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Purpose: The prevalence of obstructive sleep apnea (OSA) is high worldwide. This study aimed to quantify the relationship between 
the incidence of OSA and sleep patterns and genetic susceptibility.
Methods: A total of 355,133 white British participants enrolled in the UK Biobank between 2006 and 2010 with follow-up data until 
September 2021 were recruited. We evaluated sleep patterns using a customized sleep scoring method based on the low-risk sleep 
phenotype, defined as follows: morning chronotype, 7–8 hours of sleep per day, never/rarely experience insomnia, no snoring, no 
frequent daytime sleepiness, never/rarely nap, and easily getting up early. The polygenic risk score was calculated to assess genetic 
susceptibility to OSA. Cox proportional hazard models were used to evaluate the associations between OSA and sleep patterns and 
genetic susceptibility.
Results: During a mean follow-up of 12.57 years, 4618 participants were diagnosed with OSA (age: 56.83 ± 7.69 years, women: 
31.3%). Compared with those with a poor sleep pattern, participants with a normal (HR: 0.42, 95% CI: 0.38–0.46), ideal (HR: 0.21, 
95% CI: 0.19–0.24), or optimal (HR: 0.15, 95% CI: 0.12–0.18) sleep pattern were significantly more likely to have OSA. The genetic 
susceptibility of 173,239 participants was calculated, and the results showed that poor (HR: 3.67, 95% CI: 2.95–4.57) and normal (HR: 
1.89, 95% CI: 1.66–2.16) sleep patterns with high genetic susceptibility can increase the risk for OSA.
Conclusion: This large-scale prospective study provides evidence suggesting that sleep patterns across seven low-risk sleep 
phenotypes may protect against OSA in individuals with varying degrees of genetic susceptibility.
Keywords: obstructive sleep apnea, sleep phenotype, sleep pattern, healthy sleep score, genetic susceptibility, polygenic risk score

Introduction
Obstructive sleep apnea (OSA) is a heterogeneous and complex disease1 associated with various physiological factors, 
such as upper airway structural changes,2 cardiovascular risk factors,3 and serotonin levels.4 According to the American 
Academy of Sleep Medicine 2012 diagnostic criteria, approximately 936 million adults aged 30–69 years worldwide 
experience mild to severe OSA, and 425 million adults are affected by moderate to severe OSA. OSA affects nearly 
1 billion individuals, with prevalence rates exceeding 50% in some countries.5
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Sleep phenotypes encompass numerous sleep characteristics, including sleep duration, quality, and pattern.6 Sleep 
phenotypes have been associated with borderline personality disorder,7 cardiometabolic diseases,6 increased health risks,8 

and OSA.9 Short sleep duration is a risk factor for OSA,10 and long sleep periods are associated with OSA-related 
diseases such as diabetes11,12 and cognitive impairment.13 However, our understanding of the associations between sleep 
patterns and OSA is currently lacking. Nocturnal insomnia14 and morning and evening chronotypes15 are associated with 
OSA. In most previous studies, sleep phenotypes were evaluated separately without considering the complexity and 
correlation of various phenotypes in individuals. However, these sleep phenotypes are often relevant and may be affected 
in a coordinated manner; changes in one phenotype often lead to compensatory changes in other sleep phenotypes.16 In 
addition, whether other sleep phenotypes are related to OSA is still worthy of exploration.17 Therefore, assessing sleep 
patterns according to sleep phenotypes may comprehensively reveal the combined effects of these phenotypes on OSA 
and promote the development of personalized treatment, prognostic assessment, and patient selection in clinical trials.

Research on genetic susceptibility has revealed genetic associations with OSA.18,19 A meta-analysis and genome-wide 
association study (GWAS) of Chinese individuals and Biobank Japan revealed multiple variants associated with OSA.20,21 The 
large-cohort FinnGen Study22 and a Hispanic/Latino American study also showed an association between genetic susceptibility 
and OSA.23 However, the underlying biological knowledge gained from GWAS-discovered single nucleotide polymorphisms 
(SNPs) is limited.24 Determining genetic susceptibility according to multiple SNPs may accurately reveal the genetic risk of OSA.

