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Abstract: Mechanical strength of nanofiber scaffolds formed by the self-assembling peptide 

RADA16-I or its derivatives is not very good and limits their application. To address this 

problem, we inserted spidroin uncrystalline motifs, which confer incomparable elasticity 

and hydrophobicity to spider silk GGAGGS or GPGGY, into the C-terminus of RADA16-I 

to newly design two peptides: R3 (n-RADARADARADARADA-GGAGGS-c) and R4 

(n-RADARADARADARADA-GPGGY-c), and then observed the effect of these motifs 

on biophysical properties of the peptide. Atomic force microscopy, transmitting electron 

microscopy, and circular dichroism spectroscopy confirm that R3 and R4 display β-sheet structure 

and self-assemble into long nanofibers. Compared with R3, the β-sheet structure and nanofibers 

formed by R4 are more stable; they change to random coil and unordered aggregation at higher 

temperature. Rheology measurements indicate that novel peptides form hydrogel when induced 

by DMEM, and the storage modulus of R3 and R4 hydrogel is 0.5 times and 3 times higher 

than that of RADA16-I, respectively. Furthermore, R4 hydrogel remarkably promotes growth 

of liver cell L02 and liver cancer cell SMCC7721 compared with 2D culture, determined by 

MTT assay. Novel peptides still have potential as hydrophobic drug carriers; they can stabilize 

pyrene microcrystals in aqueous solution and deliver this into a lipophilic environment, identified 

by fluorescence emission spectra. Altogether, the spider fibroin motif GPGGY most effectively 

enhances mechanical strength and hydrophobicity of the peptide. This study provides a new 

method in the design of nanobiomaterials and helps us to understand the role of the amino acid 

sequence in nanofiber formation.

Keywords: uncrystalline motif, self-assembling peptide, β-sheet, nanofiber, mechanical strength, 

hydrophobic compound carrier

Introduction
Recently, the self-assembling peptide has attracted much attention, not only because 

of its scientific importance,1–3 but also because of its potential applications in tissue 

engineering, regenerative medicine,4–6 drug delivery,7,8 and nanotechnology.9–11 For 

example, the 16-residue peptide, RADARADARADARADA (RADA16-I) is able to 

self-assemble into well-ordered nanofibers and further form scaffolds, composed of 

interwoven nanofibers (∼10 nm in diameter) with ∼100 nm mesh pores and over 99% 

water content. The scaffold has a three-dimensional structure similar to naturally occur-

ring extracellular matrix (ECM), and has been reported to support cell attachment, 

proliferation, and differentiation,12–15 and act as an effective hemostatic medicine.16

Furthermore, some self-assembling peptides, directly incorporating various func-

tional motifs into RADA16-I, are designed to mimic particular ECM. These motifs 
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include collagen (GGDGEA),17 laminin (GGPDSGR),18 

fibronectin,19 osteopontin and osteogenic peptides,20 and 

myelo-regulatory peptides.21 These functionalized peptides 

also self-assemble into three-dimensional nanofiber scaffolds. 

However, the mechanical strength of these scaffolds is not 

very good and limits their application in tissue regeneration. 

There is urgent need to improve the physical performance 

of these nanomaterials.

As we know, the self-assembly process is ubiquitous 

in nature. One well-known example is silk assembly. The 

monomeric fibroin is only about one micrometer in length, 

but silk is over two kilometers in length. Spiders can pro-

duce silks with tremendous strength and flexibility through 

assembling spidroin building blocks.22 Spidroin contains 

highly repetitive amino acid motifs such as poly A, poly GA, 

GPGGX, and GGX (X: Y, A, S etc).23–25 Poly A and poly GA 

segments generally exhibit β-sheet structure and constitute 

the crystalline fraction of the protein. They are believed to 

be mainly responsible for the high tensile strength of spider 

silk. However, GPGGX and GGX motifs exist in the uncrys-

talline region, which can be elongated and recover. This 

region contributes to the incomparable elasticity, adhesion, 

and hydrophobicity of the fibers.26–28

In the present study, we integrated RADA16-I with 

spider fibroin uncrystalline motifs GPGGY and GGAGGS, 

respectively, and studied the mechanical strength of the new 

peptides, and their potential as hydrophobic drug carriers. The 

spider fibroin motif GPGGY enhances the storage modulus 

and hydrophobicity of the scaffolds effectively, and promotes 

cell growth notably.

