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Background: Cardiac repair remains a thorny issue for survivors of acute myocardial infarction (AMI), due to the regenerative inertia 
of myocardial cells. Cell-free therapies, such as exosome transplantation, have become a potential strategy for myocardial injury. The 
aim of this study was to investigate the role of engineered exosomes in overexpressing Growth Differentiation Factor-15 (GDF-15) 
(GDF15-EVs) after myocardial injury, and their molecular mechanisms in cardiac repair.
Methods: H9C2 cells were transfected with GDF-15 lentivirus or negative control. The exosomes secreted from H9C2 cells were 
collected and identified. The cellular apoptosis and autophagy of H2O2-injured H9C2 cells were assessed by Western blotting, TUNEL 
assay, electron microscopy, CCK-8 and caspase 3/7 assay. A rat model of AMI was constructed by ligating the left anterior descending 
artery. The anti-apoptotic, pro-angiogenic effects of GDF15-EVs treatment, as well as ensuing functional and histological recovery 
were evaluated. Then, mRNA sequencing was performed to identify the differentially expressed mRNAs after GDF15-EVs treatment.
Results: GDF15-EVs inhibited apoptosis and promoted autophagy in H2O2 injured H9C2 cells. GDF15-EVs effectively decreased the 
infarct area and enhanced the cardiac function in rats with AMI. Moreover, GDF15-EVs hindered inflammatory cell infiltration, 
inhibited cell apoptosis, and promoted cardiac angiogenesis in rats with AMI. RNA sequence showed that telomerase reverse 
transcriptase (TERT) mRNA was upregulated in GDF15-EVs-treated H9C2 cells. AMPK signaling was activated after GDF15-EVs. 
Silencing TERT impaired the protective effects of GDF15-EVs on H2O2-injured H9C2 cells.
Conclusion: GDF15-EVs could fulfil their protective effects against myocardial injury by upregulating the expression of TERT and 
activating the AMPK signaling pathway. GDF15-EVs might be exploited to design new therapies for AMI.
Keywords: exosomes, growth differentiation factor-15, telomerase reverse transcriptase, acute myocardial infarction

Introduction
Acute myocardial infarction (AMI) remains a culprit of death worldwide. Early prevention, effective intervention and 
appropriate care have reduced the mortality of AMI, but survivors may still face the risk of lethal complications, due to 
post-infarction scar formation, pathological remodeling, and ventricular arrhythmias.1,2 Therefore, post-infarction myocar-
dial repair has slipped into the research hotspot, especially that about cell therapy.3 For example, cardiomyocyte and stem 
cell transplantation have been advocated, but transplanted cells manifest a poor survival and a low plasticity, both of which 
lead to unsatisfactory outcomes.4,5 In contrast, recent research advances have demonstrated that paracrine bioactive 
molecules from cardiomyocytes can activate endogenous tissue repair and regeneration.6,7 Collective evidence supports 
that cardiomyocyte-derived exosome transplantation can improve cardiac function after MI, with advantages of easy 
exosome isolation and expansion, mild immune rejection, and a high success rate.8,9 In this cell-free therapeutic strategy, 
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bioactive molecules are transferred directly into injured recipient cells to reduce pathological inflammation, inhibit 
cardiomyocyte apoptosis, necrosis and remodeling, as well as promote neovascularization.3,10

Autocrine and paracrine communication between cells regulates tissue or organismal function. To provide specific 
signaling and targeted delivery, cells secrete membrane vesicles and distribute them into the peripheral blood, urine, 
saliva and other body fluids. Extracellular vesicles can be categorized based on diameter size, as mentioned in MISEV 
guidelines (2018). Usually, EVs < 100 nm or <200 nm in diameter are considered as small or medium, and those >200 
nm as large EVs. In contrast, exosomes are a subclass of extracellular vesicles 40–150 nm in diameter.11 Packed by 
plasma membrane-derived lipid bilayers, they harbor various bioactive molecules, such as lipids, proteins, and RNAs that 
are involved in an array of biological processes.12 The performance of exosomes in intercellular communication has been 
actively investigated.6,13 Exosomes generated from a mixture of cardiomyocytes, endothelial and smooth muscle cells 
can promote cardiac regeneration, with benefits equivalent to those of injections of human induced pluripotent stem cells, 
but do not increase the risk of complications, such as arrhythmias, tumorigenicity, as well as immune rejection.14,15

Growth differentiation factor-15 (GDF-15), a protein from the transforming growth factor superfamily, governs 
various biological processes, such as inhibiting inflammatory response, apoptosis and cell growth.16 Recent studies 
have found that GDF-15 helps to protect from cardiovascular diseases.17,18 Under a physiological condition, GDF-15 is 
barely expressed in tissues, but its expression increases significantly in cardiomyocytes damaged by ischemia and stress, 
thus making it a biochemical marker for cardiovascular diseases. Plasma GDF-15 concentration associates with the 
prognosis of AMI and the choice of therapeutic regimen, and independently predict the risk of adverse cardiovascular 
events.19,20 Recent studies have plucked out an association between GDF-15, inflammation and cardiac fibrosis during 
heart failure and infarction, and GDF-15 may protect against cardiovascular diseases by modulating the metabolic 
activity and repressing oxidation, inflammation, apoptosis, and fibrosis in H9C2 cells.21,22

Here, we investigated how transplantation of H9C2 cells-derived exosomes with GDF-15 overexpression regulates 
cellular apoptosis and autophagy to benefit cardiac repair in a post-infarction left ventricular remodeling model.

