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Abstract: There is increasing interest in using natural products as anticancer agents, as many 

have antioxidative properties that may help to prevent cellular damage that can lead to cancer. 

In addition, there is the expectation that many natural products will have low toxicity and few 

side effects. However, most anticancer and antioxidative agents are hydrophobic, reducing their 

bioavailability in vivo and making them problematic to deliver. Curcumin provides a good model 

system for study. In low doses it shows both anticancer and antioxidation effects, whereas in 

high doses and delivered locally it could be cytotoxic for cancer cells. In this paper, curcumin 

microemulsions were formed with food-grade chemicals, including soybean lecithin, soybean oil, 

and Tween 80, a Food and Drug Administration-approved surfactant. The optimized composi-

tion formed curcumin microemulsions with a mean size of 40–50 nm, carrying a concentration 

of curcumin as high as 15 µM. The stability of curcumin microemulsions refrigerated at 5°C 

over at least 968 days was assessed by size distribution and zeta potential. The effects of low-

frequency ultrasound on two oral squamous cell carcinoma cell lines (OSCC-4 and OSCC-25), 

and the synergy between treatment with curcumin microemulsions and low-frequency sonic 

stimulation, were tested. Finally, microscopic imaging of the cells confirmed the toxic effects 

of the curcumin microemulsions, showing damaged and ruptured cells after treatment. Brief 

exposure to the curcumin-containing microemulsions did have cytotoxic effects, but the addition 

of ultrasound strongly enhanced those effects, especially on OSCC-25 cells.

Keywords: oral squamous cell carcinoma (OSCC), curcumin, microemulsion, ultrasound, 

controlled release

Introduction
Traditional natural products have recently been extensively examined because they 

show few side effects and have powerful antioxidation, anti-inflammation, and cancer-

preventing properties.1 For example, half a century ago, curcumin and its family of 

related compounds were reported to have antibacterial effects, and many researchers 

have subsequently studied their antioxidation and anticancer properties. However, the 

curcumin compounds are polyphenols and may not be very stable or soluble in water.2 

They have been delivered orally, using a transdermal patch, and by injection.3  Numerous 

formulations of curcumin have recently been developed, including, for example, 

solid lipid curcumin particles,4 curcumin submicrometer dispersions,5 poly(ethylene 

glycol)-magnetic nanoparticles-curcumin,6 curcumin poly (n-butylcyanoacrylate) 

nanoparticles,7 self-microemulsifying liquid and pellets of curcumin,8 curcumin poly-

vinylpyrrolidone nanoparticles,9 and liposome- encapsulated curcumin.10 Carriers with 

high curcumin encapsulation, low cost, and high  biocompatibility may be attractive 
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for dietary supplements, cancer prevention, and anticancer 

applications.

Plasma antioxidant activities of curcumin have 

been  measured to determine the bioavailability in 

 Sprague-Dawley rats, using self-microemulsifying liquid 

and pellet  formulations of liposome-encapsulated curcumin,8 

and male Wistar-strain rats. Curcumin poly(n-butylcyano-

acrylate) nanoparticles have also been used to investigate 

the penetration of the blood–brain barrier in mice, with a 

view to treating Alzheimer’s disease and to preventing the 

 formation of brain tumors.7 The in vitro antihepatoma activi-

ties of curcumin polyvinylpyrrolidone nanoparticles have 

also been investigated.9

A new generation of targeted drug carriers is beginning 

to exploit nanotechnology to reduce systemic overdosage of 

drugs,11 by supplying an effective concentration locally at the 

site of disease. Maintenance of the proper concentration of 

bioactive molecules and targeting to disease sites may both be 

improved using an external means to supply energy (such as 

a magnetic field,12 light,13 or sound waves14,15). The possibility 

presents itself that locally delivered curcumin might be an 

effective cancer treatment. Local  concentrations could, in 

principle, be sufficient to kill tumor cells, and the antioxidant 

effects of curcumin would be beneficial to nearby nontumor 

cells. We have chosen to study ultrasound as a potential 

release modality for a lipid-based (here, a lipid emulsion) 

carrier. Ultrasound has been fairly extensively studied and can 

provide a “direct” release mechanism or act via local hyper-

thermia to enhance the delivery of  specific formulations, as 

described previously. Incorporation of poly(ethylene glycol)-

containing surfactants appears to enhance the sensitivity of 

lipid-based carriers to sound,16 possibly by interfering with 

the “healing” of membrane defects. Emulsions are drawing 

increased attention, and so-called phase-shift emulsions (gen-

erally containing low boiling point fluorocarbons) can give 

ultrasound-triggered release when emulsion droplets vapor-

ize in response to insonation.17 Ganta and Amiji18 have used 

a combination of paclitaxel and curcumin in nanoemulsion 

formulations to overcome multidrug resistance in SKOV3
TR

 

ovarian adenocarcinoma cells.

