Open Access Full Text Article

COMMENTARY

23

Are Toll-like receptor gene polymorphisms associated with prostate cancer?

Anton G Kutikhin Arseniy E Yuzhalin

Department of Epidemiology, Kemerovo State Medical Academy, Kemerovo, Russian Federation **Abstract:** The suggestion that there is a connection between chronic intraprostatic inflammation and prostate cancer was declared some years ago. As Toll-like receptors (TLRs) are the key players in the processes of chronic intraprostatic inflammation, there is a hypothesis that *TLR* gene polymorphisms may be associated with prostate cancer risk. Although a number of comprehensive studies have been conducted on large samples in various countries, reliable connections between these single nucleotide polymorphisms and prostate cancer risk, stage, grade, aggressiveness, ability to metastasize, and mortality have not been detected. Results have also varied slightly in different populations. The data obtained regarding the absence of connection between the polymorphisms of the genes encoding interleukin-1 receptor-associated kinases (IRAK1 and IRAK4) and prostate cancer risk might indicate a lack of association between inherited variation in the TLR signaling pathway and prostate cancer risk. It is possible to consider that polymorphisms of genes encoding TLRs and proteins of the TLR pathway also do not play a major role in the etiology and pathogenesis of prostate cancer. Feasibly, it would be better to focus research on associations between *TLR* single nucleotide polymorphisms and cancer risk in other infection-related cancer types.

Keywords: TLRs, single nucleotide polymorphisms, genetic variation, inflammation, innate immunity

Discussion

The results of a number of studies investigating the connections between sexually transmitted infections and prostatitis, between prostatitis and prostate cancer, and between genetic and circulating markers of inflammation and response to infection all support the hypothesis that there is a connection between chronic intraprostatic inflammation and prostate cancer.¹ The list of causes of such inflammation includes exposure to various infectious agents, autoimmune disorders, damage from mechanical injuries, and chemical carcinogens (as exogenous as endogenous, for instance, certain hormones).¹

Toll-like receptors (TLRs) constitute a family of receptors that recognize pathogenassociated and damage-associated molecular patterns, consequently playing a key role in innate and adaptive immune response, initiating the aforementioned inflammation. It has been suggested that *TLR* gene polymorphisms may affect TLR signaling, and, as a consequence, may influence TLR-mediated immune response, modulating prostate cancer risk.²

Since 2004, when Zheng et al^2 published the first paper devoted to the investigation of the role of *TLR* single nucleotide polymorphisms (SNPs) in cancer etiology, a

Correspondence: Arseniy E Yuzhalin Kemerovo State Medical Academy, Voroshilova Street, 22a, Kemerovo 650029, Russian Federation Tel +7 9235 251 517 (mobile), +7 3842 751 744 (work) Fax +7 3842 251 744 Email yuzhalin@gmail.com

http://dx.doi.org/10.2147/CMAR.S28683

Dovencess

submit your manuscript | www.dovepress.com

number of other studies on this subject have been carried out. Nevertheless, results are rather discouraging: although Zheng et al² found the rs11536889 polymorphism is associated with increased prostate cancer risk and Chen et al³ observed that the G allele of the rs2770150 polymorphism may be a highrisk one, Lindström et al's⁷ recent meta-analysis combining the results of Zheng et al² and Chen et al³ with three more large comprehensive studies⁴⁻⁶ did not reveal any correlation between TLR gene polymorphisms and prostate cancer risk. In addition, no high-risk alleles were detected in a large study by Stevens et al,8 not included in Lindström et al's7 pooled analysis. The results of all four large studies^{4-6,8} devoted to the association of polymorphisms of the TLR6-1-10 gene cluster with cancer risk suggest there is no correlation and that these SNPs cannot be considered promising for the further analysis of their association with prostate cancer risk. Balistreri et al9 obtained similar null results for TLR2 and TLR4 SNPs. Positive results were found only for TLR4 gene polymorphisms by Cheng et al¹⁰ (rs10759932, odds ratio [OR] = 4.62, 95% confidence interval [CI]: 1.55–13.78 for variant homozygous genotype), Song et al¹¹ (rs1927911, OR = 2.73, 95% CI: 1.54–4.87 for heterozygous genotype; OR = 6.68, 95% CI: 3.27–13.66 for variant homozygous genotype; rs11536858, OR = 2.3, 95% CI: 1.07-4.93 for heterozygous genotype), Wang et al¹² (rs10116253, OR = 3.05, 95% CI: 1.11–8.41 for variant homozygous genotype), and Kim et al¹³ (rs11536889, OR = 1.81, 95% CI: 1.29–2.53 for heterozygous genotype). However, these SNPs were not detected as risk factors in Lindström et al's⁷ meta-analysis and therefore it is not possible to consider them as definite risk factors overall. Additionally, Shui et al,14 who carried out the most recent large investigation on this subject, did not detect any association between TLR4 gene polymorphisms and prostate cancer risk. The results of all studies mentioned are summarized in Tables 1 and 2.

