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Background: Breast cancer is the most common cancer in women and one of the leading causes of cancer death worldwide. 
Ferroptosis, a promising mechanism of killing cancer cells, has become a research hotspot in cancer therapy. Simvastatin (SIM), as 
a potential new anti-breast cancer drug, has been shown to cause ferroptosis of cancer cells and inhibit breast cancer metastasis and 
recurrence. The purpose of this study is to develop a novel strategy boosting ferroptotic cascade for synergistic cancer therapy.
Methods: In this paper, iron base form of layered double hydroxide supported simvastatin (LDHs-SIM) was synthesized by 
hydrothermal co-precipitation method. The characterization of LDHs-SIM were assessed by various analytical techniques, including 
ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and transmission 
electron microscopy (TEM). Biological activity, ferroptosis mechanism and biocompatibility were analyzed through in vivo and 
in vitro analysis, so as to evaluate its therapeutic effect on breast cancer.
Results: The constructed LDHs-SIM nanosystem can not only release SIM through mevalonate (MVA) pathway, inhibit the 
expression of glutathione peroxidase 4 (GPX4), inhibit the expression of SLC7A11 and reduce the synthesis efficiency of GSH, but 
also promote the accumulation of Fe2+ in cells through the release of Fe3+, and increase the intracellular ROS content. In addition, 
LDHs-SIM nanosystem can induce apoptosis of breast cancer cells to a certain extent, and achieve the synergistic effect of apoptosis 
and ferroptosis.
Conclusion: In the present study, we demonstrated that nanoparticles of layered double hydroxides (LDHs) loaded with simvastatin 
were more effective than a free drug at inhibiting breast cancer cell growth, In addition, superior anticancer therapeutic effects were 
achieved with little systemic toxicity, indicating that LDHs-SIM could serve as a safe and high-performance platform for ferroptosis 
−apoptosis combined anticancer therapy.
Keywords: layered double hydroxides, apoptosis, ferroptosis, simvastatin, breast cancer

Introduction
Breast cancer is the most common cancer in women and one of the leading causes of cancer death worldwide.1,2 In addition 
to surgical intervention, chemotherapy is still considered to be the main strategy for clinically effective treatment.3,4 

However, due to chemotherapy resistance and lack of treatment options, the prognosis of patients is still not ideal, so new 
treatment options still need to be continuously explored. In recent years, ferroptosis has been studied as a novel and effective 
cancer treatment strategy, and there are many studies in the treatment of breast cancer.5–8 Ferroptosis is a newly discovered 
type of programmed cell death with a distinguishing feature from apoptosis, necrosis, and autophagy. Cells exhibit 
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morphological features such as marked mitochondrial wrinkling, reduced mitochondrial cristae, and increased membrane 
density during ferroptosis, as well as biochemical features such as iron-dependent accumulation of lipid peroxides and 
reactive oxygen species.9–11 Ferroptosis and its regulatory proteins, such as glutathione peroxidase 4 (GPX4) and solute 
carrier family 7 member 11 (SLC7A11), have been reported to play a crucial role in the treatment of breast cancer.12,13 Drugs 
have been shown to increase the effect of a high ferroptosis environment on cellular ferroptosis by interfering with iron 
regulation (eg, expression of iron transport proteins and membrane iron transport proteins) and ferroptosis defense-related 
(eg, GPX4) expression.14,15 In conclusion, increasing the ferroptosis content in combination with therapeutic drugs can be 
a vital reference option for treating breast cancer using ferroptosis effects.

Statins, or 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors, are widely used in the clinical 
treatment of hyperlipidemia. They significantly reduce HMG-CoA reductase activity through competitive inhibition and 
inhibit cholesterol synthesis via the mevalonate (MVA) pathway.16,17 In addition, isopentyl pyrophosphate has been 
linked to the biosynthesis of GPX4 via the MVA pathway, and HMGCR is involved in the synthesis of isopentyl 
pyrophosphate.18,19 Simvastatin (SIM) is a lipophilic statin with antitumor effects in cancer cells in vitro and in vivo, 
including breast, colon, and prostate.20 SIM demonstrated potent toxic effects on human breast cancer MCF-7 and MDA- 
MB-231 cell lines in breast cancer studies; and the mechanism of action of SIM-induced apoptosis in cancer cells has 
been studied in numerous studies, demonstrating its potential as a new anti-breast cancer drug candidate.21,22 However, 
statins are rapidly metabolized, and few drugs accumulate at the lesion site, severely limiting treatment effectiveness. As 
nanoscale materials are studied further, they are primarily used as drug delivery carriers to improve efficacy. As a result, 
there is a pressing need to create novel nanomedicines to improve therapeutic statin accumulation.

Layered double hydroxides (LDHs) are positively charged alkaline inorganic nanomaterials composed of divalent and 
trivalent metal cations covalently bonded to hydroxyl groups, with water molecules and interchangeable anions 
compensating for the charge balance on the main laminate between the layers. The rich tunability of LDHs composition 
and structure and host-guest interactions make it possible to create novel LDHs nanocomposites. The traditional ion 
combination is Mg-Al-LDHs, but the current proposal uses Mg-Fe-LDHs to boost intracellular Fe2+-induced ferroptosis 
by introducing Fe3+ into the tumor microenvironment. As nano-delivery carriers, LDHs have good biocompatibility and 
biodegradability, slow-release properties, pH-sensitive controlled release characteristics, a relatively inexpensive and 
environmentally friendly manufacturing process, and distinct advantages in vitro drug delivery.23,24

As a type of programmed cell death, ferroptosis differs from apoptosis. Herein, to investigate whether the combina-
tion of both cell death pathways contributes to an improvement in the efficacy of cancer treatment, we have designed 
Mg-Fe-LDHs-Simvastatin that can simultaneously cause tumor cell apoptosis and ferroptosis. This NP was composed of 
Simvastatin and Mg-Fe-LDHs which could be used to deliver SIM and iron ions to the tumor site at the same time 
(Scheme 1). The LDHs-SIM could home in the tumor and disassemble under the acidic lysosomal environment in tumor 
cells to release drugs and iron ions. In addition, LDHs-SIM could induce apoptosis of breast cancer cells to a certain 
extent, and achieve the synergistic effect of apoptosis and ferroptosis. As a result, a notable antitumor therapeutic effect 
was achieved via the combination of apoptosis and ferroptosis, suggesting that forming the Mg-Fe-LDHs-Simvastatin 
delivery system is a promising strategy to fight against tumors.