This investigation considers the stability and effects 

of low-frequency ultrasound on a curcumin microemul-

sion.15 A carrier oil was used to solubilize the curcumin. 

Soybean oil (listed as generally recognized as safe) was 

used, rather than ethyle oleate, which is not currently 

approved by the Food and Drug Administration for any 

injectable use and is regulated as a food additive. The sound 

intensity required to release curcumin from the curcumin  

microemulsions to two oral squamous carcinoma cell lines 

(OSCC-4 and OSCC-25) was also examined. Finally,  dosages 

and the synergy between ultrasound and curcumin micro-

emulsions were studied to determine the efficacy of this 

method for the localized delivery of curcumin.

Materials and methods
Lipids and chemicals
Soybean lecithin (L-α-phosphatidylcholine and inositol 

phospholipids, purity . 80%) (sourced from natural plant 

soybean oil) and soybean oil were obtained from Taiwan 

Sugar Corporation (Tainan, Taiwan) and Uni-President 

Corporation (Tainan), respectively. Both are food-grade 

products. Tween 80 and curcumin powder of 70% purity 

were purchased from Sigma-Aldrich Chemical Co (St Louis, 

MO) and Fluka (Seelze, Germany). OSCC-4 and OSCC-

25 cell lines (#60142 and #60516) were purchased from 

 Bioresource Collection and Research Center (Hsinchu, 

 Taiwan). The culture medium for OSCC cell lines contains 

44% of both  Dulbecco’s modified Eagle’s medium and Ham’s 

F12 medium, 2.5 mM L-glutamine, 15 mM HEPES (powder 

from Gibco), 1.2 g/L sodium bicarbonate, 10% fetal bovine 

serum, 1% nonessential amino acid (Invitrogen, Carlsbad, 

CA), and 1% penicillin/streptomycin. The last three chemi-

cals are also from Sigma-Aldrich Chemical Co.  Dimethyl 

sulfoxide (DMSO, product #161954) was purchased from 

Panreac (Barcelona, Spain).

Preparation of curcumin microemulsions
Deionized water, soybean oil, soybean lecithin, and Tween 

80 as surfactants, and curcumin, in amounts  indicated in 

Figure 1 (vide infra), were placed in a test tube (10 mm × 120 mm) 

and well mixed at 50°C using a  vortex mixer at 100 rpm 

for 5–20 minutes to form curcumin  microemulsions. The 

curcumin microemulsion had a transparent appearance with 

a yellow tint.

Stability of curcumin microemulsions 
measured by size distribution and zeta 
potential
The size distribution and zeta potential of curcumin 

 microemulsions were studied with a particle sizer and a 

zeta potential analyzer (90Plus and ZetaPlus, Brookhaven 

 Instruments Co, New York, NY), equipped with a 532 nm laser 

light source. The scattering laser power of this i nstrument is 

the standard 35 mW laser but adjusted to 25 mW. The 90Plus 

particle sizer uses dynamic light  scattering, with  collection 

times for the autocorrelation function of 1–3  minutes at the 
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90° scattering angle. The average count rate of the background 

was 3 kcps, and that of each measurement was between 20 

kcps and 500 kcps. The correlator covers the equivalent of 107 

linearly spaced channels. Real-time operation over the entire 

delay-time range corresponding to particle sizes between 

1 nm and 6000 nm was chosen.

It is also important to assess whether microemulsions 

are sufficiently stable in the presence of serum proteins. 

For this purpose, a solution of (bovine serum) albumin was 

prepared at 5 mg/mL in phosphate buffered saline (PBS) 

solution at pH 7.4. Curcumin microemulsion in amounts 

of 0.1 mL, 0.2 mL, 1 mL, and 2 mL was added into 5 mL 

 albumin solution, and emulsion sizes were measured 0–7 days 

after preparation.