All of those who have investigated the association between *TLR* gene polymorphisms and features of prostate cancer pathogenesis (stage, aggressiveness, Gleason grade, metastases), as well as the association between *TLR* gene polymorphisms and prostate cancer mortality, obtained negative results. This suggests there is no connection between *TLR* gene polymorphisms and the pathogenetic peculiarities of prostate cancer.^{2–4,6,7,11,13,14}

The active investigation of a correlation between *TLR* SNPs and prostate cancer is intriguing. Despite there being some fundamental mechanisms that indicate *TLR* gene polymorphisms may play a role in prostate cancer etiology, and despite there being a number of comprehensive studies conducted

 Table I Association of TLR2 and TLR4 gene polymorphisms with prostate cancer risk

Reference	SNP	Sample size	OR (95% CI)*
TLR2			
Balistreri	rs5743708	50 cases,	NA
et al ⁹	2029C/T	125 controls,	NA
(Italian		55 male	(with age-matched
population)		centenarians	controls)
TLR4			
Zheng et al ²	rs11536889	1383 cases,	Carriers of
(Swedish		780 controls	C allele: 1.26
population)			(1.01–1.57)
F - F			[Before 65 years:
			1.39 (1.02–1.91)]
	rs5030721		NA
	rs4986790		NA
	rs2149356		NA
Chen	rs2770150	700 cases,	Carriers of one
et al ³ (US		700 controls	G allele: 1.38
population)		,	(1.10–1.73)
ropolation	rs11536858		(1.10–1.73) NA
	rs6478317		Carriers of GG
	130 17 05 17		genotype: 0.66
			(0.46–0.94)
	rs10116253		Carriers of CC
	1310110255		genotype: 0.59
			(0.39–0.90)
	rs1927914		Carriers of GG
	131727714		genotype: 0.64
			(0.45–0.93)
	rs10759932		Carriers of one
	1310/3//32		C allele: 0.73
			(0.57–0.93)
	rs1927911		Carriers of AA
	151727711		
			genotype: 0.63
	1152/070		(0.41–0.95)
	rs11536878		NA
	rs5030717		Carriers of one
			G allele: 0.66
	21 (025)		(0.51–0.86)
	rs2149356		Carriers of TT
			genotype: 0.64
	(00		(0.45–0.91)
	rs4986790		NA
	rs11536889		NA
	rs7873784		Carriers of CC
			genotype: 0.51
			(0.28–0.96)
	rs11536891		Carriers of CC
			genotype: 0.50
			(0.27–0.95)
	rs11536897		NA
	rs 536898		Carriers of AA
			genotype: 0.38
			(0.16–0.92)
Cheng	rs10759932	506 cases,	Carriers of CC
et al ¹⁰ (US		506 controls	genotype: 4.62
1.0.3			(1.55–13.78)
population)			(

(Continued)