In general, both genetic and phenotypic factors contribute to the development of OSA.20 We aimed to identify 
comprehensive risk factors for OSA by assessing the association between sleep patterns and the incidence of OSA in 
a prospective study. Through this approach, we estimated the potential reduction in OSA cases that could be achieved if 
all participants were to adopt healthy sleep patterns. The main approach involved assessing the quality of sleep patterns 
by assigning healthy sleep scores to participants according to five sleep phenotypes. Subsequently, the effect of sleep 
patterns on the occurrence rate of OSA was evaluated, considering genetic risk factors.

This study was designed to provide updated evidence regarding the association between sleep patterns, genetic suscept
ibility, and OSA. To the best of our knowledge, this study is the first to combine five sleep phenotypes with healthy sleep 
scoring and genetic risk for OSA. This OSA risk analysis could help predict clinical chronic OSA earlier, more effectively, and 
more accurately. Additionally, our study provides clinicians with effective prevention recommendations.

Methods
Study Population
The study included participants from the UK Biobank. The UK Biobank is a forward-looking cohort study of the natural 
population that recruited over 500,000 participants aged 37–73 years from 2006 to 2010; follow-up was conducted to 
record personal epidemiological and genetic data.25 Health-related conditions were obtained through regular linkages to 
national electronic health-related datasets. Inpatient hospital data were updated periodically from the Hospital Episode 
Statistics database, the Scottish Morbidity Record, and the Patient Episode Database in England, Scotland, and Wales, 
respectively, which have been available to all UK Biobank participants since 1997.26 We obtained data usage and 
analysis permission from the UK Biobank team (Application No. 77803) for this study on the characterization of genetic 
and phenotypic aspects of OSA.

To minimize potential confounding factors related to racial diversity, we excluded nonwhite British participants from 
the analysis. This exclusion criterion specifically refers to individuals not identifying as white British participants. 
Participants who did not answer any questions about the seven sleep phenotypes (details in the next section) in the initial 
assessment (N = 87,994), participants missing body mass index (BMI) data (N = 7,631), and those missing demographic 
information on other covariant-related factors (N = 13,362) were excluded. To obtain a true association between sleep 
phenotypes and OSA, we excluded those who had OSA at the time of inclusion and those who self-reported OSA at the 
time of admission (Figure 1).

Participants who snore were excluded from the genetic susceptibility analysis to prevent false associations with genes 
related to snoring.22
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Assessment of Low-Risk Sleep Phenotypes
Seven sleep phenotypes obtained through a touchscreen questionnaire and generated by the assessment center environ
ment (ACE) system (UK Biobank Resource 113241) were extracted from the sleep-related category (UK Biobank 
Category 100057) to define low-risk sleep phenotypes.

1. The “sleep 7–8 hours per day” phenotype was accessed from the answer to the following question: “About how 
many hours do you sleep every 24 hours?” (Data Field 1160). In the main analysis, the variables were analyzed at 
three levels: short sleep time (≤6 hours/day), normal sleep time (7–8 hours/day), and long sleep time (≥9 hours/ 
day), consistent with previous studies.27

2. The phenotype “easily getting up early” was evaluated by the following question: “Do you think you get up early?” 
(Data Field 1170); the ACE system provides five answers: (i) not easy at all, (ii) not easy, (iii) easy, (iv) very easy, 
and (v) unwilling to answer. Answers (iii) and (iv) were recognized as “easily getting up early”.

3. The “morning chronotype” phenotype was evaluated by the following question: “You think you’re (i) a morning 
person, (ii) a person whose morning is more than evening, (iii) a person whose evening is more than morning, or 
(iv) a night person?” (Data Field 1180). Answers (iii) and (iv) were recognized as morning chronotypes.

4. The “never/rarely nap” phenotype was assessed through the following question: “Do you nap during the day?” 
(Data Field 1190). The ACE answers were (i) never/rarely, (ii) sometimes, and (iii) often. Answers (i) and (ii) were 
recognized as never/rarely nap.

5. The “never/rarely insomnia” phenotype was obtained by asking, “Do you have difficulty sleeping at night or 
waking up in the middle of the night?” (Data Field 1200), and the answers were (i) never/rarely, (ii) sometimes, or 
(iii) normally.

6. The “no snoring” phenotype information was collected by asking, “Do your partner or next of kin or friend 
complain about your snoring?” (Data Field 1210), and the ACE answer was (i) yes or (ii) no.