Materials and methods
Materials
The peptides RADA16-I, R3, and R4 (theoretical 

mass = 1713, 2099 and 2144, respectively) were purchased 

from Shanghai Biotech Bioscience and Technology Co, Ltd, 

Shanghai, China. The N-terminus and C-terminus of peptides 

were protected by acetyl and amino groups, respectively. 

Peptide solutions at 6  mM or 1% (w/v) were prepared 

with ddH
2
O and diluted to different concentrations for 

further characterization before use. The human liver cell line 

L02 and liver cancer cell line SMCC7721 were purchased 

from the American Type Culture Collection (Manassas, 

VA) and cultivated in Dulbecco’s Modified Eagle Medium 

(DMEM) (Gibco, Rockville, MD) supplemented with 

10% fetal bovine serum (Invitrogen, Carlsbad, CA). Pyrene 

(99%) (Sigma, St, Louis, MO) was recrystallized twice from 

ethanol before experimentation.

Projection formulas of peptides
To obtain projection formulas of the peptides, the software 

ICM-Pro (v3.4; Molsoft LLC, San Diego, CA) was used. 

N-Terminus and C-Terminus of peptides were set to “nter” 

and “cooh”, respectively.

Atomic force microscopy (AFM)
An aliquot of 1 µL peptide solution (100 µΜ) was placed 

on a freshly cleaved mica sheet and observed with AFM 

(SPI4000 Probe Station and SPA-400 SPM Unit, Seiko 

Instruments Inc, Chiba, Japan). Silicon tips (Si-DF20, 

Olympus Corp, Tokyo, Japan) with a cantilever length 

of 200  µm and a spring constant of 12  N/m were used. 

Typical scan parameters were as follows: Amplitude: ∼1 V, 

integral gain: ∼0.25 V, proportional gain: ∼0.03 V, and scan 

speed: 0.83–1 Hz. The topographic images were recorded 

with 512 × 512 pixel resolution, in which the brightness 

of morphology increased with height. The real widths 

of the fibers were obtained by the following equation: 

W = W
obs

 - 2(2R
t
H–H2)1/2, where R

t
 is the radius of the 

AFM tip and H is the observed height.29

Transmission electron microscopy (TEM)
An aliquot of about 6 µL peptide solution (100 µΜ) was 

placed on the surface of a glass plate. A polyvinyl formal 

coated copper grid was dipped in the solution for about 

5  seconds and then absorbed with filter paper to remove 

superfluous liquid. Then, a peptide-treated copper grid was 

tainted with 1% (w/v, pH = 6.5) phosphotungstic acid for 

negative staining. After air-drying, the bright-field images 

were taken with TEM (H-600, Hitachi Ltd, Tokyo, Japan) 

operating at 100 kV.

Circular dichroism (CD) spectroscopy
CD spectroscopy was performed with an AVIV Model 

400 spectrometer (Aviv Biomedical Inc, Lakewood, NJ). 

The concentration of the samples was 100 µΜ. Readings 

were taken at 1 nm interval wavelengths from 190–260 nm. 

CD data were corrected by conversion to mean residue ellip-

ticity to account for molecular weight and concentration. 