24

		Sample size	OR (95% CI)*	Reference	SNP	Sample size	OR (95% CI)
	rs5030728		Carriers of AA		rs10116253		Carriers of CC
			genotype: 0.91				genotype: 3.05
			(0.70–1.19)				(1.11–8.41)
	rs4986790		ŇA		rs1927911		ŇA
	rs11536889		NA		rs1927914		NA
	rs7873784		NA		rs2149356		NA
íeager et al⁵	rs1928298	1172 cases,	NA		rs7873784		NA
European		1157 controls			rs11536891		NA
•					rs11536898		NA
opulation)			NIA		rs2737190		NA
	rs1360094		NA	Delistusui		50 125	
	rs4837496		NA	Balistreri	rs4986790	50 cases, 125 age-	INA
	rs10818070		NA	et al ⁹		matched controls,	
	rs10759930		NA	(Italian		55 centenarian	
	rs2737191		NA	population)		controls	
	rs2770150		NA		rs4986791		NA (with
	rs6478317		NA				age-matched
	rs10116253		NA				controls)
	rs1927914		NA	Lindström	rs 928298	Pooled analysis:	NA
	rs10759932		NA	et al ⁷		3101 cases,	
	rs1927911		NA	(meta-analysis		2253 controls	
	rs11536879		NA	of Zheng			
	rs5030717		NA	et al, ²			
	rs2149356		NA	Chen et al. ³			
	rs4986790		NA	,			
	rs7873784		NA	and Yeager			
	rs11536897		NA	et al⁵)			
	rs1927906		NA		rs 360094		NA
	rs11536898		NA		rs4837496		NA
	rs1554973		NA		rs10818070		NA
	rs913930		NA		rs10759930		NA
					rs2737191		NA
	rs 1927905		NA		rs2770150		NA
	rs7045953		NA		rs11536858		NA
ong et al ¹¹	rs1927911	157 cases,	Carriers of TC		rs6478317		NA
Korean		143 controls	genotype: 2.73		rs10116253		NA
opulation)			(1.54–4.87)		rs1927914		NA
			Carriers of CC		rs10759932		NA
			genotype: 6.68		rs1927911		NA
			(3.27-13.66)		rs10759933		NA
	rs11536858		Carriers of GG		rs11536871		NA
			genotype: 2.3		rs11536879		NA
			(1.07-4.93)				NA
	rs1927914		ŇA		rs5030317		
	rs11536891		NA		rs2149356		NA
	rs11536897		NA		rs4986790		NA
Wang	rs4986790	258 cases,	Carriers of G		rs5030721		NA
et al ¹² (US	131700770	258 controls	allele: 0.60		rs11536889		NA
-		256 CONUIOS			rs7873784		NA
opulation)			(0.33–1.08)		rs11536891		NA
			[Men younger		rs11536897		NA
			than 65 years: 0.26		rs 927906		NA
			(0.08–0.87)]		rs11536898		NA
	rs11536889		Carriers of C		rs1554973		NA
			allele: 0.50		rs913930		NA
			(0.28–0.89)		rs1927905		NA
			(patients with normal		rs7045953		NA
			cholesterol)	Kim et al ¹³	rs10983755	240 cases,	NA
			1.65 (0.98–2.78)	(Korean		223 controls	, .
			(patients with				
			elevated cholesterol)	population)	rs10759932		NA

Table I (Continued)

eference	SNP	Sample size	OR (95% CI)*
	rs1927911		NA
	rs11536879		NA
	rs12377632		NA
	rs5030717		NA
	rs2149356		NA
	rs5030718		NA
	rs7869402		NA
	rs11536889		1.81 (1.29–2.53)
			(for heterozygous
			genotype)
	rs7873784		NA
ui	Ten TLR4 gene	1286 cases,	NA
al [™] (US pulation)	polymorphisms	1267 controls	
,			NA
			NA

Note: *Only positive or negative statistically significant results.

Abbreviations: Cl, confidence interval; NA, no association; OR, odds ratio; SNP, single nucleotide polymorphism; TLR, Toll-like receptor; US, United States.

on large samples in various countries, reliable connections between these SNPs and prostate cancer risk or features of prostate cancer progression have not been detected. Results have also varied slightly in different populations. However, it is possible that some of the TLR gene polymorphisms may be the markers of prostate cancer risk in certain populations (eg, rs5743795, rs5743551, rs5743556, rs5743604, rs4274855, rs11096957, rs11096955, and rs4129009 in the Swedish population;⁴ rs11536889 in the Swedish and the Korean populations;^{2,13} rs2770150, s10759932, and rs10116253 in the US population;^{3,10,12} rs1927911 and rs11536858 in the Korean population¹¹). However, Lindström et al's⁷ meta-analysis, in which all of the populations mentioned above were considered, revealed that TLR gene polymorphisms cannot be the markers of prostate cancer overall and therefore they should be considered as risk markers, even in populations where the association has been found.7 Apparently, the lack of sample size was not the reason for negative results in either the general meta-analysis or in specific studies in particular populations, because the investigations in Swedish,^{2,4,15} European,⁵ and US populations^{3,6,8,10,12} included a large number of case and control subjects. Although two Korean studies^{11,13} had relatively small sample sizes, a recent large study in the Korean population also Table 2 Association of polymorphisms of TLR6-1-10 gene cluster with prostate cancer risk