7. The “no frequent daytime sleepiness” phenotype was assessed by asking, “How likely are you to undoor fall asleep 
during the day?” (Data Field 1220). The answers were (i) never/rarely, (ii) sometimes, (iii) often, or (iv) 
consistently. Answers (i) and (ii) were recognized as no frequent daytime sleepiness.

For all sleep phenotypes, answers “do not know” or “prefer not to answer” were encoded as missing data.

Figure 1 Study design. 
Abbreviations: OSA, obstructive sleep apnea; GWAS, genome-wide association study; PRS, polygenic risk score.
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Definition of a Healthy Sleep Score and Pattern
Five low-risk sleep phenotypes were used to evaluate sleep patterns in a prospective study of the effect of sleep pattern 
on disease risk,16 including morning chronotype, 7–8 hours of sleep per day, never/rarely experience insomnia, no 
snoring, no frequent daytime sleepiness, never/rarely nap, and easily getting up early. In our study, two additional sleep 
phenotypes, never/rarely nap and easily getting up early, were added to the low-risk sleep phenotypes, which were 
summarized into healthy sleep scores. The participants received a score of 1 if classified as low risk or 0 if they were at 
high risk for each phenotype. A healthy sleep score ranging from 0 to 7 was summed, and higher scores indicated 
a healthier sleep pattern. Sleep patterns were defined as “optimal sleep pattern” (healthy sleep score ≥6), “ideal sleep 
pattern” (≤4 healthy sleep score ≤5), “normal sleep pattern” (≤2 healthy sleep score ≤3), or “poor sleep pattern” (healthy 
sleep score ≤1).

Outcome
The diagnosis of medical conditions was obtained through hospitalization data from the UK Biobank. Similar to previous 
studies, we used data from the UK Biobank’s hospital inpatient records (Data Field 41270) and death registry (Data Field 
40001) to define OSA according to the International Classification of Diseases and Related Health Problems, 10th 
Revision (ICD-10) codes G473,22 which pertain to relevant health issues.

Participants who reported having OSA or sleep apnea before the baseline assessments or within 3 months of follow- 
up were excluded. Using the baseline as the reference point, individuals who had OSA recorded as the primary cause of 
hospitalization (Data Field 41270) or in the death registry (Data Field 40001) during the follow-up period were classified 
as incident cases of OSA. The endpoints in the analyses were the date of the first inpatient diagnosis of OSA (Data Field 
41280) or the date of death for those who died during the follow-up period without inpatient records relating to OSA 
(Data Field 40000). The remaining participants were considered controls. The endpoint for those without OSA and who 
were alive during the follow-up period was December 30, 2021. The total follow-up time for each participant was 
calculated to obtain the survival time analyzed in this study.

Polygenic Risk Score
We conducted standard quality control of white British participants in the UK Biobank. Briefly, we restricted our 
analyses to autosomal biallelic SNPs and removed variants with a call rate <98%, genotyping rate <98%, minor allele 
frequency <0.01%, or deviation from Hardy‒Weinberg equilibrium (p <10−6), leaving 420,286 participants for further 
analysis (Figure 1).

The polygenic risk score (PRS), an objective indicator of the genetic basis of a disorder, was used to establish the 
presence of a genetic signal and index the underlying genetic burden of a trait.28 Due to human heterogeneity and the 
possible limited portability between populations,29 we conducted GWAS and PRS by randomly splitting participants base 
and target datasets (Figure 1). We analyzed the case–control ratio imbalance using a scalable and accurate generalized 
mixed model (SAIGE) with saddle point approximation (SPA) and a model adjusted for covariate sex, age, and the first 
four principal components (PCs).30

The PRS of the target data for OSA was calculated as the weighted sum of the risk alleles according to the summary 
statistics of the GWAS results mentioned earlier using the standard clumping + thresholding (C+T) approach. The 
hyperparameters were the cutoff of correlation r2 (0.05) and p-value threshold (5 × 10−6), and the window size was 1000 
Kb. The participants were classified as having high (<1st tertile), intermediate (1st–2nd tertile), or low (>2nd tertile) 
genetic susceptibility to OSA.

PLINK (version 1.9) and R software (version 4.0.2) were used for GWAS and PRS calculations.