Curcumin release from microemulsions 
under insonation
The 40 kHz ultrasonic processor (Model VC134, Sonics 

and Materials Inc, Newtown, CT) with a “standard” probe 

(Ti-6 Al-4V) of 3 mm diameter was immersed into a 1 cm 

polystyrene cuvette. The probe was immersed approxi-

mately 1 cm into a 1.5 mL sample, initially containing 

only PBS (65 mM NaCl and 50 mM KH
2
PO

4
 at pH 7.4). 

After adding 300 µL of microemulsion stock solution (to 

a dilution of 6× ), ultrasound was then applied at either 

20% (∼1.9 W/cm2) of full power for 5 seconds, 10 seconds, 

15 seconds, and 20  seconds. Released curcumin forms 

insoluble aggregates, which float to the surface of the 

sample. The resultant solution was passed through a 0.45 µm 

filter and then subjected to high-pressure liquid chromatog-

raphy19 (Hitachi L-2130 pump, L-2420 UV/VIS detector, 

and LiChrospher 100–5 R C-18 column). The separation 

was performed on a Cosmosil 5C18 MS column (5 µm, 

25 cm × 4.6 mm ID, Nacalai Tesque, Kyoto, Japan). The 

sample (20 µL) was eluted with a mobile phase composed 

of 0.1% H
3
PO

4
 (40%) and acetonitrile (60%). The flow rate 

and detection wavelength were set to be 1.0 mL/minute and 

420 nm, respectively.20 The standard curves of curcumin 

in DMSO ranging from 0.01 mg/mL to 1.0 mg/mL were 

used for calibration. The retention time for curcumin is 

12.3 minutes.

The droplet morphologies of the curcumin  microemulsions 

were determined using transmission electron microscopy 

(TEM). A total of 5 µL of curcumin microemulsion was 

placed on 200 mesh formvar carbon-coated copper grids 

for 10 minutes, and then negative stained with 5 µL of 
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2% uranyl acetate for 10 minutes at room temperature. 

The excess liquid on the samples was wiped off with a filter 

paper, and then samples were air-dryed for 30 minutes. The 

grid  containing the microemulsion droplets was observed 

with a field emission scanning electron microscope  (FE-SEM) 

S-4800 (Hitachi, Japan) and TEM H-7500 (Hitachi).

MTT (cytotoxicity) test of OSCC 
with curcumin microemulsions after 
insonation
The MTT test (97.50% purity from Sigma-Aldrich Chemical 

Co) is used as a rapid and sensitive method for screening 

curcumin microemulsions and ultrasound effects on OSCC-4 

and OSCC-25 cells. About 2 × 104 OSCC cells were added 

to the 96-well culture plate (Nalge Nunc International, 

 Rochester, NY) and incubated (37°C and 5% CO
2
) for 

24 hours. A total volume of 30 µL, consisting of differing 

amounts of curcumin microemulsion and PBS, was added. 

Samples were insonated and then incubated for another 

24 hours. MTT solution (50 µL) was added to each well 

and incubated with cells for 3 hours. Medium was removed 

and 100 µL DMSO was added. Absorption at signal and 

reference wavelengths (570 nm and 620 nm, respectively) 

was measured with an ELISA reader (Power Wave HT340, 

BioTek, Winooski, VT). Effective absorption is obtained by 

subtracting the reference absorption from the signal. The 

cellular viability (%) was then calculated from the ratio of 

effective absorption of experimental cells to controls. The 

temperature was measured after insonation using the dual 

input digital thermometer DTM 315 (Tecpel Co, Taiwan).

All data were analyzed by Student’s t-test using SPSS 

statistics software (SPSS, Inc, Chicago, IL).

Results and discussion
Microemulsions are good candidate drug carriers because 

of their nanometer size, which enhances the kinetics of 

drug absorption/desorption and may also increase the load-

ing capacity for surface active drugs.21 In addition, small 

size allows passage through organ filtering systems, and 

extravasation through tumor vasculature, both of which are  

highly desirable characteristics. Most anticancer drugs 

are hydrophobic or amphiphilic, and micelle carriers may 

encapsulate much higher concentrations of a drug than 

other carriers. In this paper we have focused on emulsions 

of soybean oil in water as carriers for a potentially useful 

anticancer agent, curcumin.

Figure 1 shows the compositions for which we obtained 

stable oil-in-water microemulsions. Unstable formulations 

rapidly separate into water and oil phases that can be  visually 

observed. The stable microemulsions contain oil and surfactant 

concentrations of less than ∼8 wt% and 30 wt%, respectively. 