Material and Methods
Materials, Cell Line, and Animal Model
MgCl2-6H2O (97%), FeCl3-6H2O (97%), NaOH (97%), and SIM were purchased from Aladdin Reagent Co., Ltd. 
(Shanghai, China). DMEM (high sugar) and fetal bovine serum (FBS) were obtained from Thermo Fisher Biochemical 
Products Co. Beijing, China). Dimethyl sulfoxide (DMSO), cell counting kit-8 (CCK-8), Annexin V-FITC/PI, BCA 
protein assay, SDS-PAGE, GSH kit was purchased from Solarbio (Beijing, China), ROS assay kit was purchased from 
Beyotime (Nanjing, China). C11 BODIPY 581/591 Lipid Peroxide Fluorescent Probes were purchased from ABclonal 
(Wuhan, China). Antibodies used in the experiments included HMGCR (1:1000), Bcl-2 (1:1000) purchased from 
ABclonal (Wuhan, China), BAX (1:1000), GPX4 (1:1000) purchased from Proteintech (Wuhan, China), SLC7A11 
(1:1000), β-actin (1:10,000), Horseradish peroxidase (HRP)-labeled goat anti-rabbit antibody (1:6000) was purchased 
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from Affinity Biosciences (Nanjing, China). The Ferro Orange kit was purchased from Dojindo laboratories (Shanghai, 
China).

The human breast cancer cell line MDA-MB-231 and SKBR3 were purchased from the Chinese Academy of 
Sciences (Shanghai, China) and maintained in complete DMEM supplemented with 10% fetal bovine serum, 1% 
penicillin and 1% streptomycin at 37°C and 5% CO2. The MCF10A was purchased from Procell, Wuhan, China. 
MCF10A cells were maintained as monolayers in DMEM medium supplemented with 5% horse serum, 0.2% EGF 
(20mg/mL), hydrocortisone (0.5mg/mL), insulin (10 μg/mL), 100U/mL penicillin, and 100μg/mL streptomycin at 37°C 
in a humidified incubator with 5% CO2. Female BALB/c nude mice (5 weeks old) were purchased from Changzhou 
Cavins Laboratory Animal Co., Ltd. (license number: SCXK SU 2021–0013), and were housed in a SPF animal room at 
25°C, with relative humidity maintained at 40% - 70%. All animal experiments were conducted with approval from the 
Bengbu Medical University Institutional Animal Care and Use Committee (Ethics Number: [2023] No. 537). All animal 
experiments were performed in accordance with the “Guidance for the Care and Use of Laboratory Animals”.

Preparation of Layered Double Hydroxides and Layered Double Hydroxides-Loaded 
Simvastatin
LDHs were synthesized by hydrothermal and co-precipitation techniques. Calculate the mass of magnesium chloride 
(MgCl2•6H2O) and iron chloride (FeCl3•6H2O) according to the molar ratio of Mg2+ to Fe3+ of 3:1, and prepare 10 mL of 
the mixed metal salt solution. Prepare 40 mL of alkali solution configured with NaOH. Add the alkali solution under 
nitrogen atmosphere at 37°C and adjust the pH to 10 ± 0.01 by adding the salt solution dropwise while stirring. The 
mixture was then incubated in a water bath for 0.5 hours. After centrifugation, the supernatant was discarded to obtain 
out initial product. The initial precipitation product of LDHs was resuspended in 40 mL of deionized water and reacted in 
a hydrothermal reactor at 100°C for 16 h, and then allowed to cool. After centrifugation at 7600 rpm for 10 min, the cells 
were washed twice with deionized water, and the resulting 10 mL of LDHs suspension was resuspended in deionized 
water and lyophilized in a lyophilizer and set aside. (The deionized water used in the synthesis process has had the 
carbon dioxide removed).

Scheme 1 Schematic illustration of the Mg-Fe-LDHs-SIM nanodrug delivery system in the treatment of breast cancer. LDHs-SIM is ingested by breast cancer cells, Fe3+ can 
be dissociated and cells can produce a large amount of ·OH, resulting in the increase of ROS level. The released SIM from LDHs-SIM inhibits GPX4 expression through MVA 
pathway. At the same time, SIM can inhibit the expression of SLC7A11 and then reduce the level of GSH in cells, leading to the occurrence of ferroptosis.
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LDHs-SIM was also synthesized by hydrothermal and co-precipitation techniques. Prior to mixing the solutions, all 
solutions were heated to 60 °C with nitrogen gas bubbling for 20 min. A solution of NaOH (40 mL, 0.15 M) and a mixed 
solution (10 mL) containing MgCl2•6H2O (0.3 M) and FeCl3•6H2O (0.1 M) were added dropwise to a drug solution 
(10 mL,0.1 M) containing simvastatin (SIM) sodium, at 60 °C with nitrogen gas purging. The mixture was continuously 
stirred for 6 min at 60 °C under N2 gas purging. The resulting mixture was separated, washed and dispersed in 40 mL 
deionized water.

Characterization
A drop of dilute solution of LDHs and LDHs-SIM was placed on a carbon-coated copper TEM grid. The samples were 
imaged using a JEM-1230 transmission electron microscope and observed under a microscope at 120 kV. The particle 
size and polydispersity index at 25°C were determined by photon correlation spectroscopy. Zeta potential values were 
estimated from the electrophoretic mobility at 25°C using the same equipment. The colloidal stability of LDHs and 
LDHs-SIM in PBS was investigated. Fourier transform infrared spectroscopy (FT-IR) was used to identify the structure 
and chemical composition of LDHs and LDHs-SIM nanopreparations. Measurements were performed on a Bruker Vector 
22 FT-IR spectrophotometer in the range of 400 to 4000 cm−1. X-ray powder diffraction (XRD) patterns were measured 
on a Rigaku Miniflex diffractometer using Cu Kα radiation (λ = 1.54060 Å, 40 kV, 40 mA, step of 0.0330°) recorded 
from 5° to 80°. UV absorption were performed using a spectrophotometer (UV, 3100, Hitachi, Japan).