Statistical Analysis
Baseline characteristics are presented as the mean ± standard deviation (SD) for continuous variables, and the Townsend 
deprivation index (TDI) are presented as the median with interquartile range and percentages for categorical variables. 
T-tests and chi-square tests were applied to compare the baseline characteristics between the OSA patients and the 
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controls. The Mann‒Whitney U-test was used for TDI. The TDI is a region-based alternative to socioeconomic status 
provided in the Biobank Study in the United Kingdom31 and is an indicator used to measure the socioeconomic 
environment of the population. The metabolic equivalent intensity (MET) is the metabolic rate during activity and the 
standard resting metabolic rate; MET 1 is the resting metabolism rate obtained while sitting quietly, MET 3–6 indicates 
moderate activity, and MET ≥6 indicates vigorous activity.32 Those with a BMI ≥30 kg/m2 were categorized into the 
obesity subgroup, and those with a BMI > 30 kg/m2 were categorized as nonobese. Men with a waist circumference ≥ 
102 cm and women with a waist circumference ≥ 88 cm composed the nonhealthy subgroup.33 Missing data were not 
estimated in the primary analysis.

Three Cox proportional hazards models31 were performed on the follow-up data to estimate the relationship between 
sleep phenotypes and OSA: (1) unadjusted; (2) adjusted for age and sex; and (3) adjusted for smoking status, alcohol 
consumption, waist circumference, TDI, BMI, MET, and history of hypertension and diabetes.

To incorporate follow-up time and accurately measure the frequency of OSA in patients per unit time in this 
prospective cohort study, we estimated the incidence density of sleep patterns (per 1000 person-years). To estimate the 
proportion of OSA that theoretically would not have occurred if participants had been in the low-risk sleep phenotype, 
the population attributable risk percent (PAR%) was calculated to estimate the reduction in cases in the population in the 
absence of the high-risk phenotype. We also plotted the multiple covariable-adjusted cumulative incidences of OSA 
according to sleep patterns and genetic risk.

Several sensitivity analyses were performed to validate our study outcomes’ robustness. Participants were stratified 
according to age, sex, BMI, smoking status, drinking status, and other variables, and sleep pattern scores were analyzed 
as continuous variables in various subgroups. Additionally, we excluded participants with snoring (ICD10: R065) as 
a comorbid condition and performed a sensitivity analysis as previously described.22

A weighted healthy sleep score was created according to seven sleep phenotypes using the following equation: 
weighted sleep score = (β1*s1 + β2*s2 + … + β7*s7) * (7/(β1+β2+.+β7)).16 The score ranges from 0 to 7 and considers 
the adjusted relative risk of each phenotype. We categorized the weighted sleep patterns as follows: “weighted optimal 
sleep pattern” (weighted healthy sleep score >6), “weighted ideal sleep pattern” (≤4 weighted healthy sleep score ≤6), 
“weighted normal sleep pattern” (≤2 weighted healthy sleep score <4), and “weighted poor sleep pattern” (weighted 
healthy sleep score <2). These categories may be useful in assessing sleep quality.

Data preprocessing was conducted using Python (version 3.9.10, Python Software Foundation, https://www.python.org/), 
and analyses were performed with R software (version 4.0.2, R Foundation for Statistical Computing, Vienna, Austria, 
http://www.R-project.org/). A Bonferroni-corrected p value of 0.01 was applied to adjust for multiple testing.

Results
Baseline Characteristics
A total of 355,133 participants from the UK Biobank were included in the analysis (age: 56.61 ± 8.03 years; 187,288 
women: 52.7%). During the 12.57-year follow-up, we documented 4,681 incident OSA cases. The other participants 
were categorized into the non-OSA group. The baseline characteristics of the participants are shown in Table 1.

Association Between Sleep Phenotypes and OSA
After adjusting for multiple covariates (Table 2), seven sleep phenotypes were independently associated with incident 
OSA. “No frequent daytime sleepiness” and “sleep 7–8 hours a day” were associated with a 65.0% or 6.0% lower risk, 
respectively. Sleep phenotypes were estimated to explain 1.8% (sleep duration) to 66.0% (excessive daytime sleepiness) 
of the population’s risk of developing OSA when using the low-risk group for comparison.