Methods
Cell Culture and H2O2 Exposure
Commercial rat H9C2 cells (BOSTER, CX0111) were purchased and cultured in Dulbecco’s modified Eagle medium 
(DMEM, Gibco, USA) supplemented with 10% fetal bovine serum (FBS, Gibco, USA), 100 U/mL penicillin, 100 μg/mL 
streptomycin and 110 mg/mL sodium pyruvate. All cells were incubated at 37°C in a humidified atmosphere containing 
5% CO2, and the fluid was changed once every 1–2 days. When the cell density reached 80%–90%, 1:3 passages were 
made; P3, P4 generation cells were used. H9C2 cells were exposed to a serum-free medium containing 200 μM H2O2 for 
12 hours. The H2O2 concentration and treatment time were determined by CCK-8 and Caspase-3/7 assays in pre- 
experiments. The exposed cells were simultaneously treated with PBS, GDF15-EVs or NC-EVs, respectively.

Lentiviral Transduction
Lentivirus overexpressing GDF-15 and control virus were purchased from GENECHEM. Before transfection, the medium 
was changed to low-serum medium with 1% FBS. The titers of these two viruses were 1 × 108 TU/mL, ie, 1 × 108 biologically 
active virus particles per milliliter of virus solution. MOI (Multiplicity of Infection) is the ability of a virus to infect a cell; 
a higher MOI indicates a weaker ability. The ratio of the number of viral particles used to infect 80% of the cells to the number 
of cells is usually regarded as the MOI of the cell. MOI = viral titer (TU/mL) × viral volume (mL)/number of cells. Pre- 
transfection was performed with MOI values of 1, 10 and 100, respectively. At 72 hours after virus addition, fluorescence 
intensity was observed by fluorescence microscopy, and the optimal MOI of 100 was finally determined to ensure a maximum 
transfection efficiency. After formal transfection, the virus was transfected for 24 hours. The medium containing the virus was 
carefully withdrawn and replaced with normal medium, and then put back into the incubator for culture. The fluorescence from 
GFP was observed under Zeiss fluorescence inverted microscope after 72 hours. The transfection results were verified by 
Western blotting (WB). After confirming the fluorescence intensity of lentivirus in the cells, the cells were seeded into T25 
culture flasks, and screened with 0.75 ug/mL of puromycin for 72 hours. Afterward, the medium was replaced, and the cells 
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continued to be cultured in the incubator. The H9C2 cells with stable overexpression of GDF-15 (GDF-15OE-CMs) and the 
controls (GDF- 15NC-CMs) were prepared.

Exosome Isolation and Characterization
Rat H9C2 cells were cultured to 70% confluence in complete DMEM; then the complete medium was replaced with 
DMEM supplemented with 10% exosome-free FBS. Exosome-free FBS was prepared by centrifuging FBS at 120,000g 
for 18 hours, and passing it through a 0.22-μm filter (Millipore, SLGP033RB). Forty-eight hours later, the culture 
medium was collected, centrifuged at 2000 g for 30 minutes and at 10,000 g for 30 minutes, passed through a 0.22-μm 
filter to remove the cellular debris, and then centrifuged at 120,000 g for 70 min. The supernatant was removed, and the 
pellet was resuspended in phosphate-buffered saline (PBS); then, the mixture was centrifuged again at 120,000g for 70 
min, and the pellet, which contained already-isolated exosomes, was resuspended in 100 μL PBS and stored at −80°C. 
Transmission electron microscopy (TEM) and Nanoparticle Tracking Analysis (NTA) were used to determine particle 
morphology and particle size distribution of isolated exosomes. According to the NTA report, the total concentrations of 
GDF15-EVs and NC-EVs were 1.6 × 1010 Particles/mL and 8 × 109 Particles/mL in 100 μL PBS, respectively. We then 
calculated the numbers of two exosomes per mL of medium as 2 × 109 and 1× 109, respectively. The expression levels of 
exosome markers CD63, CD81 and TSG101 were detected by WB.

Exosome Uptake Assessments
Dil (red fluorescent dye, Beyotime, C1991S) was diluted to a concentration of 5 mmol/L with DMSO solution and stored at 
−20°C. Briefly, every 50 μg (1 μg/μL) of exosomes were added to 1 μL of Dil and incubated for 15 minutes in the dark. To remove 
excess dye, 3 mL of PBS and Exosome Isolation Reagent were mixed and centrifuged at 1500×g for 30 minutes. Supernatant was 
then aspirated, and the Dil-labeled exosomes were resuspended in 50 μL of PBS. H9C2 cells were seeded onto a 96-well plate until 
a confluence of 60%, and then co-cultured with Dil-labeled EVs for two time periods (6 hours, 24 hours). Then, the cells were 
washed with PBS and fixed with 4% paraformaldehyde for 20 min. The nuclei were stained with 6-diamino-2-phenylindole 
(DAPI, Beyotime, C1005) for 10 min and subsequently visualized using a fluorescence microscope.

CCK-8 Assay
Cell viability was determined using Cell Counting Kit-8 (CCK-8, Yeasen, 40203ES76) assay. The cells were counted and 
then seeded into 96-well plates. After an 8-hour culture, the medium reached a confluence of 50%. Then, different 
volumes of exosomes (10 μg, in 10 μL of PBS) or 10 μL of PBS were added into the wells. After a 24-hour incubation, 
the culture medium was discarded, and 10μL of CCK-8 solution was added to each well and incubated at 37°C for 
2 hours, the absorbance was analyzed at 450 nm using a Microplate Reader.

TUNEL Assay
Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) (Ribobio, China) was applied to 
detect cell apoptosis. Briefly, the cells were cultured in 96-well plates in the medium until a confluence of 60%. Then, the 
culture medium was discarded, and 10 μL of GDF15-EVs (1 μg/uL), 10 uL of NC-EVs (1 μg/uL) or 10 μL of PBS were 
added. The cells in each treated group were immobilized with 4% paraformaldehyde at room temperature, washed twice 
with PBS and incubated with buffer containing 0.1% Triton X-100 on ice for 10 min, and finally washed and sealed with 
3% BSA. The slides were further incubated with 50 μL of freshly prepared TUNEL reaction mixture for 1 h at 37°C in 
a humidified chamber. Fluorescent images were acquired with fluorescence microscopy (AE31, Motic, Xiamen, China).