To carry more drugs in the  microemulsions, the oil content 

must be as high as possible, but increasing the  concentration 

of oil may cause instability and require that more surfactants 

be used, increasing total cost.  Microemulsions that contained 

2.5 wt% oil and 15 wt% surfactants were chosen to be used 

in an in vitro test with the OSCC cell lines, with curcumin 

dissolved in the oil phase to 0.27 mg/mL, the highest con-

centration that is fully soluble. As the oil-water partition 

coefficient of curcumin is ∼2000, almost all of the curcumin 

should remain in the microemulsion droplets. The total con-

centration of emulsified curcumin was 15 µM.

Figure 2A displays the stability in the size and zeta 

potential of these microemulsions. Light scattering measure-

ments of the mean size of the curcumin microemulsions gave 

41 ± 3 nm to 51 ± 2 nm, measured at various times during a 

968-day storage at 5°C. The zeta potential exhibits good to 

moderate stability after 968 days of storage, though there is 

a small but statistically significant decrease in zeta potential 

over 40 days, from −42.12 ± 1.26 mV to −32.58 ± 3.89 mV. 

This negative zeta potential arises from the incorporation of 

lecithin in the microemulsion, as lecithin micelles/suspensions 

were also found to have zeta potential, from −36.2 ± 2.7 mV 

to −59.9 ± 3.8 mV. Although there is some change in the 

size and zeta potential over long periods, these changes are 

small and do not necessarily indicate that these emulsions are 

“unstable.” In practice, emulsions are considered “moderately 

stable” if the magnitude of the zeta potential exceeds 30 mV 

(American Society for Testing and Materials standard),19–21 as 

zeta potentials this large strongly inhibit coalescence.

For potential applications of microemulsions in drug 

delivery, the stability of the microemulsion in the presence 

of serum proteins is critical. We measured the stabilities of 

these curcumin-encapsulated microemulsions after dilution 

into a 5 mg/mL albumin solution by measuring droplet size, 

after storage in the dark for 0–7 days, as shown in Figure 2B. 

Although there was a slight decrease in the measured droplet 

size, there was no evidence of droplet coalescence, ripening, 

or gross instability.

Figure 3 shows the effects of ultrasound on newly  prepared 

curcumin microemulsions. The mean particle size decreased 

dramatically when ultrasound was applied even for only a 

few seconds, from 44 ± 3 nm to 26 ± 2 nm in 20 seconds 

when insonated at 20% of full power at 40 kHz (Figure 3). 

The light scattering polydispersity index (an  estimate of the 

width of the distribution) of the curcumin  microemulsion 
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was 0.327–0.331, regardless of the application of ultrasound, 

which is considered a moderate  polydispersity. Sixty-six 

percent of the microemulsion particles are within ±9–14 nm 

of the light scattering peak size. Figure 3B shows that the 

magnitude of the zeta potential decreased slightly, from 

−42.12 ± 1.26 mV to −34.29 ± 1.82 mV, on insonation. 

Absorption measurements showed that the micellized cur-

cumin concentration decreased from 15.0 µM to 12.5 µM 

(released curcumin is insoluble and forms a floating aggregate 

out of the ultraviolet-visible probe beam). The decrease in 

particle size may be related to the well-known breakup of 
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Figure 3 (A) Mean sizes (black circles) and polydispersity (green squares); (B) 
curcumin concentrations (black triangles) and zeta potentials (blue diamonds) of 
curcumin microemulsions after brief insonation.

bubbles in ultrasound, which can occur through the parametric 

amplification of surface modes.22,23 It is less clear why droplet 

breakup leads to release and aggregation of curcumin, but 

it is certainly plausible that the increased surface exposure 

(caused by dilution of surfactants on the increased surface 

area of smaller droplets) causes curcumin aggregation, or that 

curcumin exposure to the aqueous phase is transiently elevated 

at droplet fission necks or other transient structures.

Figure 4 demonstrates that simply immersing the  ultrasonic 

probe into the cell well has no effect on cell  viabil ity, as 

expected. In the absence of microemulsions, ultrasound 

50 1.0

0.8

0.6

0.4 P
o

ly
d

is
p

er
si

ty

0.2

0.0

40

30

20

10

0

0 5
Sonication duration (seconds)

M
ea

n
 s

iz
e 

(n
m

)

10 15 20

0

0

5

C
u

ri
cu

m
in

 c
o

n
ce

n
tr

at
e 

(µ
M

)

Z
et

a 
p

o
te

n
ti

al
 (

m
V

)

15

10

−10

0

−20

−30

−40

−50

20

5 10
Sonication duration (seconds)

15 20

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

945

US-induced release from curcumin microemulsions

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2012:7

applied at the 20% power setting gave good cell viability until 

20 seconds of insonation, for both cell lines (Figure 4A and B, 

circles). (Because of the rather long wavelength of this low-

frequency 40 kHz ultrasound, all cells in a well [in the 96-well 

plate] should experience approximately the same sound field.) 