The degree of each sleep phenotype was classified. The analysis revealed that sleep durations ≥6 hours (HR: 1.27, 
95% CI: 1.19–1.36) and ≤9 hours (HR: 1.43, 95% CI: 1.31–1.58) increased the incidence of OSA, and the risk increased 
with long sleep (Supplementary Figure 1).
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Table 1 Basic Characteristics and Sleep Phenotypes of 355,133 UK Biobank Participants

Non-OSA OSA OR (95% CI) p (t/U/χ2)
(n = 350,452) (n = 4,681)

Sex, n (%) <0.001

Female 185,823 (53.0) 1,465 (31.3) REF

Male 164,629 (47.0) 3,216 (68.7) 2.48 (2.33–2.64)
Age, years 56.60 (8.04) 56.83 (7.69) 1.00 (1.00–1.01) 0.041

TDI −2.28 [−3.76,0.03] −1.59 [−3.34,1.37] <0.001

BMI, kg/m2 27.20 (4.56) 32.56 (6.59) 1.17 (1.17–1.18) <0.001
BMI status, n (%) <0.001

Nonobese 270,198 (77.1) 1,856 (39.6) REF

Obese 80,254 (22.9) 2,825 (60.4) 5.12 (4.83–5.44)
Waist circumference, n (%) <0.001

Healthy 204,998 (58.5) 1,405 (30.0) REF

Unhealthy 145,454 (41.5) 3,276 (70.0) 3.29 (3.09–3.50)
Smoke, n (%) <0.001

No 139,269 (39.7) 1,433 (30.6) REF

Yes 211,183 (60.3) 3,248 (69.4) 1.49 (1.40–1.59)
Drink, n (%) <0.001

Previous 11,153 (3.2) 275 (5.9) REF

Current 328,912 (93.9) 4,258 (91.0) 0.52 (0.46–0.59)
Missing: 10,535

MET Scores 10.7 (4.80) 9.32 (5.22) 0.94 (0.94–0.95) <0.001

MET Status, n (%) <0.001
<3 281,865 (80.4) 3,283 (70.1) REF

Between 3 and 6 52,706 (15.0) 869 (18.6) 1.42 (1.31–1.53)

>6 15,881 (4.5) 529 (11.3) 2.86 (2.60–3.14)
Diabetes, n (%) <0.001

No 333,826 (95.3) 3,968 (84.8) REF
Yes 16,626 (4.7) 713 (15.2) 3.61 (3.32–3.91)

Hypertension, n (%) <0.001

No 252,223 (72.0) 1,623 (34.7) REF
Yes 98,229 (28.0) 3,058 (65.3) 4.84 (4.55–5.14)

Sleep time, n (%) <0.001

(7–8 h) 242,756 (69.3) 2,648 (56.6) REF
(≤6 h) 81,136 (23.2) 1,462 (31.2) 1.65 (1.55–1.76)

(≥9 h) 25,927 (7.4) 541 (11.6) 1.91 (1.74–2.10)

Missing: 663
Daytime dozing/sleeping, n (%) <0.001

Never/rarely 272,620 (77.8) 2,656 (56.7) REF

Sometimes 69,070 (19.7) 1,511 (32.3) 2.25 (2.11–2.39)
Often 8,104 (2.3) 486 (10.4) 6.16 (5.57–6.79)

All the time 12 (0.00) 1 (0.02) 9.67 (0.40–49.4)

Missing: 673
Chronotype, n (%) <0.001

Morning 84,239 (24.0) 1,128 (24.1) REF

Morning more than evening 115,968 (33.1) 1,337 (28.6) 0.86 (0.80–0.93)
Evening more than morning 89,383 (25.5) 1,266 (27.0) 1.06 (0.98–1.15)

Evening 27,243 (7.8) 532 (11.4) 1.46 (1.31–1.62)

Missing: 34,037

(Continued)
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Association Between Sleep Patterns and OSA
The incidence density of OSA in those with poor sleep patterns (≤1) (5.14/1000 person-years) was 5.5 times that in those 
with optimal sleep patterns (≥6) (0.93/1000 person-years) (Table 3). A high healthy sleep score reduced the OSA risk 
(Supplementary Table 1). Compared with a poor sleep pattern, an optimal sleep pattern can reduce the disease risk by 
85.0% (HR: 0.15, 95% CI: 0.12–0.18). Normal sleep patterns (HR: 0.42, 95% CI: 0.38–0.46) and ideal sleep patterns 
(HR: 0.21, 95% CI: 0.19–0.24) could also reduce the disease risk.

The subgroup analysis revealed that for every 1-point increase in the healthy sleep score, there was a significant 
difference in the occurrence of OSA events in the sex, BMI, waist circumference, and high blood pressure subgroups (p 
interaction <0.05) (Supplementary Table 2).