Caspase-3/7 Assay
Caspase-3/7 assays were used for cell apoptosis. Caspase-3/7 apoptosis detection kit (RiboBio, R11094.2) was used to 
detect apoptosis. The cells were cultured in 96-well plates in the medium. After an 8-hour culture, the medium reached 
a confluence of 60%. Then, different volumes of exosomes (10 μg, in 10 μL of PBS) or 10 μL of PBS were added into 
the wells. After a 24-hour incubation, the culture medium was discarded, and the cell nucleus were stained with Hoechst 
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33,342. Early apoptotic cells were stained with caspase-3/7. PI staining was used for late apoptosis. The apoptosis rate 
was calculated for subsequent analysis.

Western Blotting Assay
Total protein was extracted from myocardial tissues, and its concentration quantified with a bicinchoninic acid (BCA) kit. 
The protein was separated by 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and then 
transferred to polyvinylidene fluoride (PVDF) membranes, using a semidry transfer system (Bio–Rad, USA). The 
membrane was blocked in 5% defatted milk powder for 2 h at 37°C, washed with phosphate buffer solution with 
Tween 20 (PBST), incubated with primary antibodies against Bcl-2, Bax, P62, Lc3, TERT, AMPK, P-AMPK and GDF- 
15 overnight at 4°C, then washed with PBST (5 times × 3 min), then with of horseradish peroxidase (HRP)-labeled 
secondary antibodies for 1 h 30 min at 37°C. Enhanced chemiluminescence (ECL) was used for visualization. ImageJ 
was used for gray value analysis. With GAPDH or β-Actin as a loading control, the relative expression of target proteins 
was measured as the gray value ratio of target protein to that of GAPDH or β-Actin.

Quantitative Real-time-polymerase Chain Reaction (qRT-PCR)
Total RNA and mRNA were extracted from exosomes, cells and tissues with Trizol reagent (Vazyme, R401-01). The cDNA 
libraries of mRNA were synthesized using HiScript II 1st-Strand cDNA Synthesis kit (Vazyme, R211-01). Quantitative real-time 
PCR (RT-qPCR) was accomplished with HiScript II One step qRT-PCR SYBR Green kit (Vazyme, Q221-01). The level of 
mRNA was normalized to that of GAPDH, and the data were calculated via comparative 2−ΔΔCt. Each experiment was 
triplicated and repeated at least three times independently. The primer sequences used are as follows: GAPDH-f-5′- 
AGAACATCATCCCTGCCTCTACT-3′, GAPDH-r-5′-GATGTCATCATATTTGGCAGGTT-3′; TERT-f-5′-GCAGAAGAC 
AGTGGTGAACTT-3′, TERT-r-5′-CTTAATTGAGGTCCGTCCGTAAC-3′.

AMI Models and Exosome Injection
Rats were randomized into different groups. SD rats (weight 200–220g) were anesthetized by intraperitoneal injection of 
pentobarbital sodium (50 mg/kg) before the surgical procedure. A 6–0 polyester suture was used to ligate the left anterior 
descending coronary artery (LAD). Exosomes were injected into the border zone of the infarcted hearts at 30 minutes 
after ligation, as previously described.23 Briefly, every 100 μL of exosomes (1 μg/μL) or 100 μL of PBS was injected into 
the border zone of the infarcted hearts at three locations.

Echocardiography
wo and four weeks after surgery, transthoracic echocardiography was performed to evaluate cardiac function. 
Echocardiography was performed as previously described,13 using a Vevo2100 digital imaging system (Visual Sonics) 
in rats under 1% isoflurane. M mode measurements were acquired in the parasternal short-axis view at the level of the 
papillary muscle. Left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular 
diameter (LVD), left ventricular anterior wall (LVAW), left ventricular posterior wall (LVPW) and left ventricular weight 
(LVW) were measured and calculated during the analysis. Calculation of the LVW values was carried out using the 
following formula: LVM ¼ 1:05 � LVDdþ LVPWdþ LVAWdð Þ

3
� LVDd3

h i
. The left ventricular ejection fraction 

(EF) was calculated by the cubic method: LVEF %ð Þ ¼ LVIDdð Þ
3
� LVIDsð Þ

3
� �

= LVIDdð Þ
3
� 100%, and the left 

ventricular fractional shortening (FS) was calculated by LVFS %ð Þ ¼ LVIDd � LVIDsð Þ=LVIDd � 100%. The data 
from four cardiac cycles were averaged.24

Histological Analysis
Rats were sacrificed after echocardiography measurements were recorded. Then, the tibial length of the rats was 
measured. Masson’s trichrome and Sirius red staining were implemented to quantify the extent of infarction and fibrosis 
in the left ventricle (LV) with ImageJ software. Hematoxylin–eosin (HE) staining was used to roughly evaluate the 
degree of inflammatory infiltration. Vascular density was quantified by immunofluorescence of CD31. Apoptotic cells 
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were counted by TUNEL assay. Immunohistochemical staining was used to evaluate the positive rate of BCL-2, NLRP3, 
and Cleaved Caspase-3.

Enzyme-Linked Immunosorbent Assay (ELISA)
Three days following myocardial injury, peripheral blood samples (500 μL) were collected from rats. Plasma was 
separated from ethylenediaminetetraacetic acid (EDTA) anti-coagulated blood samples of rats by centrifugation at 
1000 rpm/min for 15 minutes. The plasma was then separated and stored at −80°C until further analysis. The 
concentrations of IL-6 (Cat No. PI328), TNF-α (Cat No. PT516) and IL-10 (Cat No. PI525) were detected using the 
enzyme-linked immunosorbent assay (ELISA) kit according to the manufacturer’s instructions (Beyotime, China).

mRNA Sequencing and Bioinformatic Analyses
mRNA sequencing was performed in both GDF15-EVs and NC-EVs treated H9C2 cells. mRNA sequence was 
analyzed by RiboBio (Guangzhou, China) using the Illumina HiSeqTM 2500 instrument. Differentially expressed 
mRNA were identified by |log 2(FoldChange)|> 1 and P value <0.05. Bioinformatic analyses were performed, 
including differential expression mRNA analysis, mRNA target gene prediction, GO analysis, and KEGG pathway 
enrichment analysis.