Drug Loading of LDHs-SIM
The content of SIM in LDHs-SIM was determined by UV-VIS absorption spectrometry. SIM solutions with concentra-
tions of 0.5, 1, 2, 4, 8 and 16 μg/mL were prepared in methanol, and their absorbance at 238 nm was determined. The 
standard curve of the absorbance-concentration of SIM in methanol was obtained. Take 5mg LDHs-SIM dry powder and 
dissolve it in 3 mL methanol. Then methanol was added to the final volume of 10 mL and ultrasonic suspension was 
performed. Then, the concentration of SIM was determined by measuring the absorbance at λmax = 238 nm by 
ultraviolet spectrophotometer, and the drug loading of LDHs-SIM was calculated according to the formula.

Drug Release of LDHs-SIM Under Different pH
Weighed 4mg LDHs-SIM powder into 15 mL centrifuge tube, added 8 mL PBS (pH= 6.2) and 8 mL PBS (pH=7.4) 
respectively, and shocked them in a shaker at 37 ° C, 100 rpm. At 10, 20, 30, 60, 120, 180, 240 and 360 minutes, 1.5 mL 
of PBS was taken out and the corresponding absorbance was detected with an ultraviolet spectrophotometer, and an equal 
amount of fresh PBS was added. The release rate was calculated by comparing simvastatin standard curve and LDHs- 
SIM loading.

In vitro Cellular Uptake Analysis
2 mg of LDHs-SIM and 2 mg of FITC were dissolved in 1 mL of pure water and mixed with ultrasound for 30 min. 
Then, the mixture was placed on a shaker at 4°C with low-speed shaking overnight. The next day, the mixture was 
centrifuged at 3000 rpm/min for 5 min and repeated three times to obtain LDHs-SIM-FITC, and freeze-dried and set 
aside.

5×103 MDA-MB-231 and SKBR3 cells were inoculated into 24-well plates (14 mm, Solarbio, China) and treated 
with 2.5 μM LDHs-SIM-FITC at different time points (1, 4, 12, 24, and 48 h), respectively. The cell plates were washed 
twice with PBS and the cells were fixed. The results were observed with a confocal laser scanning microscope (CLSM).

Lysosomal Escape Experiments
Lysosomal escape experiments using FITC fluorescently labeled LDHs-SIM. Seed 1×104 cells in each glass bottom cell 
culture dish, and after the cell adherent morphology is unfolded, change the medium to a dosing solution (prepared with 
complete medium) with a final concentration of 5μM LDHs-SIM, configure 50 nM Lyso-tracker Red probe solution and 
pre-incubate to 37°C and incubate for 2 h protected from light. Cells were washed with PBS, and 10 μg/mL Hoechst 
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solution was added to incubate in the dark for 10~15 min, and the cells were cleaned with PBS. Photographed under 
a ZEISS fluorescence microscope.

Lysosomal membrane permeability was determined using AO (Acridine Orange) staining solution: 1×104 cells were 
seeded in each glass bottom cell culture dish, 5 μM LDHs-SIM dosing solution was added after cell adherence 
morphology was unfolded, the liquid in the dish was discarded after incubation for 48 h, and an AO staining solution 
(complete medium dilution) at a final concentration of 10 μg/mL was added and incubated for 15 min protected from 
light. Cells were washed with PBS, 400 μL of 4% paraformaldehyde was added to each dish, and after fixation for 15 
min, the cells were cleaned with PBS, and the green (Em=490 nm, Ex=528 nm) and red (Em=555 nm, Ex=617 nm) 
fluorescence channels were observed under a laser confocal microscope.

Cell Proliferation Assay
The effect of different concentrations of SIM and LDHs-SIM on the viability of MDA-MB-231, SKBR3 cells and 
MCF10A was examined by CCK-8 assay. MDA-MB-231, SKBR3 cells and MCF10A were uniformly inoculated in 96- 
well plates at a density of 5×103 cells per well and grown in 200 μL DMEM medium for 24 hours. Then the cells were 
incubated in fresh medium (200 μL /well) containing SIM (2.5 μM, 5 μM, 10 μM), LDHs-SIM (2.5 μM, 5 μM, 10 μM) 
and LDHs, respectively. The absorbance values were measured at 450 nm to detect cell viability.

Measurement of Intracellular Fe2+ Content
Ferro Orange is a divalent ferroptosis detection probe that allows fluorescent imaging of Fe2+ in living cells. Cells were 
inoculated in confocal dishes and incubated overnight at 37°C in a 5% CO2 incubator. The supernatant was discarded and 
the medium containing the drug was replaced and continued for 48 hours. The medium was discarded, washed once with 
PBS, Ferro Orange working solution at a concentration of 1 μmol/L was added according to the manufacturer’s 
instruction, incubated at 37°C in a 5% CO2 incubator, and the results were observed with a live cell imaging system 
(Axio Observer Z1, Germany ZEISS).

GSH Assay
MDA-MB-231 and SKBR3 cells were inoculated into six-well plates at a density of 1.5×105 per well and cultured for 24 
hours. Then the medium was discarded and the PBS was washed over, DMEM, LDHs, SIM and LDHs-SIM were added 
correspondingly and incubated for 48 hours. No less than 5×106 cells were collected in each group and the GSH content 
was calculated according to the Solarbio GSH test kit instructions.

Lipid Peroxidation (LPO) and Reactive Oxygen Species (ROS) Generation
Cells are seeded in six-well plates for 24 hours, replaced with corresponding drug solution for 48 hours, digestion 
collection cells are centrifuged to obtain pellets, C11-BODIPY (LPO probe) and DCFH-DA (ROS probe) solutions are 
configured, resuspended and incubated using probe solution, and cell production LPO and ROS are detected using flow 
cytometry (CytoFLEX, Beckman Coulter).