In order to further investigate the effects of different 

uncrystalline motifs on the secondary structure of peptides, 

the software CDPro (Colorado State University, Fort 

Collins, CO) was applied to estimate secondary structure 

contents. The peptides’ secondary structure fractions were 

calculated using the CONTINLL algorithm with compari-

son to a set of selected reference proteins (IBasis7 [SDP48], 

λ = 240 -190 nm).
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Rheology
An aliquot of 100 µL, 3 mM peptide solution was placed in a 

24-well plate. 600 µL DMEM medium or phosphate buffered 

saline was added around the peptides. About 15 hours later, 

the mechanical properties of the hydrogel were identified with 

a rheometer (AR2000, TA Instruments Inc, New Castle, DE). 

A 20 mm diameter 1° stainless steel cone with a 25 µm trun-

cation was used and covered with a split solvent trap cover 

to protect solvent from volatilization. The elastic modulus 

(G′) as a function of time was measured with a frequency of 

1 rad/s and constant strain of 0.5% at 25°C.

MTT assay
To monitor the influence of the modified peptides on cell 

viability, we applied MTT assay. 1.5 mM peptide solution 

was mixed with an equal volume of L02 or SMCC7721 cell 

suspension (1  ×  105/mL), and 100  µL of the mixture per 

well was quickly inoculated into a 96-well dish. After 1, 2, 

and 3 days, cell viability was assessed with an Easy Reader 

340 AT (SLT Lab Instruments GmbH, Salzburg, Austria). 

Absorbance was recorded at 570 nm. The Student’s t-test was 

performed and a 2D culture was used as a control. P , 0.05 

was considered statistically significant.

Preparation of peptide-pyrene colloidal 
suspensions
Pyrene (PY) (2.47 mM) and peptide R4 or R3 (100 µM) were 

added into a vial. The samples were kept on a magnetic stirrer 

until equilibrium was reached. The Peptide-PY solution was 

deemed at equilibrium when its fluorescence spectrum did 

not change in 24 hours.

Liposome preparation and concentration 
determination
Phosphatidylcholine (PC) (1.4 g) was dissolved in chloroform 

to produce a PC thin film,30 and the film was subsequently 

resuspended in buffer A (25 mM Tris-HCl, 0.2 mM EDTA, 

pH 7.4) solution. The supernatant was filtered by 0.44 µm and 

0.22 µm membrane filters in turn. The mass of the liposome 

was the difference between the mass of vesicle solution and 

that of buffer A, and the average concentration of liposome 

was 5.185 mM. It was diluted to 1.037 mM with buffer A 

before use.

Steady-state fluorescence measurements
Fluorescence spectra were recorded on a Hitachi F-7000 

spectrofluorometer with a stir accessory. Excitation and 

emission slits were set to 10 nm and 2.5 nm, respectively. 

The excitation wavelength was set to 336 nm, and the emis-

sion fluorescence spectra were scanned from 350 nm – 650 nm 

with scan speed of 1200 nm/min.

Results
CD measurement of peptides R3 and R4
The projection formulas of peptides RADA16-I, R3, and R4 

are shown in Figure 1. The 22-residue peptide R3 and the 

Figure 1 Projection formula of peptides RADA16-I (R), R3, and R4.
Notes: Carbon atoms are white, oxygen atoms are red, nitrogen atoms are blue, and hydrogen atoms are gray. In this conformation, for RADA16-I, all the lysine and aspartic 
acid side chains face in one direction, and all alanine side chains face in the other direction to create two distinct faces: the hydrophobic and the hydrophilic. There is a turn 
at proline residue for R4.
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21-residue peptide R4 are partially ionic-complementary, 

constructed by adding motifs GGAGGS and GPGGY to 

the C-terminus of the fully ionic-complementary peptide, 

RADA16-I. For peptide R4, there is a turn occurring at the 

proline site.

CD measurement of these new peptides demonstrates 

that R3 and R4 mainly form β-sheet structure at 25°C, and 

that the β-sheet content of R3 is lower than that of R4 and 

RADA16-I (Figure  2 and Table  1). Peptide R4 exhibits a 

typical β-sheet structure (minimum at 215 nm, maximum 

at 197 nm) (Figure 2), with 42.8% β-sheet content (Table 1; 

S (r) and S (d)) and 28.4% unordered structure (Table 1, 

Unrd). The CD spectra of R4 are similar to that of RADA16-I. 