Transfection Experiment
si-TERT mRNA (50 nmol/L) (Supplementary Table 1) and negative control mRNA (50–100 nmol/L) synthesized by 
Guangzhou Ribobio were transfected into H9C2 cells using riboFECT™ CP Reagent (C11062-1, Ribobio, China). qRT- 
PCR was performed to determine transfection efficiency. At 48 hours after transfection, different groups of cells were 
harvested for subsequent experiments.

Statistical Analysis
All data were expressed as mean ± standard error of mean (SEM) and subjected to GraphPad Prism 8 (GraphPad 
Software, San Diego, CA, USA). Comparisons between two groups were assessed by the Student t test. One-way 
ANOVA was used to compare three or four groups. P < 0.05 was considered as statistical significance.

Results
GDF-15 Overexpression Reduced Apoptosis and Promoted Autophagy of H9C2 Cells
H9C2 cells were transfected with lentivirus-GDF-15 (Figure 1A) and empty lentivirus vectors. The green fluores-
cence of GDF-15OE-CMs and GDF-15NC-CMs verified successful lentiviral transfection (Figure 1B). WB revealed 
that GDF-15OE-CMs elevated the expression of GDF-15 protein, compared with GDF-15NC-CMs (Figure 1C and D). 
Subsequently, TUNEL assay showed that GDF-15OE-CMs significantly reduced cell apoptosis, compared to the 
GDF-15NC-CMs (Figure 1E and F). CCK-8 assay observed that cell viability significantly increased after GDF-15 
overexpression (Figure 1G). WB suggested that apoptosis marker Bax and autophagy marker P62 expression fell, 
and apoptosis marker Bcl-2 and autophagy marker Lc3 expression rose in the GDF-15 overexpression group 
(Figure 1H–K). Overall, GDF-15 overexpression significantly reduced apoptosis and promoted autophagy of 
H9C2 cells.

Isolation and Identification of GDF15-EVs
Exosomes were isolated from GDF-15OE-CMs and GDF-15NC-CMs. Exosomes in a cup-shaped morphology could 
be observed in both groups (Figure 2A). Three specific markers of exosomes, TSG101, CD81 and CD63 were 
positive in both groups (Figure 2B). To identify whether these exosomes were endocytosed by H9C2 cells, we 
incubated H9C2 cells with exosomes labeled with Dil for different durations. After 6 hours and 24 hours of 
incubation, red signals were detected in the H9C2 cells. Confocal images confirmed the uptake of labeled exosomes 
in a time-dependent manner. GDF15-EVs were more effectively taken up by H9C2 cells after a 24-hour incubation 
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(Figure 2C). NTA showed that the size and concentration distribution of exosomes were similar between GDF15- 
EVs and NC-EVs group (Figure 2D and E). GDF-15 protein level was significantly higher in exosomes secreted by 
H9C2 cells with GDF-15 overexpression than that in NC-EVs (Figure 2F and G).

Figure 1 GDF-15 overexpression reduced apoptosis and promoted autophagy in cardiomyocytes. (A) Diagram of the GV358 after insertion of GDF-15 gene. (B) Successful 
lentiviral transduction was confirmed by positive fluorescence signal under a microscope in both GDF-15OE-CMs and GDF-15NC-CMs groups (Scale bar =200 µm). (C) WB 
images showed GDF-15 protein levels in GDF-15OE-CMs and GDF-15NC-CMs groups; (D) quantification analysis (n=3). (E) Cell apoptosis was analyzed by TUNEL assay and 
(F) quantification analysis (n=4) (Scale bar =200 µm). (G) Cell viability was analyzed by CCK8 assay (n=6). (H) WB of the autophagy markers in different groups; (I) 
quantification analysis (n=3). (J) WB of apoptosis markers in different groups; (K) quantification analysis (n=3). *P < 0.05, **P < 0.01, ****P < 0.0001.
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GDF15-EVs Reduced Apoptosis and Promoted Autophagy in H2O2-Injured H9C2 Cells
We further evaluate the protective effects of GDF15-EVs in vitro. Firstly, TUNEL assay showed that the GDF15-EVs 
significantly reduced cell apoptosis induced by H2O2, compared to that in the NC-EVs group (Figure 3A and B). CCK-8 assay 
observed that cell viability was significantly increased after GDF15-EVs treatment (Figure 3C). Transmission electron 

Figure 2 Isolation and identification of exosomes from cardiomyocytes. (A) TEM images of exosomes isolated from GDF-15OE-CM and GDF-15NC-CM groups (n=3) (right: 
scale bar =50 nm, left: scale bar =100 nm). (B) WB for TSG101, CD63 and CD81 in exosomes (n=3). (C) Confocal images showed that the red fluorescence of dye Dil 
labeled exosomes from two groups cells was endocytosed by H9C2 at 6 and 24 h after incubation. Scale bar=50 μm (n=3). (D and E) NTA for size and concentration of 
exosomes isolated from H9C2 cells (n=3). (F) WB images showed GDF-15 protein levels in GDF15-EVs and NC-EVs groups; (G) quantification analysis (n=3). ***p<0.001.
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microscopy revealed that autophagosome structures, characterized by a double-membrane structure containing cargo, increased in 
GDF15-EVs-treated H9C2 cells (Figure 3D and E). This finding suggested that exosomes from GDF-15OE-CMs 
induced autophagy in H2O2-injured H9C2 cells. Moreover, WB suggested that apoptosis marker Bax and autophagy 
maker P62 expression fell, and apoptosis marker Bcl-2 and autophagy marker Lc3 expression rose in the GDF15-EVs group 
(Figure 3F and G). GDF15-EVs and NC-EVs weakened caspase3 and caspase7 activity and prevented apoptosis in H9C2 cells 