A weighted optimal sleep pattern also significantly reduced the risk of OSA (HR: 0.12, 95% CI: 0.11–0.14) 
(Supplementary Table 3). Regarding weighted sleep patterns, the cumulative risk of poor sleep patterns increased 
significantly with increasing follow-up time (p < 0.001) (Supplementary Figure 2).

Another sensitivity analysis eliminated 1582 people with snoring, comprising 294 patients with OSA and 1288 
without, and the results remained robust (Supplementary Table 4).

PRS and Sleep Patterns in Patients with OSA
The GWAS conducted on the basic dataset (210,181 participants; 114,175 women: 54.3%) revealed four SNPs below the 
5.0×10−7 threshold significantly associated with OSA (Supplementary Table 5). The GWAS results are summarized in 
a Manhattan plot (Supplementary Figure 3). The genome-wide significant findings from these studies and the corre
sponding associations in our study are shown in the Supplementary Materials (Supplementary Table 6). A total of 
210,105 participants (114,128 women: 54.3%) from the target dataset were used to calculate the PRS, and 173,239 
underwent Cox proportional risk regression.

After adjusting for variables, the results showed no significant differences between the seven sleep phenotypes and 
the genetic information of OSA patients (Supplementary Table 7). Compared with those with a sleep score of 4–7 and in 

Table 1 (Continued). 

Non-OSA OSA OR (95% CI) p (t/U/χ2)
(n = 350,452) (n = 4,681)

Snoring, n (%) <0.001
Yes 120,330 (34.3) 3,249 (69.4) REF

No 208,395 (59.5) 1,163 (24.8) 0.21 (0.19–0.22)

Missing: 21,996
Getting up in the morning, n (%) <0.001

Not at all easy 11,977 (3.42) 379 (8.10) REF

Not very easy 46,199 (13.2) 875 (18.7) 0.60 (0.53–0.68)
Fairly easy 176,230 (50.3) 2,038 (43.5) 0.37 (0.33–0.41)

Very easy 115,855 (33.1) 1,381 (29.5) 0.38 (0.34–0.42)

Missing: 198
Sleeplessness/insomnia, n (%) <0.001

Never/rarely 86,707 (24.7) 963 (20.6) REF

Sometimes 167,138 (47.7) 1,809 (38.6) 0.97 (0.90–1.05)
Usually 96,467 (27.5) 1,905 (40.7) 1.78 (1.64–1.92)

Missing:144

Nap during the day, n (%) <0.001
Never/rarely 202,018 (57.6) 1,711 (36.6) REF

Sometimes 130,809 (37.3) 2,349 (50.2) 2.12 (1.99–2.26)

Usually 17,568 (5.01) 620 (13.2) 4.17 (3.79–4.57)
Missing: 58

Abbreviations: OSA, obstructive sleep; BMI, body mass index; and MET, metabolic equivalent intensity.
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Table 2 Multivariable-Adjusted HRs (95% CIs) for OSA by Low-Risk Sleep Phenotypes Among 355,133 Participants

Model 1* Model 2† Model 3‡

β HR (95% CI) PAR% β HR (95% CI) PAR% β HR (95% CI) PAR%

Sleep 7–8 h/day −0.20 0.82 (0.77–0.88) 5.0 (3.70–6.9) −0.17 0.84 (0.79–0.90) 4.6 (2.9–6.3) −0.07 0.94 (0.88–1.00) 1.8 (−0.1–3.6)

Early chronotype −0.18 0.83 (0.79–0.88) 9.4 (6.7–12.2) −0.15 0.86 (0.81–0.91) 7.7 (4.8–10.6) −0.08 0.92 (0.87–0.98) 4.4 (1.3–7.6)

Never/rarely experience insomnia −0.24 0.79 (0.73–0.84) 5.2 (3.9–6.6) −0.38 0.69 (0.64–0.74) 7.8 (6.5–9.0) −0.19 0.83 (0.77–0.89) 4.3 (2.8–5.8)
No self-reported snoring −1.48 0.23 (0.21–0.24) 46.1 (45.1–47.0) −1.36 0.26 (0.24–0.27) 44.4 (43.4–45.5) −1.02 0.36 (0.34–0.39) 38.6 (37.2–40.1)