However, the CD spectrum of peptide R3 becomes a wide 

valley at 190–240 nm, and the positive peak at about 197 nm 

disappears (Figure 2). The β-sheet content of R3 decreases 

to 37.8% (Table 1; S (r) + S (d)), and the unordered structure 

increases to about 40% (Table 1, Unrd). This suggests that the 

spidroin uncrystalline motif GPGGY is more helpful for form-

ing β-sheet structure in peptides than the motif GGAGGS.

Self-assembling morphology of peptides 
R3 and R4
AFM and TEM measurements show that the peptides R3 

and R4 are able to self-assemble into nanofibers at 25°C 

(Figure 3). The RADA16-I nanofibers (Figure 3A and B) are 

about 877.5 ± 172 nm in length, 19.8 ± 0.7 nm in width, and 

1.1 ± 0.06 nm in height; those of R4 (Figure 3C and D) are 

about 884.4 ± 161 nm in length, 19.4 ± 0.68 nm in width, and 

1.1 ± 0.06 nm in height; and those of R3 (Figure 3E and F) 

are about 871.2 ± 197.05 nm in length, 18.6 ± 0.86 nm in 

width, and 1.1 ± 0.07 nm in height. This suggests that nanofi-

bers formed by peptides R3, R4, and RADA16-I are similar. 

However, peptide R3 also forms much smaller aggregates 
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Figure 2 CD spectra of peptides RADA16-I, R3 and R4 (100 µΜ) in Mill-Q water.
Notes: All the CD data were recorded at 25°C after incubation overnight at 4°C. Peptides RADA16-I (black) and R4 (blue) exhibit a typical β-sheet structure, while R3 (red) 
displays β-sheet structure that does not have positive peak.

Table 1 Estimated structure fractions of different peptides

Peptide (100 μM) RMSD/NRMSD Secondary structure fractions (%)*

H (r) H (d) S (r) S (d) Turn Unrd

R3 0.029/0.021 0.5 3.1 25.0 12.7 18.7 40.0
R4 0.070/0.043 4.0 3.5 28.9 13.9 21.3 28.4
RADA16-I 0.151/0.106 2.1 2.4 31.5 10.6 20.8 32.6

Note: *Including 6 parts second structures.
Abbreviations: H (r), regular α-helix; H (d), distorted α-helix; S (r), regular β-strand; S (d), distorted β-strand (a partial but far-from-complete distortion of the regular 
β-strand, due to lack of some hydrogen bonds); Turn, β-turn structure; Unrd, unordered structure.
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(Figure  3E and F, black arrows). This may be due to the 

higher unordered structure content of R3.

Stability of self-assembling peptides  
R3 and R4
In order to further investigate the effect of motifs GPGGY 

and GGAGGS on β-sheet structure and self-assembly of pep-

tides R3 and R4, we heated the peptide solutions up to 90°C 

and subsequently detected their secondary structure and self-

assembling morphology using CD (Figure 4, Tables 2 and 3) 

and AFM (Figure 5).

CD measurement illustrates that an increase in tempera-

ture results in a structural transition from β-sheet to unordered 

structure, and that the β-sheet structure of R4 is more stable 

than that of R3. Though the β-sheet structure of R3 remains 

stable below 50°C (30.2%) (Table 2; S (r) and S (d)), when 

heated up to 70°C, the β-sheet content of R3 decreases to 

22.2%, and the unordered structure rapidly increases to 

63.4% (Figure 4A and Table 2). However, R4 still mainly 

forms β-sheet structure at 70°C (Figure 4B and Table 3).