Transmission Electron Microscopy Assay
Briefly, cells treated with LDHs-SIM for 48 h were collected and fixed with 2.5% glutaraldehyde. After washing twice 
with PBS, the cells were fixed with 1% pre-cooled osmium tetroxide for 1 hour, then dehydrated with gradient ethanol, 
incubated with acetone and embedding agent (1:1) at 37°C for 4 hours, ultrafine sectioned by ultra-fine microtome at 70 
nm, and transferred to 150 mesh copper film mesh. The sections were stained for 2% uranyl acetate followed by 
counterstaining for 2.6% lead citrate according to standard staining methods. After drying, the images were scanned 
using an HITACHI-HT7800 transmission electron microscope (Tokyo, Japan).

Cell Apoptosis
The Annexin V-FITC/PI method was used to detect the effect of LDHs-SIM nanoformulation on apoptosis of MDA-MB-231 
and SKBR3 cells. MDA-MB-231 and SKBR3 cells were inoculated into six-well plates and cultured for 24 hours. The medium 

International Journal of Nanomedicine 2024:19                                                                                   https://doi.org/10.2147/IJN.S455427                                                                                                                                                                                                                       

DovePress                                                                                                                       
4203

Dovepress                                                                                                                                                             Pang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


was discarded, washed once with PBS, and incubated for 48 h with the corresponding addition of medium, LDHs, SIM, and 
LDHs-SIM. The cells were then digested with 0.25% trypsin without EDTA and collected. After washing twice with pre-cooled 
PBS, 500 μL of binding buffer dilution was added. Next, 5 μL of FITC-labeled phospholipid binding protein V (Annexin V-FITC 
was added) and 5 μL of PI were added and the mixture was well stirred for 15 min at room temperature in the dark. Within 1 h, 
observation and detection were performed using flow cytometry.

Western Blot Assay
MDA-MB-231 and SKBR3 cells in logarithmic growth phase were inoculated into six-well plates and cultured for 24 
h. The original medium was discarded and 2 mL of medium, medium containing LDHs, SIM and LDHs-SIM were added 
correspondingly. After 48 h of treatment, the groups of cells were collected and protein extracts were prepared in the ratio 
of 1 mL of cell lysate to 10 μL of phenyl methyl sulfonyl fluoride (PMSF). Protein levels were quantified by the bis 
quinolinic acid (BCA) method. Protein samples were separated by SDS-PAGE gel electrophoresis, transferred to 
polyvinylidene difluoride (PVDF) membranes, blocked with skim milk, and incubated with primary and secondary 
antibodies. Finally, the protein expression of GPX4, HMGCR, SLC7A11, Bcl-2 and Bax in each group was observed on 
a gel imager (ChemiDocTMXRS+, Bio-Rad). (The primary antibody dilution ratios used were all 1:1000, Secondary 
antibody is 1:1000).

Treatment of Tumor-Bearing Mice
The xenograft tumor model is generated by subcutaneous injection of 5×105 SKBR3 cells/100 μL of saline into the right 
flank region of mice. After 10 days, upon tumor growth to a volume of about 50mm3, a tumor-bearing model was 
established. The mice were grouped as follows: The control group, LDHs group, SIM group and LDHS-SIM group. 
According to the standard SIM injection concentration of 20 mg/kg, the corresponding material concentration was 
allocated, and the PBS containing LDHs-SIM, LDHs, SIM, and PBS were injected peritumorally (n = 5). The injection 
frequency was 2 days, and injections were administered for 10 days; the weight and tumor volume were recorded. The 
tumor volume was calculated according to this formula: tumor volume (mm3) = 0.5× (length×width2).

Hematoxylin and Eosin Staining (H&E) and Immunohistochemical (IHC) Analysis
The day after peritumoral injection of drugs for 10 days (Day 11), all mice were sacrificed. The viscera (heart, liver, 
spleen, lung, and kidney) and SKBR3 breast cancer tissues of the mice were fixed in 4% paraformaldehyde, embedded in 
paraffin and sliced to a thickness of ≈3 µm. Conventional hematoxylin-Iran Hematoxylin and Eosin (H&E staining) were 
used to perform routine histopathological analysis. Anti-Ki67 antibody staining was used for Ki67 proliferation detection 
using the following steps: incubation at 4 °C overnight, followed by washing with PBS, incubation with the secondary 
antibody (green fluorescence) for 2 h, re-staining with DAPI, washing with PBS, and sealing with glycerol. Similarly, the 
GPX4 IHC index of tumor tissue was detected. TUNEL apoptosis was detected using a TUNEL Apoptosis Assay Kit. 
Each section was dripped with 50 µL of detection liquid, incubated at 37 °C for 60 min, and washed with PBS.

Statistical Analysis
All data were presented as mean ± standard deviation (SD). t-test was used to compare the differences between the two 
groups. One-way ANOVA analysis of variance was used to analyze differences among three or more groups. Statistical 
analysis was performed using the GraphPad Prism 8.0 Software. The significant difference was labeled as *p < 0.05, **p 
< 0.01, and ***p < 0.001.

Results
Preparation and Characterization of Layered Double Hydroxides and Layered Double 
Hydroxides-loaded Simvastatin
Figure 1A depicts the preparation process for LDHs and LDHs-SIM using the hydrothermal co-precipitation method. Our 
findings indicate that LDHs and LDHs-SIM were successfully prepared. First, the average particle sizes of LDHs and 
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LDHs-SIM were 155.6 ± 3.6 nm and 265.5 ± 1.3 nm, respectively, according to dynamic light scattering (DLS). Both 
particle size distributions were relatively dense, and changes in particle size distribution were consistent with volume 
changes before and after loading the LDHs drug (Figure 1B). LDHs Zeta potential and LDHs-SIM average potentials 
were 23.0 ± 1.9 mV and - 14.1 ± 2.1 mV, respectively. The Zeta potential of the LDHs changed from positive to negative 
before and after SIM loading, most likely due to the drug changing the potential of the carrier (Figure 1B). The drug 
loading of LDHs-SIM is determined based on the standard curve of SIM (Figure S1), and its drug loading is measured by 
ultraviolet spectrophotometer. As shown in Table 1, the drug loading of LDHs-SIM is 26.7% ± 1.8%. The presence of 
characteristic diffraction peaks (003), (006), and (012) for LDHs was shown in Figure 1C, indicating the integrity of their 
crystal structure. On the other hand, the XRD pattern of LDHs-SIM is flatter, most likely due to drug loading, which 
results in weaker diffraction peaks. The absorption peaks of the •OH stretching of the adsorbed water molecules in the 
lamellar structure of LDHs can be seen between 3000 cm−1 and 3500 cm−1 in the FT-IR pattern (Figure 1D). In addition, 
the bending vibration of water molecules formed an absorption peak between 1500 cm−1 and 2000 cm−1, and the 
absorption peaks formed between 1000 cm−1 and 1500 cm−1 and below 800 cm−1 were Mg-O and Fe-O bond vibrations 
in the lattice of LDHs. It indicates that we can use the hydrothermal co-precipitation method to load Mg2+ and Fe3+ into 
it. The LDHs-SIM have the characteristic peaks of both LDHs and SIM, and no new chemical bonds are formed, 
indicating that SIM is successfully loaded into LDHs and is physically bound together. There are no electron micrographs 
or thermogravimetric results. LDHs carriers are typical hexagonal lamellar wafers with distinct contours and clear 
dispersion boundaries, as shown in Figure 1E. With the intercalation of simvastatin drug molecules, the morphology of 