The rather unusual dose response, with essentially no effects 

after ,20 seconds of exposure, suggests that an indirect ultra-

sound effect, such as a temperature rise greater than 4.2° (in 

Figure 4C), may actually be the cause of the loss of viability 

after 20 seconds of exposure. Higher intensities of ultrasound 

caused cell viability to drop after shorter exposures. For $40% 

of full power, only 2 seconds of exposure was sufficient to kill 
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essentially all the cells. At 30% of full power, cell viability 

decayed more gradually with increasing exposure.

Figure 5A shows that the size distribution of microemul-

sion droplets shifts to smaller sizes on applying ultrasound 

from 0 seconds to 20 seconds. The uranyl acetate negative stain 

enhances contrast. The FE-SEM (insert) and TEM show the 

spherical morphology of the microemulsion droplets without 

ultrasound (Figure 5B). After 10 seconds of ultrasound, the 

sample floating to the surface was picked up on an electron 

microscope grid and imaged. The FE-SEM image (Figure 5C) 

shows that the released curcumin in  soybean oil is aggregated, 

with a droplet size larger than that of microemulsion droplets.
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concentration studies (15 µΜ), only in the presence of 

ultrasound, and only on the OSCC-25 cell line. Unlike free 

curcumin or curcumin in DMSO, curcumin microemulsions 

are toxic to cells (Figure 6, open symbols). This toxicity may 

be a consequence of the increased delivery of curcumin to 

the cell, perhaps via fusion of microemulsion droplets with 

cell membranes. When 40 kHz ultrasound (power level 

20%, ∼1.9 W/cm2) is applied for 20 seconds, the cytotoxic 
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Likely owing to its near complete insolubility in water, 

curcumin alone has no statistically significant effect on 

cell survival or growth, in either the presence or absence 

of ultrasound for 20 seconds at 20% full power (data not 

shown). When curcumin was first dissolved in DMSO and 

then dispersed into cell cultures, a small reduction in cell 

growth (25%) was seen, but only at the highest curcumin 
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effects of the curcumin microemulsions are enhanced (solid 

symbols). The enhancement is particularly dramatic for the 

OSCC-25 cells, for which the LD50 dropped from about 

6 µM to 1 µM. To evaluate the statistical significance of 

the viability change in each cell line, the data at each cur-

cumin concentration were compared using Student’s t-test. 

On OSCC-4 cells, the effect at each concentration has rather 

weak statistical significance (especially when error bars 

overlap, eg, at 3 µM, 5 µM, and 10 µM curcumin). However, 

the probability of the null hypothesis (ie, that ultrasound 

has no effect on viability) is obtained as the product of the 

individual P-values for the points and is ,0.008. Thus, there 

is a small but statistically significant effect of ultrasound 

on enhancing the cytotoxicity of curcumin microemulsion. 

At most curcumin concentrations, the cytotoxicity increased 

by .25% for the OSCC-4 cells.

The effect of ultrasound on the OSCC-25 cell line had 

even greater statistical significance (P , 0.002) when 

 analyzed by Student’s t-test (Figure 6B). Note that exposure 

of cells to microemulsions without curcumin, for this length 

of time, is not toxic.

In liposomally based ultrasound delivery, a threshold in 

sound intensity for efficacy has been reported,15,24 which 

likely indicates that ultrasound-induced cavitation is required. 

Interestingly, the intensities that are effective with curcumin 

microemulsions range from below cavitational to well above 

it. The higher intensities (such as are shown in Figure 4B 

and 4B, $30% maximum power) are lethal to cells even at 

the briefest exposures studied and likely cause cavitation, 

whereas the 20% power setting gave no measurable cell 

death for short exposures. (The 20% power setting on this 

 sonicator probe provides 1.9 W/cm2, which is below the 

typical cavitation threshold; moreover, the identical sonicator 

had no effects on liposomes at this power level, implying a 

lack of cavitation.)