No frequent daytime sleepiness −1.57 0.21 (0.19–0.23) 77.2 (75.3–79.1) −1.53 0.22 (0.20–0.24) 76.5 (74.5–78.5) −1.06 0.35 (0.31–0.38) 66.0 (62.8–69.3)

No nap −0.87 0.42 (0.39–0.44) 33.2 (31.8–34.7) −0.80 0.45 (0.42–0.48) 31.6 (30–33.2) −0.50 0.61 (0.57–0.65) 22.7 (20.5–24.9)
Easily getting up early −0.61 0.54 (0.51–0.58) 38.2 (35.3–41.2) −0.77 0.46 (0.43–0.49) 44.7 (42.1–47.3) −0.55 0.58 (0.54–0.62) 36.0 (32.7–39.3)

Notes: *Model 1: unadjusted; †Model 2: adjusted for sex and age; and ‡Model 3: adjusted for sex, age, BMI, TDI, MET, smoking status, drinking status, diabetes status, and hypertension.
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the low-susceptibility group, those with a normal sleep pattern had a 55.0% greater risk (HR: 1.55, 95% CI: 1.17–2.05), 
and those with poor sleep patterns (16 OSA and 242 non-OSA) had a 388% greater risk (HR: 4.88, 95% CI: 2.95–8.05) 
in the context of intermediate susceptibility to OSA. A normal sleep pattern increased disease risk by 89.0% (HR: 1.89, 
95% CI: 1.66–2.16); a poor sleep pattern increased disease risk by 267.0% (HR: 3.67, 95% CI: 2.95–4.57) in the high- 
susceptibility group (Figure 2).

Discussion
To our knowledge, few studies have investigated how combinations of low-risk sleep phenotypes affect the risk of OSA. 
However, these phenotypes may act synergistically to decrease OSA risk and could be useful in identifying at-risk 
populations and promoting health management. In this large prospective cohort study, we examined the associations 
between OSA and seven low-risk sleep phenotypes (morning chronotype, 7–8 hours of sleep per day, never/rarely 
experience insomnia, no snoring, no frequent daytime sleepiness, never/rarely nap, and easily getting up early) compiled 
as a sleep pattern, also considering genetic susceptibility to the disease. Our new sleep pattern analysis reflects the 
comprehensive influence of these seven low-risk sleep phenotypes on OSA. Participants with an ideal sleep pattern had 
an 85% lower risk of developing OSA than those with a poor sleep pattern. The evidence suggesting that an ideal sleep 
pattern could reduce disease risk in various populations with varying degrees of genetic susceptibility.

Figure 2 Joint association of genetic risk and sleep pattern with OSA among 173,239 participants. 
Note: Adjusted for sex, age, BMI, TDI, MET, smoking status, drinking status, diabetes status, and hypertension status.

Table 3 Multivariable-Adjusted HR (95% CI) for Incident OSA by Sleep Patterns Among 355,133 Participants

Sleep Pattern All Case Control Cases/1000 PYs Model 1* Model 2† Model 3‡

β HR (95% CI) β HR (95% CI) β HR (95% CI)

Poor 7,476 465 7,011 5.14 REF REF REF REF REF REF

Normal 212,878 3,496 209,382 2.32 −1.37 0.25 (0.23–0.28) −1.39 0.25 (0.23–0.27) −0.87 0.42 (0.38–0.46)

Ideal 92,688 569 92,119 1.49 −2.37 0.09 (0.08–0.11) −2.33 0.10 (0.09–0.11) −1.55 0.21 (0.19–0.24)

Optimal 42,091 151 41,940 0.93 −2.91 0.05 (0.05–0.07) −2.85 0.06 (0.05–0.07) −1.92 0.15 (0.12–0.18)

