid reporting of reviews, original research, methodologies, technologies and analytics in this subject area. The manuscript management system is completely online and includes a very quick and fair peer-review system. Visit http://www.dovepress.com/ testimonials.php to read real quotes from published authors.

Submit your manuscript here: http://www.dovepress.com/advances-in-genomics-and-gene-expression-journal