Figure 3 GDF15-EVs reduced apoptosis and promoted autophagy in H2O2-injured cardiomyocytes in vitro. (A) Cell apoptosis was analyzed by TUNEL assay; (B) quantification analysis 
(n=4 for each group) (Scale bar =200 μm). (C) Cell viability was analyzed by CCK8 assay (n=6). (D) The autophagy in H9C2 cells was observed with TEM; the black arrows represented 
the autophagosomal structures; (E) quantification analysis. (Scale bar =20 μm). (F) WB of autophagy and apoptosis markers in different groups; (G) quantification analysis (n=3). (H) 
Hoechest33342/PI/Caspase3/7 staining was used to observe the survival of H9C2 cells treated with normoxic condition, H2O2, GDF15-EVs and NC-EVs after H2O2-induced injury. 
Quantitative analysis of (I) viable cells and (J) caspase 3/caspase 7 positive cells between the four groups. (Scale bar =200 μm). *P < 0.05, **P < 0.01, ***P<0.001, ****P < 0.0001.
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under H2O2 injury (Figure 3H–J). At the same time, these effects were more evident in the GDF15-EVs group. Our results showed 
exosomes derived from GDF-15OE-CMs reduced apoptosis and increased autophagy and viability of H9C2 cells.

GDF15-EVs Decreased Infarct Area and Enhanced Cardiac Function in Rats with AMI
To evaluate the cardioprotective effects of exosomal treatments, GDF15-EVs, NC-EVs or PBS (AMI control group) were 
injected into the infarct zone border of rat hearts within 30 minutes after AMI. Masson’s trichrome staining exhibited smaller 
infarct and fibrotic areas at 28 days in the GDF15-EVs group than in the PBS and NC-EVs groups (Figure 4A and B). 
Figure 4C and D show echocardiographic images of rats’ hearts in each group at 14 and 28 days after myocardial infarction, 
respectively. The left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were calculated 
from the images to evaluate left ventricular systolic function. Echocardiography performed at 14 days after MI showed 
a significantly improved LVEF in the GDF15-EVs group (57.08% ± 0.77%), compared to the AMI (25.34% ± 2.51%, P < 
0.01) and NC-EVs groups (39.75% ± 2.34%, P < 0.05) (Figure 4E). In addition, LVFS was significantly higher in the 
GDF15-EVs group (30.98% ± 0.33%), compared to those in all the other groups (AMI: 12.75% ± 0.99%, P < 0.01 vs NC- 
EVs: 20.79% ± 1.18%, P < 0.05) (Figure 4F). At 28 days after MI, the GDF15-EVs group (51.34% ± 2.21%) also showed 
a significant increase in LVEF, compared to the AMI (24.27% ± 2.86%, P < 0.01) and NC-EVs groups (39.03% ± 0.82%, P < 
0.05) (Figure 4G). Echocardiographic data further indicated that the rats injected with GDF15-EVs had a higher LVFS than 
those injected with PBS (27.14% ± 1.37% vs 11.53% ± 1.92%, P < 0.01) and NC-EVs (19.75% ± 0.59%, P < 0.05) 
(Figure 4H). Therefore, at 14 and 28 days after infarction, the LVEF and LVFS of rats in the GDF15-EVs group were 
significantly higher than those in the AMI and NC-EVs groups, indicating preserved systolic function in the former group of 
rats. To further elucidate the effects of GDF15-EVs on post-infarction myocardial remodeling, left ventricular weight (LVW) 
and tibial length were measured. At 28 days after infarction, GDF15-EVs significantly reduced the LVW to tibial length ratio 
(LVW/TIBIA) to attenuate pathological myocardial hypertrophy in rats, compared to those in the NC-EVs or AMI group 
(Supplementary Figure 1). The remaining echocardiographic parameters of the LV for four groups are shown in 
Supplementary Tables 2 and 3. These findings demonstrated that GDF15-EVs could effectively inhibit myocardial fibrosis, 
preserve cardiac function, and reduce ventricular remodeling, compared to the other groups after myocardial infarction.

GDF15-EVs Repressed Inflammatory Infiltration, Cell Apoptosis, and Enhanced 
Angiogenesis in Rats with AMI
Inflammation and subsequent fibrosis are typical pathological events in scar formation after MI. Therefore, we used H&E 
staining to assess the degree of inflammation in the infarcted heart. We observed a significantly decrease in inflammatory 
cell infiltration in the GDF15-EVs group, compared with the AMI group (Figure 5A). Regarding the early inflammatory 
response, the serum levels of IL-6, TNF-α and IL-10 were quantified by enzyme linked immunosorbent assay (ELISA) 
assay on the 3rd day after exosome injection. The results showed that GDF15-EVs significantly reduced IL-6 and TNF-α 
concentrations and obviously increased IL-10 concentration, compared with those in AMI and NC-EVs groups 
(Figure 5B–D). Immunohistochemical results showed that GDF15-EVs or NC-EVs treatment reduced the expression 
of the proinflammatory factor NLRP3 at 28 days after myocardial infarction. Furthermore, GDF15-EVs exhibited 
superior anti-inflammatory properties compared with NC-EVs (Supplementary Figure 2A and B). Overall, these results 
demonstrated that GDF15-EVs could effectively attenuate post-MI inflammation. We then used Sirius red staining to 
assess the post-MI fibrotic area in each group. Sirius red staining at 4 weeks after MI showed a reduction in collagen area 
in the GDF15-EVs group (Figure 5E and F). Immunohistochemistry results showed a higher deposition of brownish- 
yellow granules in the cytoplasm of the GDF15-EVs group (Figure 5G). Image analysis confirmed that the average 
optical density (AOD) of BCL-2 in the GDF15-EVs group (0.1357± 0.011) was increased compared with that in the AMI 
group (0.0697 ± 0.0250, p < 0.001) or NC-EVs group (0.0953 ± 0.0463, P < 0.05) (Figure 5H). This indicated that 
GDF15-EVs treatment exhibited a strong anti-apoptotic ability after infarction. To further reveal the mechanism of this 
exosomal treatment, immunofluorescence with antibodies against CD31 and TUNEL was used to display capillary 
density and cell apoptosis. Four weeks after AMI, the capillary density in the myocardial boarder zone significantly 
increased in the GDF15-EVs group compared with those in PBS and NC groups (Figure 6A and B). TUNEL results 
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showed that the GDF15-EVs group exhibited significantly fewer apoptosis and TUNEL positive rate (Figure 6C and D). 
Furthermore, the expression of Cleaved Caspase-3 was analyzed using immunohistochemistry. After 28 days of MI, 
immunohistochemical detection revealed a significant decline in the protein expression of Cleaved Caspase-3 in the 
GDF15-EVs group (Supplementary Figure 2C and D). The above results suggested that GDF15-EVs exerted their effects 
on myocardial repair by enhancing angiogenesis and improving cell survival.