Figure 1 (A) Flow chart of LDHs-SIM preparation; (B) Size distribution of LDHs and LDHs-SIM, with PDI representing the polymer dispersion index; (C) XRD patterns of 
LDHs, SIM and LDHs-SIM; (D) FT-IR spectra of LDHs, SIM and LDHs-SIM; (E) TEM images of LDHs and LDHs-SIM at a scale of 50 nm.

Table 1 The size, PDI, zeta potential and drug loading og LDHs-SIM

Sample Size (d. nm) PDI Zeta potential (mV) Drug loading(%) a

LDHs 155.6 ± 3.6 0.279 ± 0.03 23.0 ± 1.9 –
LDHs-SIM 265.5 ± 1.3 0.216 ± 0.01 − 14.1 ± 2.1 26.7 ± 1.8

Note: aDrug loading% ¼ Concentration of SIM in LDHs� SIM
Concentration of feeding simvastatin � 100%.
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nanocomposite particles gradually becomes irregular from regular hexagons, but their sheet structure is visible. 
Simultaneously, the particle size of nanocomposite particles tends to increase. The percentage of drug release was 
studied in acidic (pH = 6.2 to simulate the tumor microenvironment: TME) and neutral (pH = 7.4 to simulate 
physiological conditions) environments. Within 240 minutes, only 46.7% of the drug was released at pH = 7.4, but 
this percentage increased to 53.5% at pH = 6.2, suggesting that TME may help release the drug (Figure S2).

In vitro Drug Toxicity and Cell Uptake Analysis
CCK-8 experiments revealed that different concentrations of free SIM and LDHs-SIM inhibited the proliferation of 
MDA-MB-231 and SKBR3 cells for 48 hours. Different concentrations of SIM and LDHs-SIM differed significantly 
within 48 hours in MDA-MB-231 and SKBR3 cells, as shown in Figure 2A. In contrast, the two breast cancer cells 
treated with LDHs-SIM showed dose-dependent cytotoxicity as concentrations increased from 2.5 to 10 μM. In order to 
explore whether SIM and LDHs-SIM have toxic effects on normal breast cells, we selected human breast epithelial cells 
MCF10A cells and compared them at the same concentration. The results showed that SIM and LDHs-SIM had no toxic 
effect on MCF10A cells at the selected concentration. Low concentrations (2.5 μM and 5 μM) of SIM have a growth- 
promoting effect on MCF10A.

We examined the internalization of LDHs-SIM-FITC by MDA-MB-231 and SKBR3 cells by CLSM to confirm 
successful delivery of LDHs-SIM to target cells. Figure 2B shows that MDA-MB-231 and SKBR-3 can absorb LDHs- 
SIM in 4 hours and that the fluorescence decreases with time, indicating drug consumption. The location of LDHs-SIM 
in MDA-MB-231 and SKBR3 breast cancer cells was also investigated. Lyso-Tracker Red is a lysosomal red fluorescent 
probe that penetrates cell membranes and can be used to stain lysosomes in living cells. As shown in Figure 2C, when 
cells take up LDHs-SIM, the red lysosomal and green fluorescence overlap, indicating that the nanocarrier can be 
internalized via the lysosomal pathway. Acridine orange (AO) is a lysosomal metachromatic fluorescent dye that glows 
red in lysosomes and green in the cytoplasm. As shown in Figure 2D, cells in the control group showed evident red 
fluorescence. In contrast, cells incubated with LDHs-SIM showed weak red and apparent green fluorescence. It indicates 
that lysosomal membrane permeability increased after LDHs-SIM treatment, and some AO dyes entered the cytoplasm. 
In conjunction with lysosomal experimental findings, the mechanism of LDHs-SIM escape from the lysosomal pathway 
may be that LDHs-SIM can reduce the risk of drug clearance by lysosomes in cells, which is conducive to improving 
drug delivery efficiency.

In vitro Ferroptosis and Apoptosis Analysis
Ferro Orange was used in cells as a Fe2+ detection reagent to investigate the phagocytosis characteristics of nanoparticles 
and to confirm the transformation of Fe3+ to Fe2+. As shown in Figure 3A, when MDA-MB-231 and SKBR3 cells were 
treated with LDHs and LDHs-SIM, there was apparent orange fluorescence. In contrast, the control and free SIM groups 
had very little orange fluorescence, indicating that nanoparticles can produce a large amount of Fe2+ in cells, which is 
conducive to the occurrence of the ferroptosis Fenton reaction.25 According to research, tumor cells have higher levels of 
H2O2 and glutathione than normal cells, while intracellular pH is weakly acidic.26 Furthermore, the basic nanoparticles 
LDHs-SIM proposed by us can release Fe3+ in slightly acidic tumor cells and be reduced to Fe2+ by GSH, resulting in 
GSH depletion in tumor cells, which is also an essential manifestation of ferroptosis. As shown in Figure 3B, the LDHs 
and SIM groups significantly inhibited the GSH content of MDA-MB-231 and SKBR3 cells (p < 0.05) compared to the 
control group.