The temperature-dependent self-assembling behavior of 

peptides R3 and R4 shows that the nanostructure of R4 is 

also more stable than that of R3 (Figure 5). At 50°C, both 

R3 and R4 form nanofibers that are about 1000 nm in length 

(Figure 5A and D). However, when heated to 60°C, peptide 

R3 almost completely self-assembles into unordered aggrega-

tion (Figure 5B), while peptide R4 forms nanofibers even at 

70°C (Figure 5E). When heated to 90°C, the self-assembled 

structure of R4 changes into aggregates (Figure 5F). Previous 

study31 has shown that RADA16-I exhibits β-sheet structure 

and forms unordered aggregates at 70°C, indicating that the 

nanostructure of R4 is more stable than that of RADA16-I.

Mechanical strength of peptide hydrogel
Since spidroin uncrystalline motifs are critical to the notable 

elasticity of spider fibers, we examined the effect of the 

Figure 3 The typical AFM (A, C and E) and TEM (B, D and F) images of 100 µM peptides RADA16-I (A and B), R4 (C and D) and R3 (E and F).
Notes: RADA16-I, R3, and R4 self-assemble into nanofibers that are about 1000 nm in length. Black arrows in E and F indicate aggregates.
Abbreviations: AFM, Atomic force microscopy; TEM, Transmission electron microscopy.
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Notes: A: CD spectra of R3 from 25°C to 70°C. B: CD spectra of R4 from 25°C 
to 90°C. Peptide R3 mainly forms unordered structure at 50°C, while peptide R4 
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motifs GPGGY and GGAGGS on mechanical strength of the 

peptides. Rheology measurement shows that, though they all 

have low mechanical strength in water (Millipore, Billerica, 

MA), the storage modulus of peptide R4 (Figure  6B) is 

enhanced more than that of peptides R3 and RADA16-I 

when exposed to DMEM medium (Figure 6A). The storage 

modulus of RADA16-I, R3, and R4 peptide solution is about 

7 Pa, 10 Pa, and 14 Pa, respectively (Figure 6A). However, 

when exposed to DMEM medium, all three peptides form 

hydrogel, and their storage modulus increases to 4000 Pa, 

6000  Pa, and 17000  Pa, respectively (Figure  6B). R4 

hydrogel is 2 times stronger than R3 hydrogel, and 3 times 

stronger than RADA16-I hydrogel. The uncrystalline motif 

GPGGY remarkably improves the mechanical strength of 

the peptide.

Furthermore, MTT assay (Figure 7) demonstrates that 

the modified peptides R4 and R3 are not only noncytotoxic 

but also promote cell growth. Compared with 2D culture, 

R4 hydrogel significantly enhances proliferation of liver 

cells L02 (Figure  7A) and liver cancer cells SMCC7721 

(Figure  7B). The promoting role of peptide R3 is not as 

remarkable as that of R4. Maybe this is because the mechani-

cal strength of R4 is much greater.

Peptides R3 and R4 as potential carriers 
of hydrophobic compounds
Spidroin uncrystalline motifs GGAGGS and GPGGY are 

hydrophobic. Therefore, the self-assembling peptides R3 

and R4 are more hydrophobic and may be able to pack 

hydrophobic compounds and transfer them into liposome 

vesicles. We employed PY as a hydrophobic compound 

model, and PC vesicles as cell mimics. In the presence of pep-

tides R3 or R4, R3-PY (Figure 8-2) and R4-PY (Figure 8-3) 

solutions form stable colloidal suspensions after being stirred 

for 24  hours, while the control sample without peptide 

remains transparent, with PY crystals floating on the top or 

precipitating at the bottom (Figure 8-1). The formation of 

colloidal suspension suggests that PY is stabilized in water 

via the peptides.