Figure 4 Intramyocardial injection of GDF15-EVs reduced infarct size and improved cardiac function after AMI. (A) Masson’s trichrome staining was performed to estimate 
the degree of myocardial fibrosis at 4 weeks post-AMI; (B) quantitative analysis for the fibrotic area (n=3) (Scale bar =1000 μm, 200 μm). (C) Representative images of 
echocardiograms of rat hearts at 14 days post-AMI. (D) Representative images of echocardiograms of rat hearts at 28 days post-AMI. Quantitative analysis of (E) LVEF and 
(F) LVFS (n=3 for each group) at 14 days post-AMI. Quantitative analysis of (G) LVEF and (H) LVFS (n=3 for each group) at 28 days post-AMI. *P < 0.05, **P < 0.01.
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Differentially Expressed mRNA in H9C2 Cells After GDF-15 EVs Treatment
In order to explore the molecular mechanisms involved in the cardioprotective effects of GDF15-EVs, mRNAs 
sequencing was performed on GDF15-EVs and NC-EVs treated H9C2 cells. The heatmap indicated that 63 mRNAs 
were up-regulated and 50 were down-regulated in GDF15-EVs, compared with those in NC-EVs treated H9C2 cells. 

Figure 5 Intramyocardial injection of GDF15-EVs inhibited fibrosis and reduced inflammation in infarcted hearts (A) H&E staining at the border zone and infarct zone at 28 
days after MI (scale bar =200 μm). The black arrows indicated the degree of inflammatory cell infiltration in the infarct 28 days post-infarction. (B–D) ELISA analysis of IL-6, 
TNF-α and IL-10 concentrations in serum of MI induced rats after treated by PBS, GDF15-EVs or NC-EVs (n = 3). (E) Representative images of Sirius red staining; (F) 
quantification of the collagen area (n=3) (Scale bar =1000 μm, 200 μm). (G) Representative images of immunohistochemistry analysis for BCL2 expression in different groups 
and (H) quantification analysis of AOD (n=3) (Scale bar =20 μm). Data are shown as the mean ±SEM. *P < 0.05, **P < 0.01, ***p<0.001, ****p<0.0001.

International Journal of Nanomedicine 2024:19                                                                                   https://doi.org/10.2147/IJN.S454277                                                                                                                                                                                                                       

DovePress                                                                                                                       
3305

Dovepress                                                                                                                                                              Zou et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


TERT (Telomerase Reverse Transcriptase) presented the highest mRNA level, which has been demonstrated to inhibit 
apoptosis and promote autophagy in many diseases (Figure 7A–C). Further, these mRNAs were submitted to GO 
enrichment analysis. The enriched terms in molecular function, cellular component, and biological process of these 
mRNAs are shown in Figure 7D.25 It has been demonstrated that in TERT-deficient mice, telomeres are significantly 
shortened, which results in upregulation of P53 and downregulation of Ki67, both associated with increased apoptosis, 
decreased proliferation and cellular hypertrophy in cardiomyocytes, and ultimately left ventricular enlargement, ven-
tricular wall thinning, and impaired cardiac function.26–28

Figure 6 GDF15-EVs promoted angiogenesis and reduced apoptosis in a rat AMI model in vivo. (A) Representative images of CD31 positively stained capillaries; (B) 
quantification analysis (n=3) (Scale bar = 200 μm) (C) Representative images of TUNEL staining at the border zone; (D) quantification analysis. (n=3) (Scale bar = 200 μm). 
Data are shown as the mean ±SEM. *P < 0.05, **P < 0.01, ***p<0.001, ****p<0.0001.
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Silencing TERT Impaired the Protective Effects of GDF15-EVs on H2O2-Injured H9C2 
Cells
Next, whether TERT mediates the cardioprotective effect of GDF15-EVs was further verified. GDF15-EVs and NC-EVs 
were added to H2O2-injured H9C2 cells, respectively. We then tested the protein levels of TERT in H9C2 cells treated 
with GDF15-EVs and NC-EVs. GDF15-EVs significantly increased the protein level of TERT in H2O2-injured H9C2 
cells, compared to that in the NC group (Figure 8A and B). To further identify the signaling pathways responsible for the 

Figure 7 Differentially expressed mRNAs between GDF15-EVs and NC-EVs treated cardiomyocytes. (A) Heatmap of upregulated and downregulated mRNAs (red 
represents high expression and purple represents low expression) between GDF15-EVs and NC-EVs group. (B) Volcano plot showing the significantly differentially 
expressed mRNAs (2-fold change and p<0.05 as the threshold) between GDF15-EVs and NC-EVs groups. (C) The overlap of upregulated mRNAs in GDF15-EVs group 
according to mRNA sequencing analysis. (D) GO enrichments of mRNAs in molecular function, cellular component, biological process.
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effect of GDF15-EVs, we incubated H9C2 cells with GDF15-EVs and NC-EVs under H2O2. We found enhancement of 
AMPK protein phosphorylation, which is an important link in cell autophagy (Figure 8C).29,30