According to some, the lethality of ferroptosis is primarily due to the formation of excess lipid reactive oxygen 
species.27 The LPO probe can bind to lipid-reactive oxygen species in cells. LPO content was determined using the 
fluorescence intensity response lipid reactive oxygen species content, as shown in Figure 3C. The results showed that 
after LDHs-SIM treatment, the content of LPO in MDA-MB-231 and SKBR3 cells was significantly higher than in the 
free SIM treatment group (p < 0.001).

The Fenton reaction is well known for producing ROS from ferrous ions. We know from the above experiments that 
LDHs-SIM causes increased Fe2+ content in tumor cells. 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) is used as 
a fluorescent probe to detect ROS generation and observe ROS generation visually. Flow cytometry was used to detect 
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Figure 2 (A) The cell viability of MDA-MB-231, SKBR3 and MCF10A after 48 h treatment with LDHs, different concentrations of SIM and LDHs-SIM. (B) Confocal images 
of LDHs-SIM-FITC and nuclei (DAPI) at different time points in MDA-MB-231 and SKBR3 cells, scale bar: 20 μm; (C) After 48 h of incubation, localize LDHs-SIM-FITC cells 
in MDA-MB-231 versus SKBR3 cells and label with Hoechst (blue) and Lyso-tracker Red (red) to distinguish nuclei and lysosomes, respectively, scale bar: 200 μm; (D) 
Acridine Orange staining (green and red fluorescence distribution) for lysosomal membrane permeability, scale bar: 200 μm. Data are expressed as mean ±SD, **P < 0.01, 
***P < 0.001. # stands for statistics with Control, #P < 0.1, ###P < 0.001.
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Figure 3 (A) Fe2+ in each group of MDA-MB-231 and SKBR3 cells taken by live-cell workstation, scale: 200 μm; (B) The kit detected the GSH content of each group of 
MDA-MB-231 and SKBR3 cells after treatment; (C) Flow cytometry to detect the LPO content of MDA-MB-231 and SKBR3 cells in each group after drug treatment; (D) 
Flow cytometry to detect the ROS content of MDA-MB-231 and SKBR3 cells in each group after drug treatment; (E) Representative images of apoptosis within 48 hours of 
MDA-MB-231 and SKBR3 cells after treatment with different group. Data are expressed as mean ±SD, *P < 0.05, **P < 0.01, ***P < 0.001.
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ROS production in MDA-MB-231 and SKBR3 cells, as shown in Figure 3D, and LDHs-SIM could significantly induce 
ROS production in cells compared to the SIM-treated group (p < 0.01, p < 0.001).

SIM and LDHs-SIM can both induce apoptosis in MDA-MB-231 and SKBR3 cells, according to flow cytometry 
analysis (Figure 3E). According to the apoptosis rate indicated in the figure, in MDA-MB-231 cells, the apoptosis rate of 
the LDHs-SIM group was about 1.86 times that of the SIM group and 4.26 times that of the Control group; in SKBR3 
cells, the apoptosis rate of the LDHs-SIM group was about 1.95 times that of the SIM group and 4 times that of the 
Control group. LDHs-SIM induces apoptosis more effectively than free drugs (p < 0.001, p < 0.01).

In addition, we can confirm the presence of ferroptosis by using transmission electron microscopy to examine the 
morphological changes in MDA-MB-231 and SKBR3 cells. Figure 4A shows that after 48 hours of SIM and LDHs-SIM 
treatment, cancer cells had increased density of mitochondrial membranes and decreased density of mitochondrial crest 
compared to the blank-treated group and LDHs, which are typical morphological features of ferroptosis and were most 
pronounced after LDHs-SIM treatment.

Statins are small molecule inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) that can affect the 
MVA pathway to control cholesterol biosynthesis, inhibiting some metabolites and inactivating GPX4.28,29 GPX4 is 
a well-known key indicator for determining whether a cell has ferroptosis. To further investigate LDHs-SIM-induced 
ferroptosis, we used Western blot to look at the effect of LDHs-SIM on the MVA pathway in MDA-MB-231 and SKBR3 
cells. As shown in Figure 4B, adding SIM and LDHs-SIM reduced the expression of GPX4 and HMGCR proteins in 
MDA-MB-231 and SKBR3 cells compared to the control group. LDHs-SIM was more effective on GPX4 and HMGCR 
protein expression than the control group. Furthermore, previous research has shown that LDHs-SIM can cause 
ferroptosis by depleting GSH. SLC7A11 is a key protein in GSH synthesis, so we included it in the study. The results 
showed that LDHs-SIM can reduce SLC7A11 expression and thus inhibit GSH synthesis.

Therapeutic Effect in vivo
A tumor-bearing mouse model of SKBR3 breast cancer was established and randomly divided into four groups, as shown 
in Figure 5A: PBS, LDHs, free SIM, and LDHs-SIM. Peritumor injection treatment began at approximately 60 mm3, and 
mouse weight and tumor volume were monitored once every two days, during which time tumor growth in different 
groups of mice was documented using hand-held mouse photographs (Figure 5B) until all mice were sacrificed on day 10 
(Figure 5C). Figure 5E shows no significant change in mouse body weight across all treatment groups, indicating that the 
nanodrug loading system was low toxicity and biologically safe. In Figure 5F, the relative tumor volume of the PBS 
group increased rapidly due to the malignant growth of SKBR3 tumors, the tumor volume of the LDHs group was no 
different from that of the PBS group, essentially did not show a therapeutic effect, and the free SIM showed a particular 
tumor suppressive effect. In contrast, the LDHs-SIM group could effectively reduce tumor growth (p < 0.001), show 
smaller tumor size (p < 0.05), and have a lighter tumor weight (p < 0.01), indicating that the nanodrug delivery system 
can effectively inhibit tumors compared to monotherapy. In vitro photographs of tumors and corresponding tumor 
volumes and weights show synergistic therapeutic effects (Figures 5D, G, and H).