The emission fluorescence spectra of PY (Figure  9) 

demonstrate that PY encapsulated with peptide R4 can be 

transferred into PC vesicles. PY crystals and the R4-PY 

solution (Figure 9A) only exhibit pyrene excimer emission 

(emission band at 470 nm) without visible monomer emis-

sion (five emission peaks between 370  nm and 400  nm), 

while PY in liposome and the R4-PY solution mixed with 

the liposome (Figure  9B) display both pyrene monomer 

Table 2 Estimated structure fractions of R3 after thermal denaturation

Temperature (°C) RMSD/NRMSD Secondary structure fractions (%)*

H (r) H (d) S (r) S (d) Turn Unrd

25 0.028/0.031 2.2 4.4 23.3 12.2 19.9 38.0
37 0.018/0.021 2.0 4.3 22.9 12.1 20.0 38.8
50 0.022/0.027 1.7 4.1 22.4 11.6 18.6 41.6
60 0.026/0.025 0.8 2.9 17.7 9.6 14.9 54.1
70 0.045/0.032 0.4 2.4 14.5 7.8 11.6 63.4

Note: *Including 6 parts second structures.
Abbreviations: H (r), regular α-helix; H (d), distorted α-helix; S (r), regular β-strand; S (d), distorted β-strand (a partial but far-from-complete distortion of the regular 
β-strand, due to lack of some hydrogen bonds); Turn, β-turn structure; Unrd, unordered structure.

Table 3 Estimated structure fractions of R4 after thermal denaturation

Temperature (°C) RMSD/NRMSD Secondary structure fractions (%)*

H (r) H (d) S (r) S (d) Turn Unrd

25 0.352/0.144 0.0 6.9 38.4 15.8 15.2 23.7
37 0.340/0.149 0.0 6.9 40.9 15.9 14.0 22.4
50 0.043/0.021 5.6 3.7 31.6 15.3 24.8 19.0
60 0.024/0.018 4.6 4.9 25.3 13.3 22.7 29.1
70 0.015/0.015 2.5 4.3 19.7 10.8 18.0 44.6
80 0.023/0.020 1.3 2.7 15.0   8.8 14.8 57.4
90 0.033/0.024 0.5 2.6 14.0   8.0 12.5 62.4

Note: *Including 6 parts second structures.
Abbreviations: H (r), regular α-helix; H (d), distorted α-helix; S (r), regular β-strand; S (d), distorted β-strand (a partial but far-from-complete distortion of the regular 
β-strand, due to lack of some hydrogen bonds); Turn, β-turn structure; Unrd, unordered structure.
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Figure 8 Pyrene (2.47 mM) in water (1) and with R3 (2, 100 µM), or R4 (3, 100 µM) 
in aqueous solution after stirring for 24 hours.
Abbreviations: PY, (pyrene); PC, phosphatidylcholine vesicles.

Figure 5 AFM images of 100 µM peptides R3 (A–C) and R4 (D–F) after thermal denaturation.
Note: R3 undergoes morphological changes from nanofibers (A) to aggregations (C) at 60°C, while R4 displays this change at 90°C.
Abbreviation: AFM, Atomic force microscopy.
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and excimer emission. The ratio of intensities of the first 

peak (I
1
, 373 nm) and the third peak (I

3
, 385 nm) of pyrene 

monomer (I
1
/I

3
) for PY in R4-PY solution mixed with the 

liposome is 1.16,32–34 indicating that PY was released from the 

peptide encapsulation and transferred into the hydrophobic 

lipid bilayer. Similar data were acquired with R3-PY solu-

tion (data not shown).

Discussion
In this study, we found that the new peptide R4 integrated 

with spider fibroin uncrystalline motif GPGGY tends to 

form more stable β-sheet structure and nanofibers com-

pared with the peptide R3  integrated with GGAGGS. 

Mechanical strength of R4 hydrogel is much higher than that 

of RADA16-I and R3 hydrogels, and promotes cell growth 

remarkably. Furthermore, these peptides can stabilize PY 

in aqueous solutions and deliver it to liposome vesicles. 