erence	SNP	Sample size	OR (95% CI)*
/ens	TLRI0:	1414 cases,	NA
I [®] (US	rs4129009	1414 controls	
ulation)	(MAF 18%–18.5%)		
	rs11466657		NA
	(MAF 3.09%-3.38%)		
	rs11466655		NA
	(MAF 0.72%-0.76%)		
	rs11096955		A/C compared
	(MAF 32.6%–35.8%)		with A/A: 0.84
	(11/11/32.0%=33.0%)		(0.72–0.98)
			(,
			C/C compared
			with A/A: 0.78
			(0.61–0.99)
	rs11096956		NA
	(MAF 21.1%–23.5%)		
	rs11466653		NA
	(MAF 2.94%–3.93%)		
	rs11466651		NA
	(MAF 3.14%–3.74%)		
	rs11096957		A/C compared
	(MAF 32.6%–35.8%)		with A/A: 0.84
			(0.72-0.98)
			C/C compared
			with A/A: 0.78
			(0.61–0.99)
	rs11466649		NA
	(MAF 3.3%–3.84%)		
	rs10856838		NA
	(MAF 14.7%–16.4%)		
	rs4274855		NA
			INA
	(MAF 18%–18.5%)		
	rs11466640		NA
	(MAF 18.1%–18.6%)		N14
	rs11466617		NA
	(MAF 18%-18.6%)		
	rs7653908		NA
	(MAF 21.1%–20.6%)		
	rs7658893		NA
	(MAF 23.6%-25.2%)		
	TLRI:		NA
	rs4624663		
	(MAF 2.46%–2.18%)		
	rs4833095		T/C compared
	(MAF 23.4%–26.8%)		with T/T: 0.90
			(0.77–1.05)
			C/C compared
			with TT/T: 0.64
			(0.47–0.86)
	rs5743611		NA
	(MAF 8.6%-8.8%)		
	rs5743604		NA
	(MAF 23.9%-24.2%)		
	rs5743596		C/T compared
	(MAF 14.9%–18.5%)		with C/C: 0.79
	(10.076)		(0.66–0.93)
			(0.00-0.75)

(Continued)