To further confirm the therapeutic effect of LDHs-SIM nanoplatform, hematoxylin and eosin were used to analyze 
different treated tumor tissues (H&E), TUNEL and Ki67 staining (Figure 6A). From the H&E staining results, it is clear 
that most pink tumor cells are present in the LDHs-SIM group compared to other treatment groups, indicating that they 
are effective in damaging tumor tissue. The results of TUNEL showed that the apoptosis rate of mouse tissue in LDHs- 
SIM was significantly higher than that in other treatment groups. For the Ki67 assay, the lowest positive brownish-yellow 
signal was detected in the LDHs-SIM group, indicating that they can effectively inhibit tumor proliferation. 
Immunohistochemical analysis of tumor GPX4 expression in different groups of mice showed that the LDHs-SIM 
treatment group was significantly lower than that in the free SIM treatment group, which was consistent with the previous 
results at the cell level (Figure 6A).More importantly, as shown in Figure 6B, the H&E results show that neither LDHs 
nor LDHs-SIM cause damage to the heart, liver, spleen, lungs and kidneys of mice during the treatment process, 
indicating that the nanodrug-loaded system has good biocompatibility and has good application prospects in cancer 
treatment.
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Figure 4 (A) Mitochondrial transmission electron microscopy images of MDA-MB-231 and SKBR3 cells treated with Control, LDHs, SIM and LDHs-SIM treatment (scale 
bar =1 μm). (B) GPX4, HMGCR, SLC7A11, Bax, Bcl-2 protein expression and quantification of MDA-MB-231 cells and SKBR3 treated with Control, LDHs, SIM and LDHs- 
SIM; (C) Schematic diagram of LDHs-SIM induced apoptosis and ferroptosis mechanisms. Data are expressed as mean ±SD, *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 5 (A) Flow chart of LDHs-SIM in vivo treatment of xenograft tumors; (B) Pictures of subcutaneous implanted tumors in nude mice on day 8 of different treatment 
groups; (C) Tumor growth status of each treatment group after treatment; (D) Digital photographs of anatomical tumors in each group; (E) Variation of body weight curves 
over time in different nude mouse treatment groups; (F) curves of tumor volume growth over time in different treatment groups; (G) tumor volume after dissection of mice 
in each group; (H) Tumor weight after dissection of mice in each group. Data are expressed as mean ± standard deviation (mean ±SD) of five mice per group. *p < 0.05, **p 
< 0.01, ***p < 0.001.
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Discussion
In view of the occurrence of metastasis and recurrence of breast cancer, new drugs are gradually being sought in clinical 
practice to expect the antiseptic effect of superior to chemotherapy drugs. In recent years, statins have emerged in tumor 
treatment and can inhibit the expression of GPX4 through the MVA pathway,30 which is an important regulator of iron atrophy 
cell death,31 so statins can promote a variety of signal transduction pathways such as ferroptosis in tumor cells to exert anti- 
tumor effects.22,32 However, its characteristics of poor water solubility and rapid metabolism greatly affect the transmission 
and accumulation in the tumor site. With the continuous development of nanotechnology, research is committed to using 
nanomaterials to change the dosage form of drugs to achieve the effect of improving the efficiency of drug delivery, which 
undoubtedly provides great convenience for the utilization and research and development of new anti-cancer drugs.33

In this work, we selected simvastatin as a therapeutic drug and constructed a nanodrug-loading system using layered 
double hydroxides-supported SIM. The unique ionic composition and sheet structure of the layered double hydroxides 
we chose allow us to change the ion combination according to the purpose of the study, and the drug is easily intercalated 
and sustained-release. As shown in Scheme 1, this study changed the classical combination of Mg-Al ions to Mg-Fe by 
constructing a layered double hydroxide nanodrug carrier system loaded with simvastatin, and the effect of iron oxidation 
initiating ferroptosis was achieved by the addition of Fe3+. LDHs are weakly alkaline materials that disintegrate in the 
acidic environment of tumor cells, releasing drugs and metal ions. As mentioned earlier, the content of GSH and H2O2 in 
tumor cells is high, so in breast cancer cells, the nanosystem collapses and releases Fe3+ in which GSH reduces Fe3+ to 
Fe2+, triggering the Fenton reaction and increasing ROS content, which further acts on unsaturated fatty acids to produce 
LPO and induce ferroptosis. In addition, GSH depletion is a key indicator of cell-borne iron zosis.27 At the same time, 
SIM inhibits GPX4 activity through the MVA pathway, and at the same time, SIM inhibits SLC7A11 expression and 
blocks GSH synthesis, thereby causing ferroptosis. Importantly, GPX4 knockout has been shown to induce apoptosis in 
glioma cells.34 Therefore, we expect that this nanodrug-loaded system can synergize with ferroptosis and apoptosis to 
inhibit the occurrence of breast cancer.

In this study, we first construct and characterize the nanodrug-loaded system. After synthesis, the characteristics such as 
carrier size, shape, potential and stability were detected by the classic hydrothermal co-precipitation method, and whether the 
material was successfully constructed. The size, zeta potential and shape of the carrier are the key criteria for the success of 
drug delivery, and through DLS detection, the addition of SIM does not make the particle size of the material too large, and 

Figure 6 (A) H&E, ki67, TUNEL, GPX4 staining results of tumor sections in different treatment groups (scale bar = 20 μm); (B) H&E staining images of heart, liver, spleen, 
lung, kidney and other organs treated with different materials (scale bar = 50 μm).
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makes the material negatively charged, ensuring stability and dispersion, making it easier to achieve drug delivery through the 
cell membrane. Transmission electron microscopy analysis confirmed the successful construction of LDHs-SIM. In addition, 
XRD and Fourier infrared spectroscopy results indicate that we constitute a material with intact crystal structure, and the 
retention of SIM characteristic peaks indicates successful loading of the drug.

We selected two different subtypes of breast cancer cells: MDA-MB-231 and SKBR3 cells, firstly, we preliminarily explored 
the cytotoxicity of free drugs and drug-loaded systems on both cells, and the cytotoxicity of the drug-loaded group was always 
better than that of the SIM group at different concentrations, which indicates that the nanodrug-loaded system we constructed has 
obvious therapeutic potential superior to SIM. In addition, the empty carrier did not exhibit cytotoxicity, and there is reason to 
suspect that the Fe3+ released by LDHs is not enough to trigger cancer cell death, on the other hand, it reflects the biological safety 
of the material. Use this toxicity result to determine the concentration of subsequent drug treatment. We used fluorescence 
photography to detect the internalization of LDHs-SIM by two types of cells intracellular localization, and the results showed that 
LDHs-SIM can be successfully taken up into cells within 4 hours for further action, and over time, the fluorescence intensity 
decreases, which may be that the drug is consumed by the action. The lysosomal escape experiment used Lysotracker to first 
locate the drug to lysosomes, emphasizing that the drug is captured by lysosomes, and the AO kit showed that LDHs-SIM can 
increase lysosomal membrane permeability and escape its capture, greatly improving the efficiency of drug action.