To confirm the essential role of TERT in the cardioprotective function of GDF15-EVs, we performed a loss-of-function study 
of TERT in H9C2 cells under H2O2. H9C2 cells were transfected with TERT siRNA, and their function was quantified by qRT- 

Figure 8 Silencing TERT impaired the protective effects of GDF15-EVs in H2O2-injured cardiomyocytes. (A) WB of TERT protein, AMPK and P-AMPK protein in GDF15- 
EVs and NC-EVs treated groups and (B and C) quantification analysis (n=3). (D) qRT-PCR validation of TERT mRNA levels in GDF15-EVs treated group and cardiomyocytes 
transfected with si-TERT (n=3). (E) WB of TERT, AMPK and p-AMPK protein in cells under different treatments and (F and G) quantification analysis (n=3). (H) Cell 
apoptosis was analyzed by TUNEL assay in GDF15-EVs and siRNA groups and (I) quantification analysis (n=3). (Scale bar = 200 μm). (J) Cell viability was analyzed by CCK8 
assay (n=6). (K) The autophagy in H9C2 cells was observed with TEM and (L) quantification analysis. The black arrows point to autophagosomal structures. (Scale bar = 20 
μm). *P < 0.05, **P < 0.01, ***p<0.001, ****P < 0.0001.
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PCR. After transfection, TERT mRNA level in H9C2 cells was significantly lower than that in the GDF15-EVs treatment group 
(Figure 8D). WB also verified the same result at the protein level, and we observed a lower level of AMPK phosphorylation after 
cotransfection with siRNA, suggesting that the AMPK pathway was suppressed in the GDF15-EVs treatment group (Figure 8E– 
G). In addition, TUNEL assay suggested that silencing TERT expression reversed the antiapoptotic effect of GDF15-EVs, as 
evidenced by a significant increase in dead cells (Figure 8H and I). Meanwhile, CCK8 assay demonstrated that the increase in cell 
viability after GDF15-EVs treatment was attenuated by cotransfection with TERT siRNA (Figure 8J). Furthermore, the 
electronic microscopy reported a decreased expression of autophagosomes in the siRNA group, compared to that in the GDF15- 
EVs group (Figure 8K and L). Thus, silencing TERT blocked the effect of GDF15-EVs in promoting autophagy after injury. 
Taken together, all our experimental results suggest that the exosomes secreted from the GDF-15OE-CMs might upregulate the 
expression of TERT to activate the AMPK pathway, thus promoting the repair in H2O2-injured H9C2 cells (Figure 9).

Discussion
AMI can subject cardiomyocytes to apoptosis and necrosis, resulting in irreversible damage to the myocardium. 
Although some cardiomyocytes may survive, the heart has lost its capability of supplying sufficient blood across the 
whole body.31,32 Given the non-renewable characteristics of the myocardium, myocardial repair remains a challenge. 
Cardiomyocytes transplantation has been trialed, but few cells survive, even followed by intense immune responses. 
Exosomes are considered as new candidate therapies that play an important role in intercellular and tissue-level 
communication in stem cell therapy for acute myocardial infarction while overcoming some of the limitations of stem 
cell therapy.24,33,34

In recent years, more and more studies have been conducted on exosomes and their potential therapeutic applications. 
Many publications have demonstrated that exosomes can attenuate injury in animal models of AMI and in cell culture 
models. Literature data have emphasized that stem cell-derived exosomes can improve AMI in preclinical models.35 

Therefore, exosome-based therapy has been proposed as a novel therapeutic option in CVDs. The pre-clinical studies 
conducted to date are concerned with the usage of exosome-like vesicles for drug delivery to treat several potential 
diseases, such as different types of cancers, cardiovascular diseases, Parkinson’s and Alzheimer’s disease.36 EVs have 
been used in clinical studies to target drug delivery of cancer therapies but never applied to the field of 
cardioprotection.37 Many researchers, including our team, are investigating the effectiveness of exosomes in animal 
models of acute myocardial infarction. Studies have shown that exosomes are involved in many cardiovascular 
physiological and pathological processes. These studies could then address many of the issues in preclinical exosome 
therapy (ie, determination of the cellular source, route of administration, exosome dosage, duration of treatment, and 
post-infarction follow-up).

Numerous studies have demonstrated that cardioprotective effects of cardiomyocytes rely on the transfer of exosome- 
packaged bioactive proteins, RNAs, and lipids.38,39 Exosomes have retained the biological activity of their origin cells, 

Figure 9 Schematic showed the working model of this study. EVs released by cardiomyocytes with GDF-15 overexpression inhibited apoptosis and promote autophagy of 
H2O2-injured cardiomyocytes via enhanced expression of TERT mRNA.

International Journal of Nanomedicine 2024:19                                                                                   https://doi.org/10.2147/IJN.S454277                                                                                                                                                                                                                       

DovePress                                                                                                                       
3309

Dovepress                                                                                                                                                              Zou et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


but also demonstrate higher immune tolerance and proliferation stability, thus offering them safety and reproducibility in 
clinical use.40,41 GDF-15, a stress protein, has been extensively studied in recent years as a cardioprotective factor.42 

Under normal conditions, GDF-15 hide their beneficial effects; but under stressful conditions, GDF-15 is increasingly 
secreted to repair the myocardium.43,44 Then, we speculated that the paracrine secretion of GDF-15 from H9C2 cells 
might be boosted for myocardial repair.