26

Reference	SNP	Sample size	OR (95% CI)*	Reference	SNP	Sample size	OR (95% CI)
			T/T compared		rs4274855		NA
			with C/C: 0.59		(MAF 18%-19%)		
			(0.38–0.91)		rs11096957		NA
	rs5743595		T/C compared		(MAF 33%–36%)		
	(MAF 17.4%–20.6%)		with T/T: 0.82		rs11096955		NA
	(11A1 17.7%-20.0%)				(MAF 33%–36%)		
			(0.70–0.97)				NA
			C/C compared		rs11466657		INA
			with T/T: 0.63		MAF (4%–4%)		
			(0.42–0.93)		rs4129009		NA
	rs5743594		NA		(MAF 17%–18%)		
	(MAF 19.8%–17.7%)			Yeager et al⁵	rs10008492	1172 cases,	NA
	rs5743556		NA	(European		1157 controls	
	(MAF 19%–19.6%)			population)			
	rs5743551		A/G compared		rs4331786		NA
	(MAF 23.7%-26.7%)		with A/A: 0.90		rs11466657		NA
			(0.77–1.06)		rs11096957		NA
			G/G compared		rs10856839		NA
			with A/A: 0.67		rs11466640		NA
			(0.50-0.91)		rs11466619		NA
	TLR6:		NA		rs11466612		NA
	rs5743815				rs7663239		NA
	(MAF 1.91%–1.27%)				rs4543123		NA
	````				rs4833095		NA
	rs5743810		NA		rs5743594		NA
	(MAF 42.1%–42.7%)				rs5743563		NA
	rs5743806		NA		rs4833103		NA
	(MAF 30.3%–30.6%)						NA
	rs5743795		NA		rs7696175		
	(MAF 19.9%–20.2%)				rs5743810		NA
hen	rs5743788	659 cases,	NA		rs1039559		NA
t al ⁶ (US	(MAF 50%–49%)	656 controls			rs6833914		NA
opulation)					rs6531673		NA
	rs5743795		NA	Sun et al⁴	TLR6:	1383 cases,	NA
	(MAF 19%–21%)			(Swedish	2113 C/G	780 controls	
	rs5743806		NA	population)	(73.76%–76.35%		
	(MAF 31%–30%)				C/G and G/G)		
	rs1039599		NA		rs5743795		A/G and A/A
	(MAF 46%-46%)				(32.8%-26.24%		compared wit
	rs5743810		NA		A/G and AA)		G/G: 1.38
	(MAF 42%-41%)						(1.12–1.70)
	rs3821985		NA		rs5743806		C/T and T/T
	(MAF 34%-33%)				(89.12%-89.33%		compared wit
	rs5743815		NA		C/T and T/T)		C/C: 0.98
	(MAF 1%-2%)				e, i une i, i)		(0.73–1.31)
	(				rs5743810		(0.75 1.51) NA
	rs5743551		NA		(82.84%-82.84%		
	(MAF 24%–26%)				(		
	rs5743556		NA		C/T and C/C)		N 1 A
	(MAF 18%–19%)				rs5743815		NA
	rs5743604		NA		(3.44%-2.9%		
	(MAF 23%–26%)				C/T and C/C)		
	rs5743611		NA		TLRI:		A/G and G/G
	(MAF 8%–9%)				rs5743551		compared
	rs4624663		NA		(40.16%–34.32%		with A/A: 1.2
	(MAF 4%–4%)				A/G and G/G)		(1.06–1.56)
	rs11466617		NA		rs5743556		C/T and C/C
	(MAF 17%–18%)				(32.67%-26.65%		compared wit
	rs11466640		NA		C/T and C/C)		T/T: 1.33
	(MAF 17%-19%)				- /		(1.09–1.62)

27

D.C.	CNIP	Count 1	OD (AFA) ON	D. (.	CNIP	C	OD (05%) CT
Reference	SNP	Sample size	OR (95% CI)*	Reference	SNP	Sample size	OR (95% CI
	rs5743604		C/T and C/C		rs4833095		NA
	(42.1%-35.69%		compared with		rs5743611		NA
	C/T and C/C)		T/T: 1.30		rs5743604		NA
	5742411		(1.08–1.60)		rs5743594		NA
	rs5743611		NA		rs5743563		
	(98.35%–98.21%				rs5743556 rs5743551		NA NA
	G/C and G/G) rs4624663		NA		rs4833103		NA
	(7.79%–7.16%		INA		rs7696175		NA
	G/A and G/G)				rs5743815		NA
	TLR10:		T/C and C/C		rs3821985		NA
	3260C/T		compared with		rs5743810		NA
	(29.79%-26.06%		T/T: 1.20		rs1039559		NA
	T/C and C/C)		(0.99–1.46)		rs5743806		NA
	1692C/T		C/T and $T/T$		rs5743795		NA
	(30.34%–26.04%		compared with		rs5743788		NA
	C/T and T/T)		C/C: 1.23		rs6833914		NA
	C/T and T/T)		(1.01–1.50)		rs6531673		NA
	rs4274855		A/G and $A/A$				
	(32.04%–26.93%		compared with		ositive or negative statistica s: Cl, confidence interval;		
	A/G and A/A)		G/G: 1.27		le nucleotide polymorphism		
			(1.04–1.56)		.,		
	rs11096957		A/C and C/C				
	(60.18%–55.85%		compared with	obtained ne	gative results.14 The	refore, the stati	istical power
	A/C and C/C)		A/A: 1.20		f the studies was suff		-
			(1.00–1.43)			-	
	rs11096955		A/C and C/C		studies revealed n	-	
	(57.19%-51.70%		compared with	when comp	pared with general re	esults, although	n a dependen
	A/C and C/C)		A/A: 1.25	of associati	on on age was foun	d in one study	in the Swedi
	,		(1.04–1.50)		² and cholesterol lev	-	
	rs11466657		NA				
	(4.39%-4.08% T/C)				in one study in th		
	rs4129009		G/A and G/G	alone these	results cannot prov	vide sufficient	information
	(31.20%-26.31%		compared with	the subcate	gorical modification	n of associatio	n of TLR ge
	G/A and G/G)		A/A: 1.26		isms with prostate		-
			(1.03–1.54)		-		
indström	rs10008492	3101 cases,	NA		considering the gen	• •	ie-environme
et al ⁷		2523 controls		interactions	s in relation to prost	ate cancer.	
(meta-analysis				Sun et	al15 did not obser	ve any correl	ation betwe
of Sun et al,⁴					isms of the genes	•	
Chen et al, ⁶				1 1 1	e	e	
and Yeager				-	sociated kinases (IR.		. –
et al⁵)				cancer. The	e data obtained by	Sun et al ¹⁵ mig	ght also refle