Altogether, spider fibroin motif GPGGY effectively enhances 

mechanical strength and hydrophobicity of the peptide.

Fourteen years ago, peptide RADA16-I was first designed 

and synthesized by mimicking the amphiphilic segment 

EAEAKAKAEAEAKAKA (EAKA16-II) of the naturally 

occurring yeast protein, Zuotin,35 and its nanofiber scaf-

fold was then applied to 3D cell culture. Consequently, 

several functionalized self-assembling peptides were 

designed for particular cell growth, such as (RADA16-I)-

SKPPTSS (PFSSTKT) (bone marrow homing peptide 

motif), which were used for neural stem cell proliferation and 

differentiation.15 However, the normal microenvironment of 

cells is complex, and composition and strength of the extra-

cellular matrix is different for different cell types. Previous 

work has shown that chondrocytes can grow in KLD12 

hydrogel but not in RADA16-I scaffolds, which have lower 

strength.36 With addition of the spider fibroin uncrystalline 

motif GPGGY, the mechanical strength of the hydrogel is 

enhanced significantly, indicating that R4 hydrogel may also 

foster chondrocyte division – except for liver cells – and can 

be used to promote cartilage tissue repair.

Affinitive aggregation among ionic bridge bonds that 

form between salt ions in the DMEM medium and charged 

side chains of peptides, and affinity among uncrystalline 

hydrophobic motifs may be the main contributors to the 

mechanical strength of peptides. Due to the hydrophobic 

motifs, the mechanical strength of R3 and R4 hydrogels 

is greater than that of RADA16-I hydrogel. Moreover, the 

rigid turn of proline in motif GPGGY may prevent peptide 

R4 from forming unordered structure, and the hydrophobic 

phenyl ring of tyrosine may promote affinitive aggregation 

of R4. Therefore, the self-assembling peptide R4 forms more 

stable nanofibers and displays greater mechanical strength 

than the peptides R3 and RADA16-I.

Previous study has reported that the amphiphilic self-

assembling peptide EAEAKAKAEAEAKAKA (EAK16-II) 

can encapsulate and stabilize hydrophobic compounds in 

aqueous solution and deliver them into liposome vesicles.7 

In this process, the hydrophobic interaction between peptide 

and compound is critical. Therefore, we should improve 

the hydrophobicity of peptides, keeping their self-assembly 

properties at the same time. Our work demonstrates that 

peptide R4, integrating uncrystalline motif GPGGY with 

RADA16-I, self-assembles into long nanofibers and has 

higher affinity to hydrophobic compounds. R4 is able to 

deliver PY into PC vesicles, suggesting that it is a potential 

carrier of hydrophobic compounds.
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Figure 9 Steady-state fluorescence emission spectra of pyrene at equilibrium.
Notes: (A) solid pyrene crystals (black) and R4-PY solution (red, PY = 2.47 mM, R4 = 100 µM). (B) Pyrene in PC vesicles (black, PY = 65.3 µM, PC = 1.037 mM), and R4-PY 
solution mixed with PC vesicles (red, PY = 42.5 µM, R4 = 100 µM, PC = 1.037 mM). λex = 336 nm. Self-assembling peptide R4 transfers hydrophobic compound pyrene into 
liposome vesicle.
Abbreviations: PY, pyrene; PC, phosphatidylcholine vesicles.
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This study provides a new method for designing 

nanobiomaterials, and illustrates that the nanostructures 

and macroscopic properties (mechanical strength, etcetera) 

of peptides can be controlled by adjustment of amino acid 

sequence. We will further investigate the application of new 

peptides in tissue engineering and regenerative medicine. 

Moreover, it will be interesting to modify peptide sequences 

in order to optimize the subtle balance between hydrophobic 

and hydrophilic residues, and to enhance the loading and 

release capacities of the peptide-based delivery system. 

With this knowledge, more biomaterials with desirable 

properties can be designed from these self-assembling 

peptides.
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