Our results imply that ultrasound is enhancing the 

 delivery of cytotoxic concentrations of curcumin to cells. 

Ultrasound-enhanced delivery at subcavitating intensities is 

not unprecedented; effects on drug release from micelles has 

been reported, for example.25 It is interesting and noteworthy 

that ultrasound caused directly measurable changes in emul-

sion droplet size and loss of dissolved curcumin, as we show 

in Figure 3B, though of course we cannot be certain that such 

release of curcumin is in fact a prerequisite to the ultrasound-

mediated delivery to the cells. It is always possible that direct 

contact between cells and microemulsion droplets, followed 

by insonation, leads to the fusion of a droplet with the cell 

and delivery of the curcumin cargo.

Figure 7 displays optical microscopy images of 

OSCC-25 cells with curcumin concentrations (from top 

to  bottom: 0 µM, 5 µM, 10 µM, and 15 µM) without 

(left column) and with sonication (right column). As can be seen 

from the microscope images, higher curcumin concentrations 

induce greater cellular lysis. For a particular applied  curcumin 

concentration, ultrasound enhanced the toxicity effect and fewer 

cells are observed, as in Figure 7D and H.

Figure 8 highlights the synergistic effects of  curcumin-

containing microemulsions and ultrasound. Shown are cell 

viabilities for cells treated with curcumin-free microemulsions 

without ultrasound, curcumin-free microemulsions and 

ultrasound (20 seconds at 20% power, ∼1.9 W/cm2), curcumin-

containing microemulsions without ultrasound, and curcumin-

containing microemulsions with the low-intensity ultrasound 

treatment. Adding the curcumin-free microemulsion into 

OSCC cell lines, the “viabilities” of OSCC-4 and OSCC-25 

cell lines were actually increased to .100% by sonication. 

(Viabilities . 100% simply reflect that more live, healthy 

cells were counted after treatment than before.) This clearly 

shows that microemulsions alone are not harmful to the 

cells. The increased cell growth is consistent with previous 

reports that low-intensity ultrasound can sometimes enhance 

cell metabolism and proliferation.26,27 Brief exposure to the 

curcumin-containing microemulsions did have cytotoxic 

effects, but the addition of ultrasound strongly enhanced 

those effects, as shown in Figure 8. Continuous low-frequency 

sound waves effectively induced the release of curcumin from 

microemulsions. A lower-intensity (about 20% of full power) 

and shorter sonication duration (∼20 seconds) does not damage 

OSCC-4 and OSCC-25 cells, as determined by monitoring 

24 hours after application of the sound, but did enhance the 

toxicity of the curcumin-containing microemulsions. With the 

OSCC-25 cell line, the LD50 was reduced by about a factor 

of six. Comparison of the expression of fatty acid synthase28 

and activated transforming growth factor-ß1 signaling29 has 

shown that OSCC-25 is a more aggressive tumor cell line than 

OSCC-4. These differences may be related to the differential 

efficacy of ultrasound on the two lines.

The increased cytotoxicity of curcumin microemulsions 

in the presence of ultrasound could arise from an enhanced 

fusion of microemulsion droplets to cell membranes, 

or simply from amelioration of transport limitations by 

 ultrasound-induced mixing and/or heating. It is notewor-

thy that enhancements were seen even for 5 seconds of 

ultrasound exposure, which argues against a simple heat-

ing mechanism (as temperature increases with duration of 

exposure).
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Figure 7 Optical microscope images of oral squamous cell carcinoma-25 cell lines stained by trypan blue; (A–D) show the microscopic images of cells with curcumin 
concentrations at 0 µM, 5 µM, 10 µM, and 150 µM without sonication, and (E and H) show the microscopic images of cells with curcumin concentrations at 0 µM, 5 µM, 
10 µM, and 15 µM after sonication treatment. 
Note: Those images show the synergy of microemulsion treatment with ultrasound in producing cytotoxicity.
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usable in this kind of application.  Moreover, the ingredients 

are all biocompatible, to reduce the side effects. The stable 

microemulsions were characterized by their mean droplet size 

and zeta potential, and these were found to be fairly stable after 

968 days in a freezer. The effect of sound on the release of 

curcumin may help to maintain the effective concentration for 

the chemotherapy, especially for the more aggressive cell lines 

(eg, OSCC-25). Additionally, the in vitro controlled release 

of drugs (thought of as simply bioactive molecules) may be 

useful in cellular molecular therapy in tissue engineering.
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