The following is the verification of LDHs-SIM in inducing ferroptosis in two breast cancer cells, first of all, it needs 
to be clear that the key factors for ferroptosis include elevated Fe2+ levels, excess ROS, depletion of GSH, lipid 
peroxidation, and insufficient expression of key protein GPX4. Based on established mechanisms of ferroptosis 
morbidity, we validated key indicators of ferroptosis. First, the Ferro Orange probe results showed that only LDHs 
and LDHs-SIM groups had significant fluorescence reactions, which verified that the nanodrug delivery system could 
release Fe3+ and reduce to Fe2+ in tumor cells, causing an increase in ferrous ions in tumor cells. In addition, the GSH 
assay kit was used to detect the corresponding levels of GSH in both cells, as excess GSH in TME may eliminate already 
produced ROS and maintain homeostasis required for tumor growth. The LDHs-SIM group experienced a significant 
decrease in intracellular GSH levels compared to other treated groups. This result suggests that LDHs-SIM nanodrug 
delivery systems may reduce GSH levels in tumor cells and break redox homeostasis, further amplifying the therapeutic 
effect. The results of flow cytometry showed that both SIM and LDHs-SIM could increase the level of ROS in breast 
cancer cells, but the effect of LDHs-SIM was significantly higher than that of other treatment groups. The results of 
Western blot showed that LDHs-SIM could significantly inhibit the protein expression of HMGCR and GPX4 in two 
cells, and it was verified that LDHs-SIM could release SIM to inhibit GPX4 expression through the MVA pathway, and 
the effect was better than that of free SIM. Members of the solute carrier family SLC7A11 are specific amino acid 
transporters and key regulators of ferroptosis, and down-regulation of SLC7A11 can inhibit the activity of GPX4 by 
inhibiting cysteine metabolic pathways, leading to reduced intracellular cystine levels and depletion of GSH biosynthesis, 
which in turn leads to lipid peroxide accumulation and ultimately induces ferroptosis in cells. The Western blot results 
showed that LDHs-SIM could downregulate the expression of SLC7A11 in both cells. As mentioned earlier, the 
inactivation of GPX4 inhibits the conversion of lipid peroxides to lipid alcohols and promotes the accumulation of 
lipid peroxide levels. It is known that ferroptosis depends primarily on an imbalance between lipid hydrogen peroxide 
detoxification mechanisms and lipid ROS accumulation. Excessive accumulation of lipid hydrogen peroxide activates 
iron toxicity and cell death. So, we think the degree of lipid peroxidation is the most reliable indicator of ferroptosis. We 
explored the amount of LPO in cells to assess the level of lipid peroxidation, and not surprisingly, the LPO content 
increased significantly after LDHs-SIM treatment. Finally, we verified by morphology that the cells had ferroptosis, and 
the TEM visually showed characteristic changes in the mitochondria of MDA-MB-231 and SKBR3 cells treated with 
LDHs-SIM, with mitochondrial membrane shrinkage, while mitochondrial crest decreased or disappeared.

It has been suggested that the progression of breast cancer is largely determined by the apoptosis of tumor cells.21,35 

Therefore, compared with pure ferroptosis induction, we hope that the nanodrug-loaded system constructed can achieve 
the synergy of ferroptosis and apoptosis. As mentioned earlier, low levels of GPX4 expression can lead to apoptosis, and 
one of the key proteins linking the two has been reported.21 Through flow cytometry analysis, we have preliminarily 
defined the pro-apoptotic effect of LDHs-SIM on breast cancer cells. Further exploration by Western blot, SIM and 
LDHs-SIM significantly activated apoptotic protein Bax and reduced Bcl-2 levels.
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In summary, as shown in Figure 4C, the mechanism by which LDHs-SIM kills breast cancer cells synergistically 
through ferroptosis and apoptosis can be roughly described, LDHs-SIM is internalized by breast cancer cells by 
endocytosis and escapes lysosomal capture, given the alkaline nature of the material, it is disintegrated by pH response 
in the acidic environment of tumor cells. A large amount of Fe3+ released will consume GSH and be reduced to Fe2+, and 
excess ferrous ions in the cell can induce a Fenton reaction leading to the production of a large amount of ROS, which in 
turn induces lipid peroxidation. The collapse interpretation of the nanodrug-loaded system can release SIM by inhibiting 
HMGCR and then inhibiting GPX4 through the MVA pathway, and at the same time, SIM can inhibit the expression of 
membrane transporter SLC7A11, interfere with the synthesis of intracellular GSH, cause the depletion of intracellular 
GSH, and lead to the occurrence of ferroptosis.

Conclusion
In summary, this Mg-Fe-LDHs-SIM nanoparticle shows a sensitive pH-release behavior. On the one hand, the research 
revealed that Mg-Fe-LDHs-SIM nanoparticles could induce cell death by the ferroptosis pathway. Moreover, the detailed 
mechanism suggested that Mg-Fe-LDHs-SIM nanoparticles could greatly promote the synthesis of reactive oxygen 
species (ROS), suppress the GPX4 activity, produce lots of lipid peroxide (LPO), and thus result in enhancing the 
oxidative stress induced ferroptosis. On the other hand, Mg-Fe-LDHs-SIM entered the cell for induction of breast cancer 
cell apoptosis. The apoptosis ratio of the Mg-Fe-LDHs-SIM group was higher than those obtained with the control, 
LDHs and Simvastatin groups. In vitro and in vivo investigations indicate that a great therapeutic effect was achieved, 
suggesting that the formation of the Mg-Fe-LDHs-SIM delivery system is a promising strategy to fight against tumors by 
an apoptosis and ferroptosis combination modality.
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