	rs4331786		NA	a lack of a	ssociation between	inherited vari	ation in ger
	rs4129009		NA	encoding n	roteins of the TLR	signaling nath	way and pro
	rs11466657		NA				
	rs11096955		NA		risk, since IRAK1	and IKAK4 a	re key protei
	rs11096957		NA	of this path	iway.		
	rs10856839		NA				
	rs4274855		NA	Conclu	ision		
	rs11466640		NA				TID 1 TI
	rs11466619		NA		ion, it is possible to		
	rs11466617		NA	pathway ge	ene polymorphisms	do not play a m	ajor role in t
	rs11466612		NA	etiology of	prostate cancer, alt	hough in certa	in populatic
	rs7663239		NA		role can be establis	-	
	rs4543123		NA			•	
	rs4624663		NA	ter to focus	research on associa	itions between	<b>TLR SNPs a</b>

(Continued)

cancer risk in other infection-related cancer types.

# Disclosure

The authors report no conflicts of interest in this work.

## References

- De Marzo AM, Marchi VL, Epstein JI, Nelson WG. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. *Am J Pathol.* 1999;155(6):1985–1992.
- Zheng SL, Augustsson-Bälter K, Chang B, et al. Sequence variants of Toll-like receptor 4 are associated with prostate cancer risk: results from the CAncer Prostate in Sweden Study. *Cancer Res.* 2004;64(8):2918–2922.
- Chen YC, Giovannucci E, Lazarus R, Kraft P, Ketkar S, Hunter DJ. Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. *Cancer Res.* 2005;65(24):11771–11778.
- Sun J, Wiklund F, Zheng SL, et al. Sequence variants in Toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. *J Natl Cancer Inst.* 2005;97(7):525–532.
- Yeager M, Orr N, Hayes RB, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. *Nat Genet*. 2007;39(5):645–649.
- Chen YC, Giovannucci E, Kraft P, Lazarus R, Hunter DJ. Association between Toll-like receptor gene cluster (TLR6, TLR1, and TLR10) and prostate cancer. *Cancer Epidemiol Biomarkers Prev.* 2007;16(10):1982–1989.
- Lindström S, Hunter DJ, Grönberg H, et al. Sequence variants in the TLR4 and TLR6-1-10 genes and prostate cancer risk: results based on pooled analysis from three independent studies. *Cancer Epidemiol Biomarkers Prev.* 2010;19(3):873–876.

- Stevens VL, Hsing AW, Talbot JT, et al. Genetic variation in the Toll-like receptor gene cluster (TLR10-TLR1-TLR6) and prostate cancer risk. *Int J Cancer* 2008;123(11):2644–2650.
- 9. Balistreri CR, Caruso C, Carruba G, et al. A pilot study on prostate cancer risk and pro-inflammatory genotypes: pathophysiology and therapeutic implications. *Curr Pharm Des.* 2010;16(6):718–724.
- Cheng I, Plummer SJ, Casey G, Witte JS. Toll-like receptor 4 genetic variation and advanced prostate cancer risk. *Cancer Epidemiol Biomarkers Prev.* 2007;16(2):352–355.
- Song J, Kim DY, Kim CS, et al. The association between Toll-like receptor 4 (TLR4) polymorphisms and the risk of prostate cancer in Korean men. *Cancer Genet Cytogenet*. 2009;190(2):88–92.
- Wang MH, Helzlsouer KJ, Smith MW, et al. Association of IL10 and other immune response- and obesity-related genes with prostate cancer in CLUE II. *Prostate*. 2009;69(8):874–885.
- Kim HJ, Bae JS, Chang IH, et al. Sequence variants of Toll-like receptor 4 (TLR4) and the risk of prostate cancer in Korean men. *World J Urol.* Epub 2011 May 7.
- Shui IM, Stark JR, Penney KL, et al. Genetic variation in the Toll-like receptor 4 and prostate cancer incidence and mortality. *Prostate*. Epub 2011 May 11.
- Sun J, Wiklund F, Hsu FC, et al. Interactions of sequence variants in interleukin-1 receptor-associated kinase 4 and the Toll-like receptor 6-1-10 gene cluster increase prostate cancer risk. *Cancer Epidemiol Biomarkers Prev.* 2006;15(3):480–485.

#### **Cancer Management and Research**

Publish your work in this journal

Cancer Management and Research is an international, peer-reviewed open access journal focusing on cancer research and the optimal use of preventative and integrated treatment interventions to achieve improved outcomes, enhanced survival and quality of life for the cancer patient. The journal welcomes original research, clinical & epidemiological studies, reviews & evaluations, guidelines, expert opinion & commentary, case reports & extended reports. The manuscript management system is completely online and includes a very quick and fair peerreview system, which is all easy to use. Visit http://www.dovepress.com/ testimonials.php to read real quotes from published authors.

Submit your manuscript here: http://www.dovepress.com/cancer-management-and-research-journal

**Dove**press