Notes: *Model 1: unadjusted; †Model 2: adjusted for sex and age; and ‡Model 3: adjusted for sex, age, BMI, TDI, MET, smoking status, alcohol consumption status, diabetes 
status, and hypertension status.
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A short sleep duration increases OSA risk at least 0.27 times compared with that observed with a normal sleep duration and 
0.43 times compared with a longer sleep duration. Other studies have shown that short sleep durations are associated with 
OSA.34 Additionally, the percentage of rapid eye movement (REM) sleep time during short sleep has been found to be lower in 
OSA patients than common population.35 Short REM may exacerbate the severity of OSA and may represent a brain defense 
mechanism.36 Snoring events have been observed during ~60% of OSA events involving apnea–terminating hyperpnea,37 and 
the intensity and frequency of snoring have been found to be independent predictors of OSA, at 77% and 81%, respectively, 
with age and sex increasing these values to 87% and 89%, respectively.38 Daytime sleepiness is a common symptom in obese 
patients with OSA, suggesting that objective daytime sleepiness is a more severe type of OSA phenotype with greater 
sympathetic drive, greater blood pressure, and possibly greater cardiovascular morbidity and mortality.39 One study of 23 
patients revealed that more OSA patients with mild apnea had a morning chronotype,40 and the process of chronotype change 
is closely related to the prevalence of OSA.41 Thus, it might be valuable to identify the chronotype associated with the onset of 
OSA in adults. Our study revealed that the risk of OSA in the evening chronotype group was significantly greater than that of 
the morning chronotype group, consistent with the findings of a previous study.42 The effects of naps on nocturnal sleep health 
and sleep dependence have been reported, and adverse health effects of naps have been confirmed.43–45 Our study highlighted 
the effects of daytime naps on the incidence of OSA, providing an important reference for early-onset predictions of OSA.

Our analysis demonstrated that improving sleep phenotypic behaviors may significantly lower disease risk. Short sleep 
duration or insomnia symptoms are linked to endocrine or metabolic disorders, increased sympathetic activity, or inflamma
tory pathways,46 while an evening chronotype can result in bipolar disorder.47 Habitual snoring is often associated with sleep 
apnea, and severe snoring is linked to increased thickness of the carotid endometrium and plaque and atherosclerosis.48 The 
benefits of reducing OSA and other disease risks by improving sleep behaviors, such as reducing sleep duration, changing 
chronotype, and limiting daytime naps, are substantial.

This study provides novel empirical evidence for the predictive value of seven low-risk sleep phenotypes and 
introduces a new healthy sleep pattern. This study offers clinical insights into the genetic factors contributing to 
susceptibility to OSA, paving the way for personalized treatment approaches. Clinicians can identify individuals at 
greater risk based on their genetic characteristics and tailor interventions accordingly. Assessing and intervening in sleep 
phenotypes in clinical practice allows more targeted and effective OSA prevention strategies and treatment.

Despite these strengths and implications for future research, several limitations should be considered when interpret
ing our results. First, since our study relied solely on diagnostic information related to OSA provided by the UK Biobank, 
we could not ascertain the diagnostic accuracy or severity classification. The sleep phenotype data were self-reported, 
which introduces the possibility of information bias, potentially limiting the interpretation of sleep phenotypes in relation 
to OSA severity. Second, our study is observational; therefore, caution should be exercised in interpreting the results. 
Third, this study was restricted to white British individuals, which may limit the generalizability of the findings to the 
overall population. Given these limitations, it is important to validate our findings in subsequent studies using an 
independent large sample, employing rigorous sleep phenotyping and outcome assessment to establish robust and 
applicable results across diverse populations. These future studies represent a crucial step in elucidating the comprehen
sive effect of phenotypic and genetic variations associated with OSA across different ethnicities. We believe that the 
results presented here provide a reference for future phenotypic and genetic functional studies on OSA.

Conclusion
This study presents new empirical evidence on the predictive value of seven low-risk sleep phenotypes and a new healthy 
sleep pattern may protect against OSA in individuals with varying degrees of genetic susceptibility. The results indicate 
that prioritizing management strategies to achieve a healthy sleep pattern may reduce the risk of OSA among individuals 
with low, intermediate, or high genetic susceptibility. These findings have important implications for reducing the burden 
of OSA in the population.

Abbreviations
OSA, obstructive sleep apnea; GWAS, genome-wide association study; SNPs, single nucleotide polymorphisms; BMI, 
body mass index; ACE, Assessment Centre Environment; ICD-10, International Statistical Classification of Diseases and 
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Related Health Problems 10th version; PRS, polygenic risk score; PRS, polygenic risk score; SAIGE, scalable and 
accurate implementation of generalized mixed model; SPA, saddle point approximation; PC, principal component; C+T, 
standard clumping + thresholding; TDI, Townsend deprivation index; MET, metabolic equivalent intensity; PAR%, 
population attributable risk percent; and REM, rapid eye movement.
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