In the present study, in vitro experiments demonstrated that exosomes with GDF-15 overexpression exerted 
a protective effect against myocardial infarction, by enhancing cell autophagy and viability and inhibiting apoptosis 
under H2O2. In vivo experiments further confirmed that GDF15-EVs improved cardiac function in a post-infarction rat 
model, by reducing fibrosis size and inflammatory response, promoting angiogenesis, and inhibiting myocardial apop-
tosis. In this study, we utilized targeted delivery of GDF15 by extracellular vesicles and evaluated its feasibility and 
efficacy for the treatment of ischemic heart disease. In addition, mRNA sequencing showed upregulation of TERT 
mRNA, suggesting its importance in the cardioprotective effects of GDF15-EVs. Recent studies have found that TERT 
can be expressed in nonproliferative or low-proliferative tissues, such as the heart and vascular system. Cardiomyocyte 
apoptosis was significantly reduced in transgenic mice overexpressing TERT. Moreover, by specifically targeting the 
TERT overexpression vector in cardiomyocytes, the area of myocardial infarction could be reduced and the survival rate 
of mice could be improved, which are evidences that TERT has a protective effect in the cardiovascular system. Finally, 
we demonstrated that delivery of GDF15 through extracellular vesicles upregulated TERT mRNA to activate the AMPK 
signaling pathway, thereby promoting cardiac repair in H9C2 cells.

Myocardial ischemia often causes myocardial hypertrophy, fibrosis, inflammation, and persistent stiffness.45 

Telomeres are located at the ends of eukaryotic chromosomes and help maintain their integrity.46,47 Telomerase contains 
telomerase reverse transcriptase (TERT) and its RNA component (TERC).48 As cells divide, telomeres shorten progres-
sively till to their function loss and genomic instability, resulting in cellular senescence or apoptosis, such as that in 
cardiovascular disease.25,49 Telomere abnormalities can decrease myocardial contractility, upregulate pro-apoptotic 
transcription factors, facilitate cellular hypertrophy and senescence.50 Studies have shown that TERT in mitochondria 
improves mitochondrial function to reduce cell death in the damaged region after myocardial injury, thus promoting the 
recovery of cardiac function.51–53 It has also been found that the HIF-1α/TERT axis can induce autophagy through the 
mTOR pathway under hypoxic stress conditions.54,55 There is growing evidence that autophagic dysfunction plays a key 
role in myocardial ischemic injury. Previous studies provided limited insights into the effects of the cardioprotective 
ability of GDF15 acting on downstream proteins, which prompted us to use sequencing in our study to investigate the 
effects of downstream proteins after GDF15-EVs treatment. The results showed that TERT was significantly upregulated. 
Therefore, in the present study, we wanted to further validate the specific mechanism by which TERT exerts its ability to 
promote myocardial repair in H9C2 cells treated with GDF-15 overexpressing exosomes.

As with the downstream mechanism of TERT mRNA in GDF-15 EVs treatment H9C2 cells, we further uncovered 
that TERT could activate the AMPK signaling pathway, which is known to be widely involved in cell autophagy and 
apoptosis. This downstream mechanism implies that GDF15-EVs can play a role in myocardial repair by inhibiting 
apoptosis as well as enhancing autophagy. At the same time, our study found that the protective effect of GDF15-EVs 
against H2O2-induced myocardial injury was significantly attenuated after TERT mRNA silencing, supporting that 
GDF15-EVs enable myocardial repair by upregulating TERT mRNA and stimulating the AMPK signaling pathway. 
This method provides new insight into the clinical translation of exosome-based therapy for AMI.

Stem cell therapy for myocardial infarction has attracted unprecedent attention over decades. Bone marrow mesench-
ymal stem cells (BMSCs) have been introduced into myocardial infarction transplantation therapy, due to their unique 
properties, such as easy accessibility, multidirectional differentiation potential and absence of immune response. 
Nevertheless, in the ischemic cardiac microenvironment, the cardiac cells have a poor survival, thus limiting the 
therapeutic efficacy of bone marrow mesenchymal stem cells, as well as prompting the exploration for mechanisms of 
exosomes in cardiac repair and new and effective approaches.56 Exosomes, extracellular vesicles secreted by a variety of 
cells, act as an important carrier for the crosstalk between cells. Compared with cell-based transplantation therapy, 
exosomal treatment, as an emerging cell-free therapy, has the advantages of low immunogenicity, biodegradability, high 
tolerance, high stability and non-toxicity.57,58
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Our previous studies have shown that exosomes derived from mesenchymal stem cells can protect myocardium from 
heart injury.59 Recent studies have described the miRNA profiles in exosomes derived from of human induced 
pluripotent stem cells (iPSCs) and their differentiated cardiomyocytes (iPSCs-CMs).60 They have found that the 
exosomes secreted by iPSCs-CMs have different characteristics. For example, miR-1-3p, which is essential for cardiac 
development and pathology, is only found in the exosomes from iPSC-CMs. The exosomes from iPSCs-CMs are also 
rich in miR-133a-3p, miR-208b-3p and other molecules that have been clarified to have protective effects on cardiac 
function. It has also been confirmed in another study that exosomes from iPSCs-CMs can promote cardiac repair after 
AMI in the swine.61 Therefore, we speculated that exosomes produced by H9C2 cells may play specific roles in cardiac 
repair. Our current study confirmed that exosomes from GDF15 engineered H9C2 cells could exert cardioprotective 
effects by inhibiting the apoptosis and promoting the autophagy of cardiac cells. In future studies, iPSCs-CMs may be 
selected as mother cells for exosomes used for designing autologous and allogenic therapies.

Nevertheless, there are still several limitations in this study. First, the sustainability of exosome treatment was not 
verified, and the duration of myocardial protection by GDF15-EVs could be prolonged by some bioengineering methods 
in the subsequent experiments. Second, whether the cardioprotective effects by TERT will cause tumor and inflammatory 
tendency in other organ sites and whether there are some unpredictable toxic side effects need to be explored in the next 
experiments.47 Finally, the cardioprotective effects of GDF15-EVs need to be further verified by large-size animal 
experiments and clinic studies. In addition, the safety of GDF15-EVs treatments should be trialed before administration 
in patients with heart injury.

Conclusion
GDF15-EVs protect against myocardial injury by upregulating the expression of TERT and activating the AMPK 
signaling pathway. GDF15-EVs could be employed to design a promising therapy for AMI.
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